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Zusammenfassung

Diese Doktorarbeit untersucht die Rolle von Raumgedächtnissen in der Ortserkennung.
Die erste Studie fokussiert sich auf das Zusammenspiel zwischen dem räumlichen Arbeits-
gedächtnis und der Ortscodierung im Langzeitgedächtnis. Des Weiteren wollen wir her-
ausfinden wie die lokale Positionsinformation im räumlichen Arbeitsgedächtnis enkodiert
ist. Unser Vorschlag ist, dass die Ortserkennung auf einer intermediären Repräsentation
basiert, die die Distanz-und Richtungsinformation über navigations-relevante Objekte in der
Umgebung beinhaltet. Dafür entwickelten wir einen experimentellen Aufbau mit dem die
Verteilung von Entscheidungen gemessen wird, bei denen die Versuchspersonen einen Zielort
wiedererkannt haben. Das experimentelle Ergebnis wurde verglichen mit den simulierten
Daten des entwickelten Likelihood-Modells, welches die vom Arbeitsgedächtnis und der
gespeicherten Ortkodierung repräsentierte wahrgenommene Distanz und Richtung mit ein-
bezieht. Die Ergebnisse zeigen, dass das räumliche Arbeitsgedächtnis und die Ortskodierung
auf einer kartenähnlichen Struktur beruhen. Das räumliche Arbeitsgedächtnis baut sich
aus den metrischen Wahrscheinlichkeitsschätzungen der Umgebung auf. Allerdings sind die
Distanzschätzungen nicht aus dem euklidischen Raum abgeleitet, sondern vermutlich hyper-
bolisch komprimiert. Wohingegen die Ortscodierungs-Schätzungen durch Triangulation eher
wahrheitsgemäß sind.

Die zweite Studie adressiert die Frage, ob der Abruf von zeitlichem Kontext aus dem
episodischen Gedächtnis, der entscheidend für die Integration von vielfachen Ansichten in der
Ortserkennung ist, ein charakteristisches Ereignis-korreliertes Potential hervorruft. Hierzu
modifizierten wir die klassische ‚alt/neu‘ Aufgabe, in dem wir den zeitlichen Kontext einer
gelernten Abfolge von präsentierten Szenen abfragten. Die Ergebnisse zeigten, dass der
Abruf von zeitlichem Kontext aus dem episodischem Gedächtnis durch einen Verzögerung
der Latenz der P600 Amplitude gekennzeichnet ist, die in der zentral-parietalen Region
lokalisiert ist. Wir vermuten, dass dieser Effekt mit der Integration von vielfachen Ansichten
im räumlichen Arbeitsgedächtnis verknüpft ist.
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Abstract

This thesis investigates the role of spatial memories in place recognition. The first study
focuses on the interplay between the spatial working memory and place codes in long-term
memory. Further we want to figure out how the local position information is encoded in
spatial working memory. Our proposal is that place recognition is based on an intermediate
representation, containing distance and bearing information about the surrounding envi-
ronmental cues. Therefore we designed an experimental setup , in which we measure the
distributions of decisions, where the participants recognized a target location. The exper-
imental result were compared with the simulated data of the formulated likelihood-based
model which takes into account the perceived distance and bearing represented by the work-
ing memory and the stored place code. The results show that the spatial working memory
and the place code are based on a map-like structure. Spatial working memory is built up
by probabilistic metric estimates of the environment. However, distance estimates in spatial
working memory are not derived from Euclidean space, but rather are assumed to be hyper-
bolically compressed. Whereas the place code estimates are assumed to be more veridical
due to triangulation.

The second study addresses the question whether retrieval of temporal context from
episodic memory, which is crucial for multiple view integration in place recognition, evokes
a characterizing event-related potential. Concerning this we modified the classical ‘old/new’
task by inquiring the temporal context of a learned sequence of presented scenes. The
results revealed that the retrieval of temporal context from episodic memory is signalized by
a latency delay of the P600 amplitude located in the mid-parietal region. We assume that
this effect is linked to the multiple view integration in spatial working memory.
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1. Introduction

1.1. Single versus multiple views in place recognition

Recognition of familiar places requires a representation of memorized local position in-
formation, or place code of each place. This place code contains local position information
visible in the current viewing direction but may also include information from previously
observed, nearby angles (for review Madl et al., 2015). Single-view approaches relying ex-
clusively on the cues available in the current field of view have been reviewed by Trullier
et al. (1997). Depending on the amount of processing required to extract the relevant cues
from the retinal image, various models can be distinguished ranging from edge-enhanced
‘snapshots’ (Cartwright and Collett, 1982), to ‘boundary vectors’, i.e. allocentric depth and
bearing of boundaries and objects (Barry et al., 2006; Hartley et al., 2000), to the recognition
of landmark objects (Janzen and Van Turennout, 2004) or to spatial layouts (geometry of
walls or landscapes) represented in the parahippocampal place area (Epstein, 2008). Among
these different cues to place recognition, we define landmarks as salient, relevant for nav-
igation, and reliably recognizable features or objects which are stored in spatial memory.
Besides supporting binary decisions in place recognition, landmarks can also induce a refer-
ence frame for judging gradual deviations from a goal position. This function of providing a
reference frame is particularly obvious in global landmarks, delimiting walls, or boundaries
defined by object configurations (see Appleyard, 1969; Chrastil and Warren, 2014; Gillner
et al., 2008; Steck and Mallot, 2000; Thorndyke and Hayes-Roth, 1982).

Multi-view models of place recognition can be useful to model view preferences in spatial
recall or place representations of varying scale. They require an integration stage for the
multiple views which can be thought of as an egocentric spatial working memory (Byrne
et al., 2007; Giudice et al., 2013; Röhrich et al., 2014; Tatler and Land, 2011). The integration
of multiple views can be solved by a view graph model in which views obtained at a place

1



2 1. INTRODUCTION

are linked to each other by turning movements, whereas views of different places are linked
by translation movements (Hübner and Mallot, 2007; Röhrich et al., 2014; Schölkopf and
Mallot, 1995). In this thesis we will suggest that long-term place codes are built from such
working memories, i.e. from integrated representations of multiple views, rather than from
single, directed views alone.

1.2. Depth processing

Studies on the homing behavior of digger wasps (Tinbergen and Kruyt, 1938), honey
bees (Cartwright and Collett, 1982) and wood ants (Durier et al., 2003) revealed that the
recognition of places in insects is directly linked to the angular size and the geometrical
configuration of landmarks. Cartwright and Collett (1983) proposed a snapshot memory for
homing and place recognition based on a panoramic view of the environment. According to
that theory a place is recognized if the current retinal image matches the directions to the
landmarks and the angular size of each landmark stored in the snapshot of the target place.
In one experiment the configuration of three landmarks was distorted after training in such
a way that the angular sizes of the landmarks (equivalent to the distance) match at one
place while the relative bearings of the landmarks match at another place. The honey bees
preferred the place where the bearings matched those of the stored snapshot. In another
two experiments the sizes of the three landmarks were either increased or decreased resulting
in search areas of the bees centered also at the place where the bearings matched. This is
generally taken as evidence that the honey bee place code is a snapshot (set of relative
landmark bearings) rather than a local depth map (set of landmark distances).

Landmark bearing and distance were crossed in an experiment with human participants
by Waller et al. (2000) in which participants searched for the goal at the place where the
landmark distances matched rather than where the landmark bearings matched, especially if
the goal location was enclosed by the landmark configuration. The reason for this discrepancy
may be the limited field of view of human observers as compared to the nearly panoramic
view of honey bees. As a consequence, in an enclosing configuration the match for each
viewing direction will only provide partial information, whereas multiple view integration
across head and body movements is required to exploit the complete visual sphere. Under
pure rotations, multiple view integration might lead to a simple panorama as in the image-
stitching function of a camera. If, however, small translations between view acquisitions
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are also considered, image integration entails the representation of some sort of depth or
correspondence, for instance a local map supporting also spatial updating (Giudice et al.,
2013; Loomis et al., 2013). If information from this local map is stored as a place code, the
reported matching by landmark distance is to be expected.

Rats returning to previously learned places in rectangular box-mazes confuse diagonally
opposed but not adjacent corners of the maze. These ‘rotational errors’ occur even in the
presence of visual features marking the target location or if box orientation is disambiguated
by asymmetric wall coloring. These results and similar results from human studies led to
the assumption of a pure geometric module for place recognition (Cheng, 1986; Hermer
and Spelke, 1994; Learmonth et al., 2001; Margules and Gallistel, 1988). A simulation
study by Stürzl et al. (2008) showed, however, that rotational errors are also predicted if
place recognition is based on an edge rather than an intensity or color image, rendering
the argument for a geometric place code elusive. Direct evidence for rodents using place
codes based on image intensity or texture was presented by Graham et al. (2006) using a
‘flip-flop’ task in a kite-shaped room that contained sufficient geometric cues to find a goal
location based on depth alone. The performance decreased if the wall texture frequently
changed during training compared to those trained with constant wall texture, indicating an
integrative use of both depth and textures cues. Again, simulation studies showed that the
behavioral results can be explained by assuming a panoramic edge-image as the underlying
place code (Cheung et al., 2008).

Evidence for the snapshot-based place recognition in humans in absence of localized cues
and landmarks was presented by Gillner et al. (2008). Participants were navigating to target
places within a circular room where the only local position information was provided by a
homogeneous color gradient covering the walls. The performance of the participants de-
creased with color gradient modulation and wall distance as predicted by a simple snapshot-
model minimizing the sum of squared RGB-differences over all pixels (Franz et al., 1998).
Geometry-based models of place recognition were not able to explain the results. We take
these various experimental results to indicate that place recognition can be based on a vari-
ety of different cues, including image texture, edges, and depth. The information source used
in a given task may depend on the reliability of the local position information available.
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1.3. Spatial working memory

Spatial awareness, i.e. the feeling of being at a given place and the knowledge of the
current spatial context, is not based on instantaneous views alone, but is constructed and
continuously updated over time. As a result, a spatial working memory is built integrating
spatial information from various senses, viewing directions, and view-points into an amodal
‘spatial image’ (Avraamides et al., 2004; Byrne et al., 2007; Giudice et al., 2013; Loomis et al.,
2013; Mellet et al., 2002). The content of spatial working memory is continuously updated
using information from changing perceptual input and ego-motion (Farrell and Robertson,
1998; Rieser, 1989; Wolbers et al., 2008). If a percept is terminated, e.g. by leaving the field
of view, a coarser representation will generally be maintained in the spatial image (Loomis
et al., 2013; Tatler and Land, 2011). Mou et al. (2004) suggested that spatial updating
depends on intrinsic axes of the environment and is generally more precise for rotational
than for translational movements of the body. The usage of spatial content out of sight is
crucial for preparing eye movements and motor actions, e.g. grasping an object out of sight,
or planning routes using global landmarks currently not available, e.g. a salient building in
a city that disappears from time to time.

The integration of linear and angular self-motion (e.g. from proprioception and optic
flow) is an essential source of metric information (Cheung and Vickerstaff, 2010; McNaughton
et al., 2006; Mittelstaedt and Mittelstaedt, 1980; Wolbers et al., 2007). This path integration
can be thought of as the spatial updating of the start position of the current journey but will
also enter computations for spatial updating of other environmental objects. Theoretically, it
can be based on ego-motion cues alone (Mittelstaedt’s idiothetic cues), but is much improved
by place or landmark recognition which allows to overcome error accumulation (Etienne
et al., 2000; Etienne and Jeffery, 2004; Foo et al., 2005; Hübner and Mallot, 2007; Thrun
et al., 2004). The maintenance of local metric knowledge thus involves interactions between
spatial working and long-term memories, including the recognition of places from stored
place-codes (Burgess, 2006; Giudice et al., 2013).

