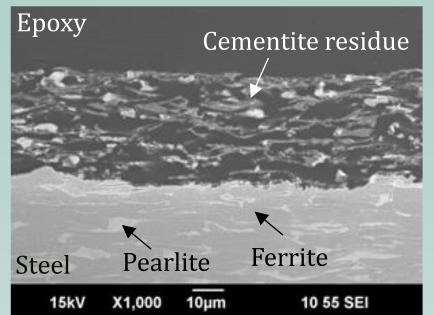


Quantitative Investigation of the Role of Residual Cementite on the Performance of an Imidazolinium-type Corrosion Inhibitor with Carbon Steel

Introduction

Motivation


- Corrosion inhibitors (CIs) are widely used in the oil and gas industry to protect carbon steel tubulars against internal corrosion.¹⁻³
- Various corrosion residues/products on internal wall of aged pipelines can affect the performance of corrosion inhibitors.⁴⁻⁶
- Residual cementite (Fe₃C) has a detrimental effect on inhibition efficiency (IE) *via* serving as an additional cathodic area ⁴⁻⁶, but the associated inhibition mechanism remains unclear.
- This effect varies with different types of corrosion inhibitor and steel ⁶ and has not been quantitatively evaluated.

Objectives

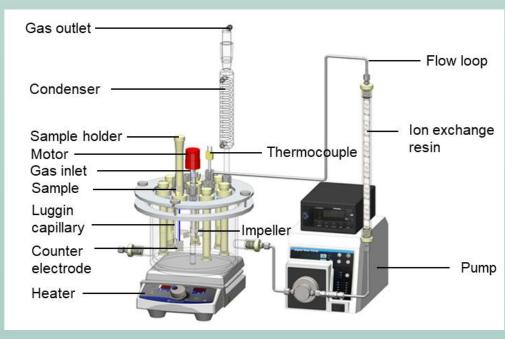
- Quantitatively evaluate the effect of cementite on corrosion inhibition.
- Understand how the inhibition mechanism is influenced by cementite.

Background

- During corrosion of carbon steel, ferrite dissolves and cementite remains on the surface.
- Cementite can accelerate corrosion rate (CR) via galvanic corrosion with ferrite owing to its electrical characteristics.

SEM images of cementite residue after pre-corrosion on C1018 steel with ferritic-pearlitic microstructure⁵

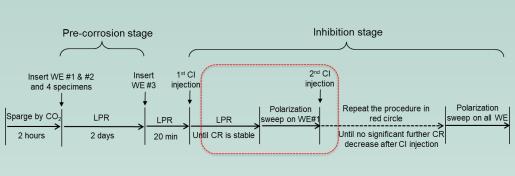
Experimental

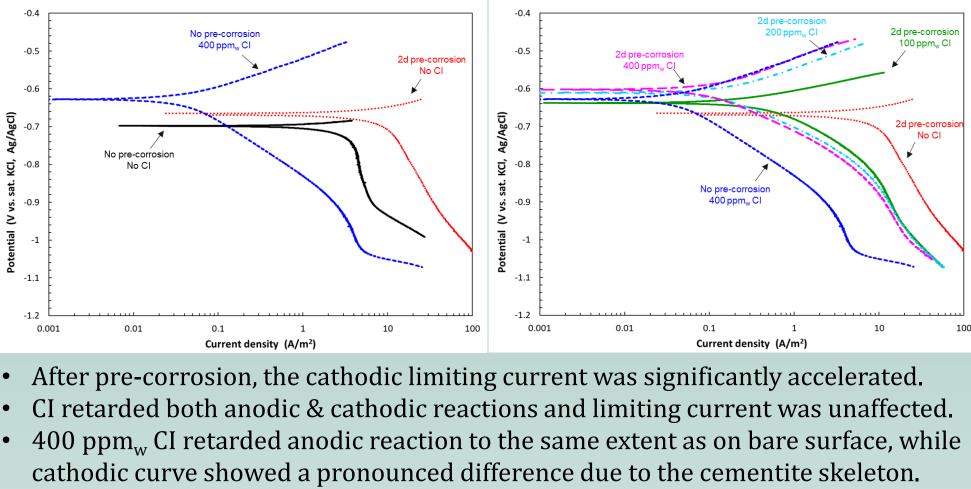

Material and Chemicals

Steel: UNS G10180 carbon steel (C1018) with a ferritic-pearlitic microstructure.