Another case of interaction between the spatial image and long-term memory is the
formation of spatial expectations and the increase of the range of spatial awareness (Röhrich
et al., 2014). This may even lead to the generation of mental images of distant places as in
mental travel (Basten et al., 2012) and episodic foresight (Addis et al., 2007; Schacter and
Addis, 2007; Schacter et al., 2007; Suddendorf and Corballis, 2007).
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1.4. A model of place recognition

While physical space is continuous, mental representations of space are built of discrete
entities of various granularity (Appleyard, 1969; Siegel and White, 1975; Tolman, 1948).
In mazes, such entities may be sharply defined decision points (Gillner and Mallot, 1998;
Kuipers, 1978), which are induced by the discrete structure of the environment and task. In
open spaces, however, places (as a cognitive concept) often do not have well-defined bound-
aries and may cover a substantial spatial extend. Mathematically, places are therefore not
just pairs of coordinates, but rather resemble a two-dimensional distribution of ‘belonging-
ness’ to the place in question. Indeed, this is what is plotted as firing fields of place cells
(O’Keefe and Dostrovsky, 1971), or error distributions (confusion areas) in homing experi-
ments (Gillner et al., 2008; Jacobs et al., 1997, 1998; Morris, 1981). Such distributions arise
naturally from the representation of places by discrete place codes, combined with some
comparison operation between stored and current place information (Cartwright and Col-
lett, 1983; Franz et al., 1998). This comparison operation involves the long-term memory
place code and a position dependent representation. In this paper, we suggest that the latter
is not just the sensory image (snapshot) but rather the content of the spatial image. Thus,
place recognition will depend not only on currently visible cues, but also on terminated cues
maintained in the spatial image by some updating process.

Figure 1.1 summarizes the assumed place recognition model. It consists of two processing
streams extracting information about metric position and feature identification. These two
streams resemble the locale and taxon systems of O’Keefe and Nadel (1978). They feed into
a joint spatial working memory supporting spatial updating and spatial awareness. Long-
term memory place codes are formed from this spatial image at discrete places by fixing a
subset of working memory content in long-term memory. Place recognition is then achieved
by a comparison operation acting the current spatial image and the long-term memory place
codes. Further interactions between long-term memory and working memory exist, e.g. for
memory-based updating and mental travel, as well as landmark-based reduction of error
accumulation in path integration, etc., as discussed above.

Interactions between spatial working and long-term memories are complicated by the fact
that the spatial image is largely ego-centric and will therefore change with body movements,
whereas long-term memory place codes are fixed and independent of body pose. The com-
parison stage will therefore need to be invariant to the relative angle between the stored
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Figure 1.1: Schematic illustration of functional interaction between perception, long-term memory
(LTM) place codes and spatial image (WM = working memory). After the percept disappears
the perceptual input is converted into a coarse spatial image version reduced to local position
information. During a spatial relevant task the spatial image constantly receives spatial relevant
input from percepts of different modalities and interacts with the long-term memory place codes
initiated by identification processes (e.g. landmark recognition, scene recognition).

place code and the current spatial image. Simple schemes to achieve this can be based on la-
beling of place codes with independent compass information (Möller and Vardy, 2006, e.g.,),
comparison of ‘views’ each with a limited visual angle (Röhrich et al., 2014), or by using
panoramic place codes with low angular resolution (Stürzl and Mallot, 2006). Behavioral
evidence for the representation of local place orientation has been presented, e.g. by Mou
and McNamara (2002) and Meilinger et al. (2015).

Note that the notion of place suggested here is similar to a vista space in the sense
of Montello (1993), containing the space within the current perceptual horizon. Indeed,
we suggest that the spatial image contains map-like information of an extended region,
as is required for the assumed spatial updating processes. The long-term memory place
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code, being a copy of working memory contents, may thus be fairly complex, including
data structures such as local maps or the spatial layout of indoor environments. In the
experiments described in this study, we will assume that the spatial image and place codes
are local maps containing distance and bearings of landmarks at a fixed orientation.

1.5. Place recognition in the hippocampal circuit

The discovery of the place cells (O’Keefe and Dostrovsky, 1971), which inspired (O’Keefe
and Nadel, 1978) to formulate the theory of the hippocampus as a ‘cognitive map’. The
cognitive map is proposed to contain metric relations of the environment. O’Keefe and
Burgess (1996) showed that an extending of the geometrical dimensions of a rectangular
box elongated or split the place fields in the corresponding direction. Thus, indicating that
extrinsic cues like boundaries or landmarks influence the location and shape of place fields.
The dependence of place fields on the eccentricity of the environmental cues can be explained
by the activity of the boundary vector cells (Lever et al., 2009; Solstad et al., 2008) which
fire maximal at a certain distance and direction from a landmark or boundary as postulated
by the boundary vector model (Barry et al., 2006; Hartley et al., 2000).

In humans, Ekstrom et al. (2003) found place-responsive cells in the hippocampus which
showed equivalent firing properties as place cells in rats. Ekstrom also found view-dependent
cells mainly located in the parahippocampal region, which are proposed to extract distance
and bearing information from specific landmarks. View-dependent cells can be divided in
location-dependent view cells which respond to views of a landmark at a specific location,
and location-independent views cells which respond to views of a landmark regardless of
the current position of the observer. The function of the location-independent view cells
could be related to the identification process described in figure 1.1, which triggers the
interaction between the spatial image and long-term memory place codes. Whereas the
response properties of a location-dependent view cell reflects the definition of a stored view
at a place in the sense of the view graph model (Hübner and Mallot, 2007; Röhrich et al.,
2014; Schölkopf and Mallot, 1995).

Episodic memory is thought to be involved in the recognition of places by memorizing
and recollecting the spatio-temporal context of personally experienced events (Burgess et al.,
2002). We assume that the recollection of spatio-temporal context of experienced episodes,
i.e. views, plays a crucial role in multiple-view integration (Röhrich et al., 2014).
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1.6. Event-related potentials in episodic memory

An event-related potential (ERP) is the averaged electroencephalogram (EEG) of time
epochs, which are referenced to a certain stimulus or event. The signal to noise ratio is
reduced by this averaging process since neural activity which is in phase with the event
remains, whereas noise, which is not in phase with event, is canceled out. Many studies
investigated ERPs associated to the recognition of objects and words. These studies mainly
used an ‘old/new’ task scheme (Rugg and Nagy, 1989; Sanquist et al., 1980; Warren, 1980),
in which participants learn a set of items, e.g. words, afterwards a set of new and previously
learned items, i.e. old items, are presented. The participants are asked to subsequently recall
whether the presented item was old or new. The recognition memory is proposed to be dif-
ferentiated into two processing streams, the familiarity and recollection process. Recognition
based on familiarity is fast-acting, relatively automatic and does not provide qualitatively
information about the studied episode. By contrast the recollection process, which is related
to the episodic memory, is conceived as slower-acting and more profound which gives rise to
consciously accessible information about the prior occurrence of the studied item and the
context of the occurrence, such as the location or color of the item (Rugg and Curran, 2007;
Yonelinas, 2002). Evidences were found in studies with patients who had lesions restricted
to the hippocampus (Aggleton et al., 2005; Holdstock et al., 2002), differential activity pat-
terns of functional magnetic resonance imaging (fMRI) (Davachi et al., 2003; Eldridge et al.,
2000), and dissociation of retrieval-related ERP effects (e.g., Düzel et al., 1997)

The ERP signature of recollection and familiarity can be dissociated by functional and
topographic variables (Curran, 2000; Rugg et al., 1998). In a study by Rugg et al. (1998)
participants performed either a ‘deep’ (generate a sentence with the presented word) or a
‘shallow’ (determine whether the first and last letters were in alphabetic order) task on
each word studied. The learning phase was followed by a test phase, where the participants
were asked to discriminate old words from new ones. The ERP of correctly recognized
deeply studied words evoked a more positively extended wave 400-800 ms after stimulus
onset (P600) compared to the ERP of correctly rejected new words. This effect is related
to the recollection processing and is termed the ‘parietal old/new’ effect since the effects
is maximal at the parietal electrodes. The ‘mid-frontal’ effect, however, is proposed to be
characterized by a more negatively extended ERP wave in the time window 300-500 ms
(N400) for correctly rejected new words in comparison to the ERP waves of the recognized
shallow and deep studied words. According to this finding, recognition of deeply studied



1.7. PURPOSE OF THE BEHAVIORAL PLACE RECOGNITION STUDY 9

words was based on both recollection and familiarity, whereas shallowly studied words were
recognized on basis of familiarity. Similar findings have been reported for object and face
recognition by Duarte et al. (2004) and Curran and Hancock (2007).

1.7. Purpose of the behavioral place recognition study

Using a simple environment with a goal location surrounded by four landmarks, we de-
signed four behavioral experiments to test the following hypotheses: (i) visual homing and
place recognition are based not just on the raw retinal snapshot, but on an intermediate
representation (spatial image) integrating over multiple views and providing simple invari-
ances. (ii) In particular, this working memory contains distance and bearing information
about the surrounding landmarks and can thus be thought of as a local map.

Experiment 1 addresses the optimal learning method (incidental vs. explicit) to be used
in the following experiments. Experiment 2 examines the influence of the salience of land-
mark colors on the performance of place recognition. In Experiment 3 we manipulated the
size of the landmarks in order to test to what extend the participants use landmark bearings
or landmark distances. The manipulation results in two possible goal locations, one where
the angular sizes of the landmarks match the learned sizes and the other one where the
bearings or angles between the landmarks match the angles as seen from the learned goal
location, comparable to the Cartwright and Collett (1983) landmark manipulation experi-
ment. As discussed, we expect that the participants will recognize the learned location at
the distance-matching location. Our hypothesis that the spatial image metrically represents
a local environment by encoding the distance and bearing information of landmarks will
be examined in Experiment 4. We constructed two additional landmark configurations with
different distributions of landmark distances from the goal. We expect that the homing error
depends on the geometry of the landmark configuration. By checking homing performance
for different starting points, we also analyze the effect of landmark familiarity, i.e. the vis-
ibility during encoding. In the discussion section, the results of experiment 3 and 4 will be
compared to predictions from a simple maximum likelihood model.
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1.8. Purpose of the sequence-related ERP study

We designed an experiment similar to the classic old/new task with the major difference
that the knowledge about the temporal context is additionally inquired, i.e. the position of a
learned item in a sequence of presented items. Further we used indoor scenes as study items
to link this study to the integration of multiple views. Schyns and Oliva (1994) suggested
that a coarse-to-fine process extracts a coarse description for scene recognition before finer
information is processed. In this case the workload for recognizing a scene would not differ
substantially from the workload required in object recognition. Thus, the resulting ERP
correlates in scene recognition should be comparable to those found in object and word
recognition (Curran, 2000; Curran and Hancock, 2007; Duarte et al., 2004; Rugg et al.,
1998)

The hypotheses of this study are: (i) The detection of a distortion of a learned sequence
evokes a characteristic ERP, which is dissociable from the ERP evoked in the presence of
test scenes congruent with the sequence. We expect that the differentiation is characterized
by the P600 wave in parietal region on the basis of the well studied parietal old/new effect,
which reflects the retrieval of episodic memory content (Rugg and Curran, 2007; Yonelinas,
2002). (ii) Further we propose that subsequently correctly rejected non-target scenes, which
are not sequence related, show a mid-frontal and parietal old/new effect compared to the
ERPs of correctly recognized target scenes due to involvement of episodic memory content
(Rugg et al., 1998).



2. Spatial awareness - Beware of what is
out of sight

2.1. General methods

2.1.1. Participants

In this study 123 healthy participants (61 females and 62 males) took part, which were
recruited from the Eberhard-Karls University of Tübingen. At each of the experimental
conditions twenty participants took part except for the parallelogram and peaked condition,
which contained 16 participants each, and the salience condition, which contained 11 par-
ticipants. After the participants had been informed about the procedure of the experiment
in written form, the participants were asked to sign a consent form. The experiments lasted
on average 45 minutes and all participants were paid 8 e per hour.

2.1.2. Apparatus

The rendering and first-person perspective view of the virtual reality environment was re-
alized by the OpenSceneGraph software. The environmental layout, the objects and textures
were constructed with MultiGenCreator (MultiGenParadigm).

In the desktop experiments the participant were comfortably sitting at a distance of 80
cm in front of a 30” (44° horizontal field of view) monitor with a resolution of 2560 x 1600
pixel and a display refresh rate of 60 Hz. The movement (forward, backward, left and right
sidestep) of the agent was implemented by keyboard buttons. Horizontal movement of the
mouse induced a corresponding horizontal rotation of the viewing direction of the virtual

11
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eye.

Figure 2.1: Setup of the HMD condition. The tracking target on the top of the HMD controlled
the rotation of the virtual eye. The actual body direction was tracked by the body belt target,
which was coupled with the translation direction of the virtual body (controlled by the mouse in
the right hand of the participant).

The HMD condition, which displayed the virtual environment on a Head-mounted display
(HMD), was carried out in the central part of a tracking room surveyed by six infrared
cameras from ARTtrack & DTtrack System (ART). Two tracking targets with reflecting
markers were used. One target was fixed at the top of the HMD to track the rotation of the
head. The tracked head direction was coupled with the viewing direction of the virtual eye
via LAN–interface (UCP communication) between tracking PC and virtual reality PC. The
other target was mounted at the front side of a body belt (figure 2.1). This target made
the actual body direction of the participant accessible, which coupled the body direction
with the translation direction respectively the direction of the virtual body. The movement
of the agent was induced by mouse buttons (forward and backward). We used the nVisor
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SX60 HMD with a horizontal field of view of 44° to display the virtual reality (resolution
1280 x 1024 pixel per eye and display refresh rate 60 Hz). The HMD was connected to the
virtual reality PC via a four meter cable. A rolling table with the virtual reality PC on top
was positioned in a range of one meter next to participant. The participants were asked
not to move around but only to rotate their body. The experimenter carefully looked after
the participants that they did not walk over the cable. After every trial the experimenter
aligned the participant for the new start location by verbal instructions. If the participant
was ready, the experimenter started the trial.

For analysis we stored the coordinates of the position, the angle of the virtual eye (camera)
direction and the time stamp each frame. The analysis was conducted using Matlab R2013a
from Mathworks.

Figure 2.2: The bird’s eye view of the virtual reality environment is illustrated on the left side
including a task example of the learning phase. The participant had to navigate from the start
location (red circle) to the goal location (blue circle) by crossing the bridge (white arrows). The
crossing point of the bridge was always passed at least once per learning trial. The task of the test
phase was to navigate to the crossing point of the bridge (decision point, yellow star). The first
person view during the learning phase is illustrated on the top right. The whole environment was
covered by ground fog during a fog trial as shown on the bottom right.

2.1.3. Virtual reality environment

The virtual reality environment consisted of a centrally located plus-shaped bridge (each
arm 32.5 x 5 virtual meters in the following referred to meters) crossing a pond (figure 2.2).
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The surrounding green area was flat and the sky was light grey. Both textures (grass and
sky) had no detectable features as orientation points. Landmark information was provided
by four colored spheres (red, blue, yellow and magenta) with a radius of 1 m, hovering
in mid-air above the pod. The center of each sphere was on virtual eye level (1.8 m) to
exclude that participants calculate the distance by the trigonometric relation between the
eye level and an object (Ooi and He, 2007). The horizontal positions of the landmarks were
varied in various experimental conditions. The only available depth cues were the texture
gradient, occlusion, motion parallax and visual angle subtended by the landmarks. Around
the landmarks a catch area with a radius of 10 m was implemented. Entering resulted
in a teleport back to the starting point of the current trial. The forward and backward
movement speed was 15 m/s and sideward 3 m/s. The virtual eye rotated 0.1° if the mouse
cursor was moved by one pixel. Both the desktop experiments and the experiment with the
head-mounted display were rendered with a horizontal virtual field of view of 66°.

2.1.4. Procedure

Participants were briefed in written and verbal form about the procedure of the experi-
ment. The experiment was divided into a learning phase and a test phase. The instruction
was to navigate from alternating start points over a plus-shaped bridge crossing a pond to
reach a goal location beyond the pond. Participants were informed that in some trials of
the learning phase and in the whole test phase non-transparent ground fog would cover the
bridge, the pond and also the horizon would disappear (figure 2.2). Thus their only orienta-
tion points for navigating on the bridge without falling into the water would be the hovering
colored spheres. Participants completed 12 learning trials (4 with fog and 8 without) and
48 test trials. At the beginning of the learning trials the instruction for the following trial
was displayed as a text. The instruction was to reach a hidden blue goal platform (radius 3
m and height 0.3 m) either on the left or right side beyond bridge. Thus, participants were
always required to travel two branches of the plus-shaped bridge, including a turn by 90°,
either left or right, at the bridge crossing point. The goal platform was located at a distance
of 60 m from the crossing point, in the extension of the final bridge segment. When the vir-
tual agent entered a catchment area of the goal location (radius 50 m), the hidden platform
appeared and stayed visible for the current trial. A new trial was initiated when the virtual
agent reached the goal platform. Trials started from the four cardinal directions (North,
East, South and West) each one time with fog and two times without. Start locations were
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varied both in distance and direction to the crossing point by adding a random jitter (±10
m in x and y coordinates), but the direction was never strictly aligned with the crossing
point. There was no time limit during the learning phase, thus the participants could get
familiar with the steering of the virtual agent and the virtual reality environment. The test
phase followed immediately after the learning phase. Here, the task was to navigate to the
crossing point of the bridge as exactly as possible, starting twelve times from each compass
direction (as before, position jitter was added to the start position). Participants confirmed
their decision by mouse click (decision point), which also initiated a new trial. If partici-
pants accidentally clicked already at the start location, the data point was excluded from the
analysis. In the test phase the participants received no feedback about their performance
and the environment was covered by ground fog during the entire phase of the experiment.

2.2. Experiment 1: Implicit versus explicit learning

This experiment examines the influence of incidental and explicit learning on place recog-
nition to establish the learning scheme for the following experiments. The learning procedure
described above was used as a control condition in which learning of the bridge crossing point
occurred incidentally, i.e. while searching for the blue goal platform. We now added an ‘ex-
plicit’ condition in which subjects where told from the start that they would eventually
be asked to navigate to the crossing point in the test phase. Except for this additional
instruction, the procedure was unchanged.

2.2.1. Methods

The landmark configuration formed an irregular quadrangle with the landmark positions
(in meters relative to the crossing point of the bridge) red (-20/28), blue (24.5/16.5), yellow
(-31/-27) and magenta (20/-33), see figure 2.2.

The control and explicit condition were carried out in a between subjects scheme with 20
participants in each condition (control: 8 females, 12 males; explicit: 13 females, 7 males).
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Figure 2.3: Heat map of trajectories of individual trials. Data from the control condition is shown
in which the participants learned incidentally.

2.2.2. Results

In total, 954 decision points for the control condition and 956 for the explicit condition
have been analyzed. Figure 2.3 shows heat maps of the trajectories sampled in 1 x 1 m bins.
A bin is incremented if a data point of a trajectory falls within the corresponding square.
Data points of subsequent frames falling in the same square are not counted. Landmarks
are shown as colored dots corresponding to their color in the experiments. The heat maps
show that the trajectories are mostly straight, i.e. that the subjects directly approach their
intended decision point from all starting points. The heat maps peak at the mean of the
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Figure 2.4: Mean of the decision points of each participant for the control (green) and the explicit
condition (red) including the error ellipses.

single decision point judgements (error ellipse), indicating that trajectories from different
starting points run straight to the common goal.

Figure 2.4 shows the average decision points of the individual subject. One-sample
Hotelling-t-squared test between the average decision points for each participant and the true
crossing point confirmed a significant bias for both conditions (control: T2(1,18) = 18.45,
p < .001; explicit: T2(1,18) = 11.73, p < .013). The mean bias of the reported decision
point was (1.25,-2.93) for the control condition and (-0.19,-2.13) for the explicit condition.
A two-sample comparison of these conditions did not reveal a significant difference (T2(1,38)
= 2.32, p = .335). The distributions in figure 2.4 appear to be more concentrated and less
isotropic for the control group (green dots and error ellipse) as compared to the ‘explicit’
group. To test this, we cumulated the distributions of decision points over all subjects in
each group and plotted them as histograms in figure 2.5. The statistical analysis of these his-
tograms reveals a significant difference between the distributions confirming this assumption
(χ2(49) = 147,61, p < .001).

2.2.3. Discussion

The results indicate that the place codes built in incidental and explicit learning differ,
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presumably in the amount or type of local position information represented. Statistical
errors are smaller in the control condition. On top of the statistical variation, subjects
show a significant bias into South-West direction of the setup, which is probably related to
asymmetries of the landmark configuration since the landmark in the South-West direction
was the one with the largest distance to the decision point. This bias is the same for both
conditions. For the following experiments, we decided to use the incidental learning scheme
throughout because the more concentrated distributions of average decision point judgements
allow to distinguish between various quantitative hypotheses for these experiments.

Figure 2.5: (a) 3D-histogram of the decision points for the control condition partitioned in 5 x 5
m squares. (b) The distribution of decision points is less pooled in the explicit group.

2.3. Experiment 2: Landmark salience

If the reported systematic bias is elicited by the salience of the landmark coloring alone,
a change of the coloring of the landmarks by rotating the color configuration would also lead
to a corresponding rotation of the bias, since in this hypothetical case the landmark position
would not matter. Thus, we rotated the coloring of the landmarks while the landmarks
remained at the same position as in the control condition.
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2.3.1. Method

As in Experiment 1 the landmark configuration formed an irregular quadrangle with the
same landmark position, but in this experiment the coloring of the landmarks was rotated by
180° (magenta (-20/28), yellow (24.5/16.5), blue (-31/-27) and red (20/-33)). The procedure
remained the same as in the control condition described above.

This experiment, named the ‘salience condition’, was carried out with 11 participants (6
females and 5 males).

2.3.2. Results

We analyzed 525 decision points for the salience condition. Figure 2.6 illustrates the
mean decision points of each participant for the salience group (red) and the control group
(green). The salience group showed a significant bias to the true crossing point in South-West
direction tested by a one-sample Hotelling-t-squared test (T2(1,9) = 85.85, p < .001). The
mean decision point was (-2.97/-4.53) and a two-sample Hotelling-t-squared test between the
individual mean decision points of the salience and control condition revealed a significant
difference (T2(1,28) = 9.37, p = .02 ).

Figure 2.6: Mean of the decision points of each participant for the control (green) and the salience
condition (red) including the error ellipses.
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2.3.3. Discussion

The rotation of the coloring of the landmarks showed that the salience of the colors had
an effect on the decision point bias. However, the mean decision point was even more biased
in South-West direction, which can not be explained by a color salience approach since
the direction of the bias did not switch. We assume that the salience of the coloring has
an influence on the systematical bias, but that the source of the bias is mainly based on
geometrical properties of the environment. The coloring of the landmarks will stay constant
in the following experiments, therefore, a experimental manipulation of definite geometrical
properties, which result in a change of the distribution of decision points compared to other
experimental conditions, is only related to these geometrical manipulations.

2.4. Experiment 3: Distance versus bearing

The purpose of this experiment was to investigate the relative role of bearing and distance
information in the place code underlying homing and place recognition. To this end, the sizes
of the landmarks were manipulated between the learning and test phase of the experiment.
This manipulation renders the decision ambiguous since subjects might search either at the
point where the bearing match, or at the point where the visual angles subtended by the
landmarks match. The theoretical bias BT under the assumption that the visual angles are
matched is calculated as

BT = arg min
x

4∑
i=4

(αi (0)− αi (x))2 = (−0.78/− 7.02) , (2.1)

where αi (0) is the visual angle of landmark i as seen from the center of the bridge during
the learning phase, and αi (x) denotes the visual angle of landmark i in the test phase, as
seen from vectorial position x. The theoretical bias under the assumption that the bearing
are matched is of course zero.
This experiment was carried out in a desktop and in a HMD condition providing additional
proprioceptive information on body pose that might allow better integration of local views.
In particular, relative bearing exceeding the field of view should be perceived more accurately
in the HMD condition. Details of the HMD presentation are described in the general methods
section above.
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Figure 2.7: Individual mean decision point judgements for the desktop (green) and HMD condition
(red) including the error ellipses.

2.4.1. Method

The landmark configuration was the same as in Experiment 1, but the landmark sizes
were manipulated between the learning and the test phase. The sizes of the two North-
ern landmarks (red and blue) were increased by 15 percent and the sizes of two Southern
landmarks (yellow and magenta) were decreased by 15 percent. After the experiment the
participants were asked if they noticed any change of the environment between the learning
and test phases and if so, what kind of change had occurred. If they did not report the ma-
nipulation, they were asked directly for possible changes in landmark size. The experiment
was carried out in a desktop and a HMD condition, with between subject design and group
size of 20 participants for each condition (desktop: 10 females, 10 males; HMD: 9 females,
11 males).

2.4.2. Results

Overall 953 decision points were analyzed for the desktop condition and 958 for the HMD
condition. None of the participants noticed the change of the landmark size even after the
explicit inquiry. Figure 2.7 shows the average decision point judgements per subject for the
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two conditions. The shapes and position of the error ellipses were almost identical as is
confirmed by a Hotelling-test (T2(1,38) = 0.45, p = .803).

Both the desktop and HMD group showed a bias which significantly exceeds the bias
found in the control condition of Experiment 1, as was confirmed by two-sample Hotelling
tests (desktop: T2(1,38) = 50.2, p < .001; HMD: T2(1,38) = 41.16, p < .001). The mean
bias of the decision point was (-2.27/-8.82) for the desktop condition and (-2.25/-8.3) for the
HMD condition. This bias, however, is also different from the theoretically expected bias
BT as revealed by one-sample tests (desktop: T2(1,18) = 15.03, p = .005; HMD: T2(1,18)
= 13.47, p = .008).

We therefore tested the assumption that the increase of the empirical bias as compared
to the smaller bias found in the control condition of Experiment 1 (BC = (−1.25/− 2.93))
is the result of the size manipulation. We therefore tested the distributions against the
sum of the control bias BC and the theoretical bias BT . Indeed, the statistical comparison
of the average decision point judgements with BT + BC = (−2.03/− 9.95) did not reach
significance for the desktop condition (T2(1,18) = 6.89, p = .073) and only weak significance
for the HMD condition compared to BC (T2(1,18) = 11.62, p = .014).

The Error ellipses in figure 2.8 show the distribution of single decision point judgements
superimposed to the trajectory data. The true crossing point is marked by a black x. The
zoomed-in heat map around the error ellipse center illustrates the South-West bias of the
control group of Experiment 1 (BC , figure 2.8a), and the larger biases found in Experiment
3 (figure 2.8b and c). The mean of the individual decision point judgements (center of the
error ellipses) in Experiment 2 align with the sum of the control and theoretical bias (marked
by a +-sign), not with the true decision point (x) or the pure theoretical bias (dot). As in
the control condition the heat maps show that participants directly approach their intended
decision point from all starting points in the desktop and HMD condition (see zoom-out
view in figure A.1 and A.2).

2.4.3. Discussion

Our results show that in an enclosed landmark configuration humans prefer landmark size
(visual angle) over relative landmark bearing (visual field position) in cue conflict situations.
This is in line with the assumption that distance information is included in the place code and
spatial image. Note however, that distance information which might also be obtained from
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Figure 2.8: Heat maps of trajectories of individual trials. (a) Data from the control condition in
Experiment 1, included here for comparison. The x in the marks the true bridge crossing point. (b)
Desktop condition. (c) HMD condition. Zoomed-in heat maps with error ellipses of the decision
point judgements from Experiment 1 (d), the desktop condition (e) and the HMD condition (f). The
dot marks the theoretical bias BT (equation (2.1)) and the plus marks the combined bias BC +BT .
For further explanation see text.
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motion parallax during approach to the decision point is not affected by our experimental
manipulation. We therefore assume that the distance information in the spatial image is
obtained from visual angle.

This result is in contrast to the results obtained in honey bees by Cartwright and Collett
(1983) in which landmark distance was ignored in conflict situations. This may be related
to the fact that in panoramic vision, landmark bearings spanning large visual angles can be
judged more accurately than in limited field-of-view systems where such judgements need
to rely on view integration. Note that in our enclosed landmark configuration, such large
bearing angles will always occur. In limited field of view systems, depth information of
individual landmarks is easier to obtain than inter-landmark bearings. Thus, we suggest
that the human spatial image does contain depth information on which place recognition is
based.

The bias of average decision point judgements found in Experiments 1, 2 and 3 may also
be related to landmark depth since the center of gravity of the landmark configuration used
in these experiments is not on the true decision point (bridge center). In the next experiment
we address this possibility be testing various landmark configurations

2.5. Experiment 4: Dependence of place recognition on landmark

configuration

If distance information is used in the place recognition process, various schemes for depth
evaluation are possible. For example, the accuracy of bearing and distance information of a
given landmark scales differently with landmark distance: bearing becomes less sensitive to
small shifts of the viewpoint whereas discrimination thresholds for distance increase (Erke-
lens, 2015; Foley, 1972; Gilinsky, 1951). Configurational features such as the center of gravity
(O’Keefe, 1991) or the intersection of the diagonals might be well represented points with
respect to which position could be evaluated. Depth distribution may also cause the position
bias towards the most distant landmark found in Experiments 1, 2 and 3.

To clarify how depth information enters the place recognition process, we designed two
additional landmark configurations, termed ‘parallelogram’ and ‘peaked’. For the paral-
lelogram condition we expected no systematic bias due to the symmetry of the landmark
distribution. However, the error ellipse should be elongated along the longer diagonal of
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the parallelogram, since depth estimates towards the more distant landmarks should be less
accurate. In the peaked condition, the distance of one landmark (the North-Western) from
the crossing point was markedly increased with respect to the other three landmarks. If the
systematic bias is caused by imbalanced distances from the landmarks to the crossing point,
and therefore imbalanced accuracies of depth measurements, the systematic bias should
occur in this configuration.

In this experiment, we additionally analyzed the decision points depending on the four
different approach directions in which the place recognition will be based on different working
memory contents. To this purpose, we counted the number of time-frames in which a given
landmark was inside the field of view (i.e. displayed on the screen). For example, for the
approach from the South, we expect that the northernmost landmarks have a longer visibility
time than the Southern landmarks with will be passed well before reaching the bridge center.
Therefore the place decision when approaching from the South will be determined mostly by
the Northern landmarks and only to a lesser extend (mediated by visual working memory)
from the Southern landmarks.

Figure 2.9: Heat maps of the trajectories for (a) parallelogram condition and (b) the peaked
condition. Error ellipses (black) are elongated towards the more distant landmark objects (colored
dots). The mean of the peaked group is systematically biased in the North direction from the center
of the bridge (black cross).
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2.5.1. Method

The parallelogram condition and the peaked condition differed only in the used land-
mark configuration. The landmark positions of the parallelogram configuration were point
symmetrically (red (-20.25/22.75), blue (25.25/32.75), yellow (-25.25/-32.75) and magenta
(20.25/-22.75), see figure 2.9a). The peaked configuration was an irregular quadrangle (red
(-34.18/35.76), blue (28.94/11.66), yellow (-22.18/-14.86) and magenta (25.94/-25.36), figure
2.9b) in which one landmark was substantially more distant from the crossing point than
the other three. The landmark configurations of all conditions were constructed such that
the sum of the distances from each landmark to the crossing point of the bridge was equal
in all configurations.

The experiment was carried out in a between subject design with 16 participants in each
condition (parallelogram: 8 females, 8 males; peaked: 7 females, 9 males). Presentation was
on the desktop setup.

2.5.2. Results

Figure 2.9 shows the results with the same conventions as figure 2.3 and 2.8. Again
participants directly approach their intended decision point from all starting points (see
zoomed-out view in figure A.3 and A.4). The error ellipse of the decision points in the
parallelogram group (761 decision points) is elongated towards the more distant landmarks
as expected. The mean decision point was not significantly different from the crossing point
(T2(1,15) = 0.94, p = .655) indicating that no position bias occurred in the landmark
configuration (mean decision point (0.25/0.05)). In contrast, the irregular configuration in
the peaked condition did result in a significant systematic bias of the mean decision point
(T2(1,15) = 37.95, p < .001) in the Northern direction, i.e. roughly, but not exactly towards
the most distant landmark (mean decision point (0.99/3.37)). The shape of the error ellipse
for the peaked group (754 decision points) was elongated towards the more distant landmarks
as well as for the parallelogram condition.

The elongation direction of the error ellipses was analyzed in more detail by calculating
individual error ellipses for each subject. The first eigenvectors of these ellipses were weighted
with the numerical eccentricity of each ellipse and are plotted as light blue lines in figure 2.10.
Circular means were calculated by averaging the weighted first eigenvectors and are shown
as heavy red lines. Also included in figure 2.10 are the landmark bearings (color coded)
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Figure 2.10: The circular relation between the landmarks (colored dots on the circle) and the
main axes of the participant’s error distribution (light blue) are illustrated. The main axis overall
decision points is drawn in dark blue and the circular mean of the single main axes in red. (a)
Control condition of Experiment 1. The individual main axes are almost isotropically distributed.
(b) Parallelogram condition, (c) peaked condition. In b and c, the main axes are focused in the
direction of the most distant landmarks.

and the eccentricity-weighted first eigenvector of the overall error ellipses from figure 2.8a
and 2.9, appearing as heavy blue line. Note that the data are restricted to a half circle and
therefore appear reflected at the origin in figure 2.10. For analysis with circular statistics,
they were converted to unimodality by doubling all angles (Batschelet, 1981). A circular
V-test (CircStat toolbox, Berens, 2009) revealed a significant orientation preference of the
individual main axes towards distant landmarks both for the parallelogram group and the
peaked group (parallelogram: blue V(15) = 19.26, p < .001; yellow V(15) = 19.26, p < .001;
peaked: red V(15) = 13.85, p < .001; magenta V(15) = 12.98, p < .001). The control group
showed also significant p-values for the blue but not for the yellow landmark. However, the
p-values of control group are less obviously as the parallelogram and distant group (control:
blue V(19) = 6.49, p = .039; yellow V(19) = 3.61, p = .164).

The heat maps of the trajectories (figure 2.3, 2.8 and 2.9) clearly show that the approach
direction of the participants is strongly target-oriented. The participants directly head to a
small area, where they expect the crossing point. We split the set of all trials into groups
for the four approach directions, where ‘North’ means approach from a Northern starting
point, etc. Figure 2.11 shows scatter plots of all decisions, color coded for approach direction,
together with the according error ellipses. Average decision points for each approach direction
differ in the sense that the subjects stop short of the overlap regions of the four directional
distributions, resulting in the characteristic four-leaved clover pattern. Two-sample Hotelling
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Figure 2.11: Decision points (small colored dots) and error ellipses separately displayed depending
on the compass direction of the start location. Error ellipses are biased and elongated towards the
approach direction for (a) the control, (b) parallelogram and (c) peaked condition.

tests of pairs of opposing approach directions revealed significant differences for all conditions
and direction pairs (control: North vs. South T2(1,38) = 24.6, p < .001; West vs. East
T2(1,38) = 30.29, p < .001; parallelogram: North vs. South T2(1,30) = 17.24, p = .001;
West vs. East T2(1,30) = 15.28, p = .003; peaked: North vs. South T2(1,30) = 19.98, p <
.001; West vs. East T2(1,30) = 10.49, p = .013).

The directions of the error ellipses for each approach direction are rotated in comparison
to the overall error ellipses of the corresponding experimental condition (compare figure
2.11 to 2.8 and 2.9). Thus, the results clearly support the assumption that place decision
depends on approach direction. In order to assess possible effects of the varying landmark
visibility during the approach, we analyzed all individual approach trajectories and viewing
directions from the point of entering a central area of 20 m around the bridge center. Within
this area, only one landmark would be visible at any one frame. The percentage of image
frames showing each landmark in the field of view for the four approach directions was
calculated and averaged over all subjects from the control condition of Experiment 1 and
both conditions of Experiment 3. The result appears in figure 2.12. Note that subjects were
always able to turn on the spot to examine the whole visual environment and that such
examinations are included in the data appearing in figure 2.12.

Four separate one-way Anovas were calculated for the four approach directions and re-
vealed significant differences between the landmarks (North: F(3) = 50.72, p < .001; South:
F(3) = 60.29, p < .001; East: F(3) = 28.96, p < .001; West: F(3) = 18.92, p < .001).
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Figure 2.12: The colored bars in the graph (corresponding to the color of the landmark objects)
show the mean proportion of landmarks in the field of view within a radius of 20 m around the
crossing point depending on the approach direction (standard error in black).

A post-hoc analysis with Bonferroni correction revealed that the red and yellow landmarks
were significantly longer in the field of view than the other landmarks for the North approach
(yellow to blue and red p < .001; magenta to blue and red p < .001). When participants enter
the central area from a given start location, their head direction is aligned to the approach
direction (see figure 2.3, 2.8 and 2.9). As a result, the landmarks which require less turning
to come into the field of view were the preferred landmarks used for visual orientation. The
statistical analysis of the South and East start location resulted also in a significant pref-
erence for the landmarks which require less effort to extract visual information (South: red
to yellow and magenta p < .001; blue to yellow and magenta p < .001; East: red to blue
and magenta p < .001; red to yellow p < .002; yellow to blue and magenta p < .001). For
the West start location a significant preference could only be measured for the blue colored
landmark as expected, but not for the magenta colored landmark which also required less
movement of the virtual eye to look at (blue to all other p < .001).

2.5.3. Discussion

The results of this experiment clearly show three effects of the two-dimensional landmark
configuration on decision point choices. First, the decision point distributions are elongated
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in the direction of the most distant landmarks. In the parallelogram condition, where two
landmarks are equally distant, the decision point distribution aligns with the axis connecting
these two landmarks. In the peak condition, the distribution is pulled towards the single
most distant landmark, resulting in a more asymmetric shape. The distribution is also
influenced by the other landmarks, but to a lesser extent.

Second, a systematic bias was found only for the peaked condition, in which case it is
directed roughly but not exactly towards the most distant landmark. This finding is in line
with the landmark-distance effect in the sense that symmetric landmark configurations will
generate symmetric decision point distributions. These observations lead to the hypothesis
that both the shape and the bias of the distribution of the decision points is defined by
probabilistic weightings of the landmark positions. Therefore the proposed spatial image
may represent a local environment as a map-like set of probabilistic measurements of the
containing landmarks.

The analysis of the proportions of landmarks in the field of view showed evidence for an
imbalanced acquisition of visual landmark information depending on the approach direction.
Regarding the shift towards the start location of the error ellipses of each approach direction,
this leads to our interpretation that the representation of landmarks in the spatial image
depends not only on the probabilistic measurement achieved by perception, but also on their
updating frequency. Thus the reliability of the local position information of the spatial image
decreases with time and has to be renewed to recover the reliability.

2.6. General Discussion

In summary the experimental results show evidence for our hypothesis that place recog-
nition is based on a spatial working memory integrating over multiple views, i.e. spatial
image, which represents not only field of view information but also out of sight information.
This spatial image builds up a map-like representation containing the distance and bearing
information about surrounding environmental cues.

The results of the cue competition between distance and bearing information in Exper-
iment 3 clearly points out that humans focus on the distance information when the goal
location is enclosed by a landmark configuration, whereas a panoramic snapshot approach
favors bearing information in a comparable rivalry task (Cartwright and Collett, 1983), sup-
porting the multiple view approach. Moreover the fact that the distribution of decision
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points in Experiment 4 depends on the geometrical array of landmarks determined by the
distance of the landmarks to the goal location, indicates that local position information is
incorporated into a local map weighted by probabilistic estimates. In addition, the obser-
vation of the systematic bias in the irregular configurations can only be explained by the
involvement of configurational information.

The displacement of the error distributions of the decision points towards the approach
directions can be explained, if landmarks in the local map are represented as probabilistic
estimates, which reliability depends on the perceptual updating frequency. Thus, various
unbalanced field of view updating of the landmarks results in distinct error distributions of
the decision points depending on approach direction. At the same time this means that out
of sight information is involved in the place recognition process.

One could argue that the shift of the decision points towards the approach direction is
caused by human path integration, where undershooting or overshooting of traveled distance
has been observed depending on the range of measured distances (Klatzky et al., 1990;
Loomis et al., 1993; Riecke et al., 2002; Schwartz, 1999). But the results of Experiment 3
clearly figure out that participants rely dominantly on visual information, which led to the
shift towards the theoretical goal location where the distances match, even in presence of
proprioceptive information. Relying on path integration would not have resulted in such
shift. Nevertheless the role of path integration in this study could be imprecise spatial
updating of the self-position relative to the landmarks induced by range effects in magnitude
estimation (Petzschner and Glasauer, 2011; Stevens, 1961; Teghtsoonian and Teghtsoonian,
1978) causing an variance increase of the probabilistic estimate of out of sight landmarks.

2.6.1. Likelihood-based spatial representation

Integration of sensory information can be modeled by estimating the maximum likeli-
hood of the individual sensory estimates (Ernst and Banks, 2002; Ernst and Bülthoff, 2004).
Pickup et al. (2013) proposed a multi-view scene reconstruction model based on the proba-
bilistic estimates of a set of cameras pointing to landmark locations of a viewed scene, but
not taking into account the landmarks outside the field of view. The homing is modeled
by comparing the current scene reconstruction with the stored reconstruction at the goal
location to compute a map of the maximum likelihood estimate.

We share the opinion that the local position information may be coded by probabilistic



32 2. SPATIAL AWARENESS

estimates of spatially relevant metric information, here landmarks. Thus we propose that
not only view-dependent scenes are reconstructed but rather a local map of the probabilistic
landmark estimates is stored as a place code in long-term memory. During homing the
stored cognitive model of the environment is embedded into an egocentric reference system,
i.e. the spatial image. This spatial image constantly updates the own position by visual
and proprioceptive information as well as the local position information of the landmarks
by perceived sensory inputs.

Our results clearly show that place recognition takes into account the position, i.e. dis-
tance and bearing, of all four landmarks, even if they are out of sight during the final
approach. We therefore assume that the place code used for recognition consists of the four
vectors ~l1, ..., ~l4 pointing from the goal location to the four landmarks. We also assume that
these vectors are given relative to a fixed, geocentric ‘North’ direction induced in the exper-
iment by the landmark configuration. Place recognition will rely on the comparison of this
place code with the current measurements ~m1, ..., ~m4 of the landmark position, again taken
in an egocentric, but geo-oriented sense. We assume that these measurements taken at a
position ~x are distributed normal with means ~µ1, ..., ~µ4 and covariance matrices ~C1, ..., ~C4,
where both the means and the covariance matrices will depend on ~x. The goal is recognized
if ~mi = ~li for i = 1, ..., 4, i.e. if the current measurements equal the stored place code. The
probability density for this to happen at a location ~x is

p
(
~m1 = ~l1, ..., ~m4 = ~l4 | ~x

)
=

4∏
i=0

φ
(
~li; ~µi (~x) , Ci (~x)

)
=: L (~x) , (2.2)

where φ
(
~li; ~µi, Ci

)
is the standard normal probability density function with mean ~µi and

covariance matrix Ci. We denote this quantity by L (~x) and observe that it is the likelihood
of being at position ~x when measuring the stored place code ~l1, ..., ~l4. The model predicts
that the mean of the recognized locations be x∗ = arg max

x
(L (~x)) (maximum likelihood

estimator) and that the error distribution should be proportional to L (~x).

In the model of equation (2.2), the place code as well as the means and the covariances
of the measurements together with their dependence on position are all free parameters.
We start by assuming that the place code is identical to the true landmark positions, as
seen from the goal position. This may be justified by the fact that the subjects have ample
motion parallax information when approaching the goal. For the mean values, an obvious
choice would be to also set them to the true vectors from the current position to the goal,
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~µi (~x) = ~li− ~x. In this case, however, the four distributions multiplied in equation (2.2) will
all be centered at the veridical goal position ~x = 0 which will therefore be the maximum
likelihood estimator for the recognized place.

Given that we find systematic deviations between the true and the recognized goal po-
sition in all but the parallelogram conditions of Experiment 4, we arrive at the unexpected
conclusion that the measurements of landmark position done during the approach will sys-
tematically deviate from the landmark positions stored as a place code in long-term mem-
ory. This conclusion, however, is in line with studies by Philbeck and Loomis (1997) and
Fukusima et al. (1997) who show that distance estimates in verbal reports as well as in
blindfolded walking to a previously seen target (walking without vision) are roughly veridi-
cal, while measurements of Weber fractions in visually perceived distance can by explained
by the Stevens‘ power function (Stevens, 1961). The value of the exponent decreases with
an increasing range of tested distances and also outdoor environments have a decreasing
effect on the exponent (Da Silva, 1985). Our experiment involved a large range of distances
and took place in a virtual outdoor environment comparable to experimental conditions
used by Gilinsky (1951). Gilinsky has been shown that visually perceived distances follow a
hyperbolic compression law.

More specifically, we model the deviation between true and perceived landmark position
by the ‘Gilinsky-compression’,

gA (d) =
Ad

A+ d
(2.3)

for some suitable constant A, where d stands for each of the ‖~li−~x‖ values. In two dimensions
we thus assume that when standing at a position ~x, a landmark ~li is actually perceived at:

~µi :=
A
(
~li − ~x

)
A+ ‖~li − ~x‖

, (2.4)

i.e. at the same line of sight with perceived distance hyperbolically distorted. The constant
A (the distance of ‘infinity’) was set to 90 m.

The covariance matrices of the individual landmark distributions were chosen such that
one main axis of the error ellipse would be aligned with the current viewing direction towards
this landmark, ~li − ~x. The variance in this direction would thus reflect the uncertainty of
the depth estimate while the variance along the second main axis corresponds to the error
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Figure 2.13: Schematic illustration of the model. (a) Participant stores the distance and bearing
estimates of the landmarks ~li (colored open circles) at the center of the bridge (goal location) as
a place code. These estimates are veridical due to triangulation. (b) When approaching the goal
location later in the test phase the perceived probabilistic distance and bearing estimates (colored
error ellipses) of the landmarks (colored dots) are represented by the spatial image, whereas the
distance estimates are hyperbolically compressed (~µi). (c) The homing is achieved by multiplying
the non-euclidean probabilistic estimates of the spatial image at the veridical goal location ~x = 0,
which is the maximum likelihood estimator for the recognized place (green error ellipse). Note, in
the case of an asymmetric configuration this always leads to a bias in direction of the most distant
landmark since there is the largest mismatch to the true landmark position. (d) If the percept of a
landmark is terminated, the position estimate ~mi is retained in the spatial image. We assume that
the quality of the position estimates decreases with time. Thus, the weighting of the variances is
correlated with the duration of landmarks out of sight. For example, a participant approaching from
South direction looks more often at landmarks, which require less turning near the goal location
relative to the approach direction (red and blue landmark). Thus, the variances for landmarks,
which are more often out of sight, are increased (dotted error ellipses of the yellow and magenta
landmark), while the others are decreased.
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in bearing estimates. The covariance matrices thus have the form

Ci =

(
cosφ −sinφ
sinφ cosφ

)(
λd 0

0 λb

)(
cosφ sinφ

−sinφ cosφ

)
, (2.5)

where φ = atan
(
~li − ~x

)
is the turning angle towards the landmark, and λd and λb are the

standard deviation in the depth and bearing estimates, respectively. We assume that with
increasing distance, the distance error λd grows faster than the bearing error λb and model
this effect by power functions of distance

λid = sd‖~li − ~x‖4 (2.6)

λib = sb‖~li − ~x‖2 (2.7)

where the constants sd and sb are fixed for all landmarks. The powers are chosen such
that the angle subtended by the distributions in equation (2.5) for each viewing position
~x is identical, as is the relative distance error ∆di/di The angular errors of the different
landmarks are assumed to be independent of each other, i.e. they are not due to errors
about a common ‘North’ direction since only individual landmarks will be within the field
of view during a final approach phase. The proposed likelihood-based model is evaluated by
comparing the behavioral data collected in the three different landmark configurations with
the simulated data of the model.

2.6.2. Evaluation of the model

As assumed above λb > λd should be true for near and λb < λd for far distance estimates.
Therefore we chose sd = 0.0001 and sb = 0.1. As a result, λb < λd is true for ~µ < 31.63

which equates to a distance of 48.76 m.

Figure 2.14 shows the simulated data of the model for the three different configurations
which were used in the psychophysical experiments (control, parallelogram and peaked).
The combined likelihood of the control configuration revealed a bias in South-West direction
towards the most distant landmark and a circular shape. The error ellipse in the control
condition is more elongated towards the yellow landmark in comparison to the simulated
likelihood, but the analysis of the orientation of the main axes showed that the main axes
of participants are scattered isotropically (figure 2.10). The combined likelihood in the
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parallelogram configuration is centered over the goal location and elongated towards the
more distant landmarks. The peaked configuration revealed again a bias toward the most
distant landmark like in the control configuration and the shape is elongated towards the
more distant landmarks comparable to the parallelogram configuration.

Figure 2.14: Combined likelihood of being at location ~x if all four landmark positions (colored
dots) are perceived for (a) the control, (b) parallelogram and (c) peaked configuration.

We simulated the approach effect of the experimental data, i.e. the bias and the elongation
of the error ellipses towards the approach direction, by scaling sd and sb in equation (2.6) and
(2.7) with the relative visibility durations vi for each landmark configuration (see figures A.5,
A.6 and A.7); the average visibility durations over all landmark configurations are reported
in figure 2.12. The leaves the error unchanged if vi equals 0.25 and is reduced for longer
visibility durations

sdi = sd (1− (vi − 0.25))α , sbi = sb (1− (vi − 0.25))α . (2.8)

The factor α is set to 8. Note that the original parameters are reproduced if all vi equal 0.25.
Figure 2.15 shows that for all configurations the combined likelihoods are biased towards
the approach direction. There is also a tendency that the orientations of the combined
likelihoods turn towards their approach direction. The combined likelihoods qualitatively
match the systematic biases of the experimental data as well as the shape and orientation
of the error ellipses. The simulation of the approach effect showed analogous biases towards
the direction of approach as observed in the experimental data. But the orientations of the
combined likelihoods were not as clearly turned towards the approach direction as the error
ellipses of the experimental data.
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The simulations show that a configuration of landmarks can be represented in the spatial
image as a probability function which is weighted by the distances to the landmarks. The
appearance of the systematic bias in the experimental data can be traced back to compar-
ison step during homing between the non-Euclidean source code of the spatial image and
Euclidean place code in long-term memory. Further the simulation of the approach effect
indicates that the visual updating frequency of landmarks determines their reliability in the
spatial image.

Figure 2.15: Combined likelihood of being at location ~x depending on the approach direction
(shortcuts of the compass direction) for (a) the control, (b) parallelogram and (c) distant configu-
ration.

2.7. Conclusion

We conclude that in a local environment the spatial image is a map-like representation
built up by perceptual information and maintained local position information. The proba-
bilistic distance estimates of the spatial image are derived from the non-Euclidean perceptual
space, whereas estimates of the place codes are close to Euclidean space. In addition, the
frequency of perceptual updating determines the reliability of the position estimates of en-
vironmental cues.





3. Neural correlate of sequence-related
retrieval of scenes

This study focused on the retrieval-related ERPs concerning a previously learned sequence
of scenes. Therefore participants learned a sequence of scenes embedded in a storyline, which
told that they walk through a building by passing several hallways, which always led to a
room. Participants were asked to remember the walked route. Afterwards a sequence of the
same length was presented and the participants were asked to respond if the presented room
was at same position in the sequence of visited places on their walkthrough. The visited
rooms (following termed as target scenes) during the walkthrough could be presented in
the recognition task either by matching the position of the corresponding hallway of the
walkthrough or not. Mainly we are interested in the ERPs of correctly recognized target
scenes matching the learned sequence and correctly recognized mismatching target scenes,
expecting a dissociation of the ERPs in the P600 wave in the parietal region. Additionally
we expect a mid-frontal effect and parietal old/new effect regarding the ERPs of correctly
rejected non-target scenes and correctly recognized target rooms, which is related to the
recollection process, i.e. episodic memory.(Rugg and Curran, 2007; Yonelinas, 2002)

3.1. Methods

3.1.1. Participants

In this study 20 healthy participants (14 females and 6 males) took part, which were
recruited from the Eberhard-Karls University of Tübingen. Each participant completed
two experimental sessions at different days, which were at least spaced by 48 hours. One

39
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experimental session lasted on average two hours, including half an hour of EEG preparation.
All participants were paid 8 e per hour. After the participants had been verbally informed
about the procedure of the experiment, the participants were asked to sign a consent form.

Figure 3.1: Experimental setup after EEG preparation. Participant was sitting in front of the
experimental PC.

3.1.2. Apparatus

The study took place in dimly lit and electromagnetically shielded room. On an EEG
recorder PC the amplified EEG data was stored at a sampling rate of 500 Hz as well as
displayed for the experimenter (Vision Recorder software from Brain Products), but not
visible for the participant. An experimental PC was used for the stimulus presentation of
the procedure. Participants were comfortable sitting at a distance of 80 cm in front of a 19”
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LCD monitor (visual angle 27° x 21°) of the experimental PC with a resolution of 1280 x
1024 pixel and a display refresh rate of 60 Hz. The experimental PC was connected to an
EEG amplifier (V-Amp 16 channel from Brain Products) by LPT ports to synchronize the
sent trigger signals with the EEG data. The EEG was recorded from 16 active Ag/AgCl
electrodes (actiCAP from Brain Products) placed after the 20-10 system on an elastic cap,
which fitted adequately the circumference of the participant’s head. The electrooculogram
(EOG) was recorded from an electrode placed on the orbicularis oculi muscle below the right
eye without restricting vision. The EEG data collection only started until the impedance of
each electrode was reduced below 20 kΩ. All electrodes were referenced to a electrode placed
on the left mastoid process. Participants were asked to put on an armlet with an electrode
touching the skin, which was connected to earth.

3.1.3. Procedure

The experiment consisted of 2 x 50 trials and three additional training trials in the first
session. Each trial was divided into a learning phase and test phase (figure 3.2).

The learning phase was initiated by showing the lettering “learning phase” for 2.5 s.
During the learning phase eight hallways each with two doors were shown, announced in
advance by the number of the current hallway. In each hallway the participants had to
choose one door by mouse click, which they wanted to pass. This decision had no impact
on the further presentation, but was included to focus attention on the subsequent scene.
The participants were asked to decide as fast as possible. After this decision two pictures of
indoor scenes were presented for 600 ms. The first was the target scene, which participants
had to detect in the test phase. The target scene was marked by a green frame (30 pixel
wide). The second picture showed the distractor scene and was marked by a red frame (30
pixel wide).

The test phase followed immediately after all eight hallways had been presented and was
initiated by showing the lettering “test phase” for 2.5 s. During the test phase, all hallways
were tested with regard to their chronological order in the learning phase. The number of
the current hallway was presented as a cue followed by the test scene, which was presented
for 800 ms. The presentation of the test scene was temporally masked by randomly varying
the duration of the previously shown fixation cross between 350 to 450 ms. In a ‘Yes/No’
task, participants were asked to hit the corresponding mouse button (left, “yes”; right, “no”)
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Figure 3.2: Schematic overview of the procedure. A single hallway presentation in the learning
phase consisted of the presentation of the hallway number, the room decision display, the target
scene (green frame) and the distractor (red frame). The participants learned a sequence of eight
hallways. In the following test phase also a sequence of eight test scenes were presented. Participants
had to recall, if the presented test scene matches the target scene of the corresponding sequence
position in the learning phase, i.e. same hallway number.

if the presented scene was the target scene they encountered in the corresponding hallway
during the learning phase (figure 3.3). The participants could take their decision (click the
mouse button) not before the retrieval screen appeared (1150 ms after test scene onset).
Participants did not get any feedback of their performance, except for the training trials
where they should get used to the task.

Fifty percent of the presented test scenes were sequence matching target scenes known
from the learning phase (correct identity and position) and the other 50 percent were homo-
geneously distributed into distractor scenes of the same hallway (false identity and correct
position) which always were from a different category as the target scene, new scenes (same or
different category as target scene, each 50 percent) which were not presented in the learning
phase (false identity and position) and target scenes which did not match the corresponding
hallway (correct identity and false position). The same pictures did not occur in the same
trial twice and the stack of all available pictures was only recycled if all pictures were shown
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once.

Participants were asked to avoid blinks during the presentation of the indoor scenes as
well as to fixate the cross at center screen before the onset of the scene presentation and
to keep the fixation on the gray point at center of the pictures. Further they were asked
to position the computer mouse on their right thigh in such way that their arm is in a
relaxing position during the experiment. However, participants were told that these actions
are necessary to avoid artifacts in the EEG measurement and that they could take a break
between trials to relax.

Figure 3.3: Example of possible behavioral responses during one trial. The target scenes of the
learning phase could be either in conjunction (green dot) or disjunction (yellow dot) with those of
the test phase. A non-target scenes (red dot) could be a distractor, or a new scene from the same
or different category as the corresponding target scene. The table below points out the results of
the possible responses (false alarm = fa, correct rejection = cr).

3.1.4. Stimuli

We used a collection of 96 pictures (MIT Indoor Scene Recognition Database) in this
study, which had a resolution 256 x 256 pixel and were scaled up to 700 x 700 pixel (visual
angle 14.8° x 14.8°) for the presentation on the monitor against a black background. At the
center of the pictures was a gray fixation point with a visual angle of 0.3° x 0.3°. The pictures
were indoor scenes from eight categories each consisting twelve pictures (office, living room,
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bedroom, kitchen, library, warehouse, hobby room and conference room). The model of the
hallway (visual angle 8.4° x 6.3°), the white lettering presentation screens and the fixation
cross (visual angle 0.6° x 0.6°) were also shown against a black background. The inscription
above the hallway model inscription above was “Choose a room!”. The presentation screen
of the hallway numbers was labeled by e.g. “hallway 1.”. The stimulus presentation was
realized with Matlab R2013a from Mathworks and the Psychophysics Toolbox 3 (Brainard,
1997).

3.1.5. Data analysis

In the post analysis the EEG data was high-pass filtered at 0.01 Hz and low-pass filtered
at 30 Hz using the Vision Analyzer from Brain Products. Only epochs of the test scene
stimulus between 200 ms pre-stimulus to 1000 ms post-stimulus were taking into account in
the further analysis. Recorded epochs where the absolute potential value of the difference
between the maximum and minimum exceeded 75 µV were defined as artifact containing
trials and were excluded prior to averaging. The pre-stimulus interval of 200 ms was used
for baseline correction. ERPs were analyzed from 9 electrode sides (F3, Fz, F4, C3, Cz,
C4, P3, Pz, P4), where effects of the experimental conditions were most evident and where
previous studies which have used similar experimental design have reported such effects
(Duarte et al., 2004; Iidaka et al., 2006; Rugg and Curran, 2007; Rugg and Nagy, 1989).
Except for the analysis of the scalp maps using EEGlab 13.4.4b (Delorme and Makeig, 2004)
where the other placed electrodes were additionally taken into account (F7, F8, T7, T8, P7,
P8). The dipole source localization of the scalp maps was calculated by the brain electrical
source analysis (BESA) developed by (Hoechstetter et al., 2004).

Note that all ERPs were referenced to the test scene onset and were averaged separately
based on the behavioral response of the participant. We termed a correct rejection of a

response scene at scene at distractor/
correct position false position novel

yes conjunction false hit false alarmhit

no miss disjunction correct
correct rejection rejections

Table 3.1: Notation overview of the possible response conditions.



3.2. RESULTS 45

target scene, shown in the test phase, which did not match the corresponding hallway of
the learning phase as disjunction correct rejection (disjunction cr) since the positions in
the sequences were disjunctive. As a consequence, a positive answer (“yes”) to a target
scene which did match the corresponding hallway was termed as conjunction hit. Whereas a
positive answer to a target scene which did not match the corresponding hallway was termed
as false hit (see table 3.1.5). The other possible behavioral responses were termed according
to the standard convention (miss, correct rejection, false alarm).

The false alarm rates in this study were too low for adequate averaging (on average
12.2 artifact free trials) due to the high levels of accuracy (figure 3.4). Additionally three
participants were excluded from the false hit grand average process since less than eleven
artifact free trials were recorded.

Filtered EEG raw data was imported to the Matlab R2013a programming environment
(MathWorks), where artifact rejection, baseline correction and averaging was processed. For
statistical analysis the ERP data was divided into five time windows 0-240 ms, 240-380
ms, 380-660 ms, 660-800 ms and 800-1000 ms. The participant’s mean amplitudes were
calculated for each time window. On this values we performed repeated measurement two-
way Anova (electrode site x response condition). The significance levels (0.05) of multiple
pairwise comparisons were Bonferroni-Holmes corrected. For the analysis of the latency
of the grand average P600 waves we performed an ICA (independent component analysis)
on the participant’s average waves of the conjunction hit and disjunction correct rejection
condition with the Infomax algorithm (Bell and Sejnowski, 1995) implemented in EEGlab
13.4.4b.

The psychophysical data entered a repeated measurement one-way Anova in the case for
the different conditions of the correct rejected non-target scenes presented as test scenes.
These were the mean correct rejections (cr) of distractor scenes, new scenes from the same
category as the target scene or new scenes from different categories. Additionally the mean
conjunction hits were separately analyzed depending on the spacing to the correct position
of the target scene presented in the learning phase. The significance level (0.05) of multiple
pairwise comparisons were Bonferroni-Holmes corrected. The conjunction hit and disjunc-
tion correct rejection rate as well as the miss and false hit rate were compared by paired
t-tests. All statistics were performed by using SPSS statistics 22 from IBM.
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Figure 3.4: Bar graph of the mean behavioral responses of the participants including the SEM
bars (black lines).

3.2. Results

3.2.1. Psychophysics

The behaviorally results showed a high accuracy for both the detection rate of conjunctive
target scenes and non-target scenes (see figure 3.4 for overview of the behavioral responses).
The miss and false alarm rate was accordingly low. The pairwise comparison of the par-
ticipant’s mean values of the conjunction hits and disjunction correct rejections revealed a
significant difference (t(19) = 2.7, p = .014). Participants correspondingly reported more
frequently false hits, which were unrecognized position errors of target scenes, compared to
the miss rate, which represents the unrecognized target identities (t(19) = 2.7, p = .014).
Note that the disjunction correct rejection rate and the false hit rate can reach at maximum
the same rate as the conjunction hit condition since a position failure can only be detected
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Figure 3.5: (a) Mean correct rejections depending on the presented test scene. A non-target scene
could be a distractor scene, a new scene from the same scene category as the target scene or a new
scene from different category. (b) Mean conjunction hits depending on the spacing to the correct
position of the target scene presented in the learning phase. The SEM bars are drawn in black.

or missed if the identity of the scene was recognized. The other way around the minimum
rate for both conditions is the miss rate.

Figure 3.5b shows that target scenes appearing at a false position were significantly more
likely to be recognized as the spacing between their presentation in the learning and test
sequence increased (F(6) = 28.68, p < .001). Especially when the spacing differed only by
one position between both sequences, which resulted in significant pairwise comparisons to
all other spacing distances. Also a spacing of two and three positions differed significantly
from the rest. The comparison of position differences of four or more revealed significant
differences to the other conditions. For clarification, the sample sizes of the different spacing
distances ni varied (for each participant: n1 = 18, n2 = 24, n3 = 22, n4 = 22, n5 = 16, n6

= 8, n7 = 2).

A closer look on the different possible types of correct rejections (figure 3.5a) by an one-
way Anova revealed a significant difference (F(3) = 14.87, p < .001). The post-hoc analysis
based on a Bonferroni-Holmes correction showed that all correct rejection conditions were
significant different to each other (distractor to new conditions p < .01 and new conditions
to each other p = .029).
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3.2.2. Event-related potentials

The ERP analysis was concentrated on the factor response condition and on the interac-
tions between the factors electrode and response condition due to the fact that our purpose
focus on the distinction between the ERP properties of the response conditions. Thus, we
did not report in detail the statistical results of the factor electrode site, which showed in
summary significant differences for all comparisons (p < .037).

Figure 3.6: Grand average ERPs during encoding of distractor scenes (red), new scenes from same
category (green) and different category (blue) as the target scene, which subsequently were correct
rejected. Time axis is referenced to the test scene onset. The electrode sites are labeled above the
corresponding ERP graph.

First we distinguished between the ERPs of the correct rejection conditions, which were
the distractor correct rejection (mean epoch quantity (MEQ) = 70.95, standard error of the
mean (SEM) = 5.17), new scenes from same (MEQ = 63.7, SEM = 4.5) and different (MEQ
= 63.85, SEM = 4.35) category as the target scene. The two-way Anova of all time windows
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revealed no significant difference between the response conditions. However, the time window
660-800 ms revealed an interaction between electrode site and response condition (F(2,8) =
1.95, p = .016). Figure 3.6 shows that the correct rejection of a distractor scene evoked
a less positive P600 amplitude at the parietal sites. Thus, we performed a more focused
comparison of the participant’s mean amplitudes for each parietal sites of the time window
660-800 ms. Only the repeated measurement one-way Anova of the P4 electrode site revealed
a significant difference (F(2) = 6,32, p = .004). A Bonferroni-Holmes corrected pairwise
comparisons showed that the distractor response condition differed significantly from both
new response conditions, but not the new response conditions to each other. However, the
three correct rejection conditions were averaged for further analysis since the difference was
restricted to the P4 electrode site.

Figure 3.7: Mean amplitudes of time window 660-800 ms at the P4 electrode site for the cor-
rect rejection response conditions. The colored dots represent the mean voltage values evoked by
subsequently correctly rejected distractor scenes (red), new scenes from same category (green) and
different category (blue) as the target scene. SEM bars for each response condition are shown as
black lines.

The response conditions miss (MEQ = 66.3, SEM = 8.55) and correct rejection are similar
regarding the decision of the participant. In both cases the participants responded negative
to a subsequently presented test scene even if the target scene was presented in the case
of a miss. Figure 3.8 illustrates that the differences between the miss and correct rejection
conditions in the time window 660-800 ms and 800-1000 ms continuously increases from the
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frontal to parietal electrode sites. A two-way Anova revealed a significant interaction between
the response conditions and the electrode sites for the time windows 660-800 ms (F(1,8) =
2.792, p = .007) and 800-1000 ms (F(1,8) = 2.962, p =.004) approving this observation.
Additionally the time window 660-800 ms revealed significant difference between the response
conditions (F(1,8) = 6.48, p = 0.02), but the other time windows did not significantly differ
(F(1,8) < 1.92, p > 0.18).

Figure 3.8: Grand average ERPs of subsequently missed conjunctive target scenes(red) and correct
rejected (green) non-target scenes are illustrated for the electrode sites Fz, Cz and Pz which are
labeled above the corresponding ERP graph. Time axis is referenced to the test scene onset.

We expected that the conjunction hit (MEQ = 234.45, SEM = 15.56) responses evoke a
comparable ERP as the false hit (MEQ = 29.15, SEM 4.17) responses since both responses
correspond to the decision of the participant that the position of the target scene presented
in the test phase was corresponding to the position in the learning phase. In figure 3.9 the
grand average ERPs are shown for the subsequently correctly recognized conjunctive target
scenes (green) and for the false hit condition (black), which were incorrectly recognized as
being conjunctive. For analysis the available false hit averages (17 participants after artifact
rejection) were compared to the conjunction hit averages of the corresponding participants
by a two-way Anova for each time window. Both response conditions did not significantly
differ in any time window (F(1,8) < 10.09, p > .495).

The response condition disjunction correct rejection (drawn in red, MEQ = 54.35, SEM
= 4.72) and correct rejection (blue) are additionally illustrated in figure 3.9. A two-way
Anova for each time window with the factor electrode sites and the factor response condition
containing the grand averages of the conjunction hits, disjunction correct rejections and
correct rejections revealed significant differences for all time windows except for the period
0-240 ms (240-380 ms: F(2,8) = 16.48, p < .001; 380-660 ms: F(2,8) = 24.91, p < .001; 660-
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Figure 3.9: Grand average ERPs of subsequently correctly recognized conjunctive (green) and
disjunctive (red) target scenes. Additionally the ERPs of disjunctive targets scenes which were
incorrectly classified as being conjunctive, a so-called false hit (black), and the correct rejected non-
target scenes (blue) are illustrated. Time axis is referenced to the test scene onset. The electrode
sites are labeled above the corresponding ERP graph.
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800 ms: F(2,8) = 4.69, p = .015; 800-1000 ms: F(2,8) = 4.93; p = .012). More specifically,
the pairwise comparisons revealed that the conjunction hit condition significantly differed
from the correct rejection condition for these time windows except for the period 660-800
ms. The disjunction correct rejection condition compared to the correct rejections revealed

Figure 3.10: Mean amplitudes of the conjunction hit (green), disjunction correct rejection (red)
and correct rejection (blue) ERP in the time window 380-660 ms at the Cz electrode site are shown.
SEM bars for each response condition are plotted in black.

significant difference for the time windows from 240-380 ms to 800-1000 ms. The only
significant difference between the conjunction hit and disjunction correct rejection condition
was detected in the time window 380-660 ms. The significant interactions between the
response conditions and the electrode sites in the time windows from 380-660 ms to 800-
1000 ms (380-660 ms: F(2,8) = 1.89, p = .021; 660-800 ms: F(2,8) = 2.77, p < .001; 800-1000
ms: F(2,8) = 2.23, p = .005) indicated that some differences between the response conditions
occurred only at specific electrode sites. Figure 3.11 shows the most potential differences
between the conjunction hit and disjunction correct rejection condition were located at the
C3 and Cz site in the time window 380-660 ms. In the same time window the difference
between the conjunction hit and correct rejection condition was increased at the Fz and Cz
electrode. Thus, each of these electrodes were analyzed separately by an one-way Anova
and revealed significant results for the three comparisons (Fz: F(2) = 18.25, p < .001; C3:
F(2) = 20.93, p < .001; Cz: F(2) = 25.07, p < .001). The pairwise comparison between the
correct rejection and the other two conditions revealed significant difference at all analyzed
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electrode sites (p < .004). More interestingly, significant differences between the conjunction
hit and disjunction correct rejection condition was revealed at the C3 (p = .022) and Cz (p
= .029) electrode site (figure 3.10).

The further analysis of the Fz electrode site which showed increased differences in the later
time windows (figure 3.11), revealed significant difference of the factor response condition
(660-800 ms at Fz: F(2) = 9.57, p < .001; 800-1000 ms at Fz: F(2) = 9.57, p = .002),
but no significant difference between the conjunction hit and disjunction correct rejection
conditions was revealed by pairwise comparisons. However, the correct rejection conditions
showed again significant differences to the other two conditions (p < .009).

The difference between the conjunction hit and disjunction correct rejection in the time
window 380-660 ms resulted in a latency difference of the P600 waves. The latency difference
between both response conditions increased from the frontal to parietal electrode sites as
seen in figure 3.9. At the Fz and Cz electrode site the P600 wave of the conjunction hit ERP
peaked at 636 ms whereas the disjunction correct rejection ERP peaked at 742 ms resulting
in a latency difference of 106 ms. The latency difference between the conjunction hit (556
ms) and disjunction correct rejection (682 ms) P600 amplitude at the Pz site amount to 126
ms.

We performed ICAs on the averages of the participants for the conjunction hit and dis-
junction correct rejection condition to identify the source activity of the P600 wave at the
parietal electrode sites. The scalp maps in figure 3.13 show that for both response condi-
tions the potential values increase from the frontal to parietal electrode sites in the time
windows 380-660 ms and 660-800 ms, which are relevant for the latency difference of the
P600 waves. Thus, we chose for both response conditions an independent component (IC)
which adequately characterizes the distributions of the scalp maps and the extending of the
P600 wave. The IC 4 described these criteria for the conjunction hit condition and the IC
2 for disjunction correct rejection condition. The scalp maps of the IC 4 and IC 2 in figure
3.12 showed the highest potential values in parietal region comparable to those observed in
scalp maps of the grand averages (figure 3.13). The extending of the averaged ICs at the Pz
electrode site (blue graph) in figure 3.12 also showed qualitatively similarities to the P600
wave of the grand averages of both response conditions. The participant’s power spectra of
the ICs at the Pz electrode site in figure 3.12 show strong variation in the P600 wave onset
and the latency difference does not clearly emerge from this illustration. However, the mean
peak latency of the IC 4 (conjunction hit) was at 570 ms whereas the IC 2 (disjunction cor-
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Figure 3.11: Scalp maps of the difference ERPs from the time windows 380-660 ms, 660-800 ms and
800-1000 ms are illustrated. The scalp maps of the difference potential between the conjunction
hit and disjunction correct rejection are plotted in the left column. The difference between the
conjunction hit and correct rejection is shown in the right column. Color coding is scaled in µV
and illustrated by the bars on the right. Electrode sites are marked by black dots.
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rect rejection) peaked at 692 ms which resulted in a latency difference of 122 ms comparable
to the measured ERP amplitude difference of 126 ms at the Pz electrode site.

Figure 3.12: Overview of the ICA results. Properties of the IC 4 from the conjunction hit averages
and IC 2 from the disjunction correct rejection averages at the Pz electrode site. The participant’s
power spectra of the ICs (same scaling of color coding) are illustrated and below the corresponding
IC average referenced to the test scene onset. The corresponding scalp maps of the ICs are plotted
left above the power spectra.

3.3. Discussion

The results of this study show evidence that the processing of sequence-related temporal
context of memorized episodes is located in the mid-parietal region. Since the difference
between the conjunction hit and disjunction correct rejection condition is maximal in the
central region and the latency delay of the disjunctive P600 wave amplitude is maximal in
the parietal region. Thus, indicating that the retrieval of temporal context of memorized
episodes is characterized by the extending of the P600 wave in the mid-parietal region.

The correctly rejected non-target scenes showed in comparison to the target scene condi-
tions the hypothesized mid-frontal old/new effect, but not the pariental old/new effect found
by classical old/new studies for word and object recognition (Curran, 2000; Duarte et al.,
2004; Düzel et al., 1997; Rugg et al., 1998). By contrast, the encountered differences between
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the P600 wave of correctly recognized non-target and target scenes are located in the frontal
region primarily in the right hemisphere. Nevertheless, correctly recognized non-target and
target scenes evoke dissociable P600 waves indicating the involvement of episodic memory
content in this study.

Figure 3.13: Scalp maps of conjunction hit and disjunction correct rejection ERPs from the time
windows 380-660 ms and 660-800 ms are shown. The scalp maps of the conjunction hit ERPs are
plotted in the left column and the disjunction correct rejection ERPs in the right column. Color
coding is scaled in µV and illustrated by the bars on the right. Electrode sites are marked by black
dots.

The decrease of the conjunction hit rate compared to the disjunction correct rejection
rate is a result of the four times more less probability of the appearance of disjunctive
target scenes in the recognition test. Therefore, participants had been expecting that a
presented target scene in the recognition test was more likely congruent with the learned
sequence, which indicates that the disjunctive target scenes required a deeper processing
of the temporal context resulting in the P600 wave effect. However, the observed P600
wave effect reflecting the retrieval of episodic temporal context might more clearly emerge if
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correctly recognized target scenes which involve retrieval of temporal context are compared
with correctly recognized target scenes which do not involve any retrieval of temporal context,
but episodic content.

The conjunction and false hit condition did not differ, which supports the assumption
that especially detected sequence violation involves deeper processing of temporal context.
The analysis of the spacing of the target scene in the recognition test to corresponding
target scene in the learning phase shows that the detection of the target scene position in
the sequence is identified more gradually as exactly since the detection rate increases with
spacing.

The observed differences between the correct rejection and miss condition in the mid-
parietal region during P600 wave are not obviously since both responses declared the pre-
sented test scene as being a non-target scene. However, in our experimental design the
meaning of a miss is ambiguous. A miss could simply imply that a participant did not
recognize the target scene, on the other hand it could imply that they recognized the target
scene, but falsely estimated the target scene as being at a false position. Thus, the differences
between both response conditions may reflect the falsely detected position errors.

The accuracy of correctly rejected distractor scenes was less precisely as the correct rejec-
tion conditions of new scenes, however also relatively high. The ERP of the correct rejected
distractor scenes only differed from the new conditions at the P4 electrode. This result
indicates that the distractor scenes interfere with the retrieval of the target scenes and the
temporal context. Additionally we found no difference either in performance or in ERP
extending between new scenes from the same category and new scenes from a different cate-
gory as the target scene. By contrast, Curran (2000) found that new words sharing features
with studied words were less likely correctly rejected as new dissimilar words and elicited a
dissociable N400 wave. An explanation could be that the chosen categories are derived from
the same general category (i.e. rooms), and therefore the global features (e.g. spatial layout,
illumination, depth) were too similar in the sense of the proposed coarse-to-fine processing
in scene recognition (Schyns and Oliva, 1994).

3.4. Conclusion

We conclude that the recognition of temporal context of memorized episodes is character-
ized by the ‘mid-parietal effect’ found in this study. This effect reflects not only the retrieval



58

of temporal content from episodic memory, but may be also directly linked to the multiple
view integration in spatial working memory. Multiple view integration requires the decoding
of temporal coherence of a set of retrieved views since views of places are experienced in the
temporal context of their appearance during navigation.
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A. Appendix

A.1. Heat maps of trajectories

Figure A.1: Heat map of trajectories of individual trials. Data from the desktop condition in
Experiment 3 is shown.
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Figure A.2: Heat map of trajectories of individual trials. Data from the HMD condition in
Experiment 3 is shown.
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Figure A.3: Heat map of trajectories of individual trials. Data from the parallelogram condition
in Experiment 4 is shown.
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Figure A.4: Heat map of trajectories of individual trials. Data from the peaked condition in
Experiment 4 is shown.
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A.2. Bar graphs of landmarks within the field of view

Figure A.5: Bar graph of landmarks within the field view during participants approaches in the
control condition.

Figure A.6: Bar graph of landmarks within the field view during participants approaches in the
parallelogram condition.
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Figure A.7: Bar graph of landmarks within the field view during participants approaches in the
peaked condition.
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A.3. Procedure description

Figure A.8: General procedure description of the behavioral place recognition study.
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Figure A.9: Procedure description of the HMD condition in Experiment 3 of the behavioral place
recognition study.



76 A. APPENDIX

A.4. Content form

Figure A.10: General content form of the place recognition study.
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Figure A.11: Content form of the HMD condition in Experiment 4 of the place recognition study.
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Figure A.12: Content form of the ERP study.
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