Corrosion Inhibitor: Imidazolinium-type commercial package

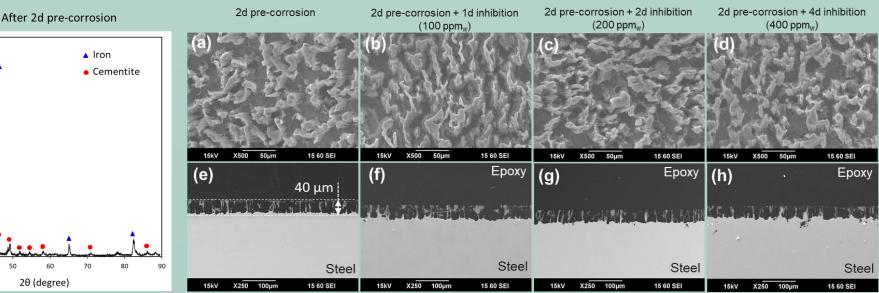
Experimental Equipment


A glass cell with an impeller connected to a Fe²⁺ concentration controller *via* a flow loop and up to 7 specimens being exposed in the test environment (immersion specimens and working electrodes).


Test Matrix

Parameters	Values
Electrolyte	5 wt.% NaCl
Working electrode	Flat square
Immersion specimen	Flat square
Temperature	55 ± 2 °C
Total pressure	1 bar
CO ₂ pressure	0.86 bar (saturated)
рН	4.5 ± 0.1
Flow condition	Same mass transfer coefficient as flow of 1.61 m/s in a pipe with an ID of 0.1m (shear stress: 4.7 Pa)

Procedure

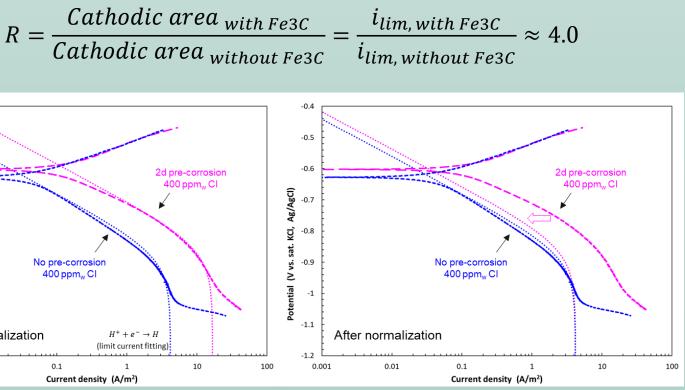


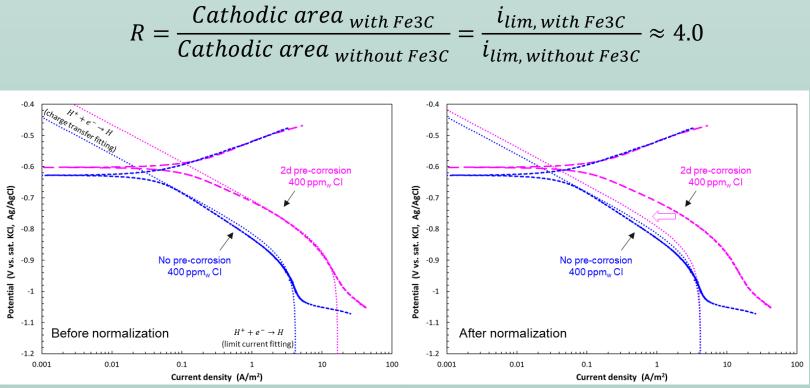
Results **Corrosion Rate & Inhibition Efficiency** 1st dose -0.6 100% 95.5% 96.2% 94.3% -0.62 -0.64 J WE #2 (No pre-corro -0.66 gt 0.18 mm/yr -0.68 2 -0.7 **b** 0.08 mm/yr i 0.08 mm/yr \square 0.08 mm/v20 100 120 140 Time (hour)

IE was harmed after pre-corrosion and higher CI concentration helped to combat this detrimental effect.

Minimum inhibited CR with pre-corrosion was higher than without pre-corrosion.

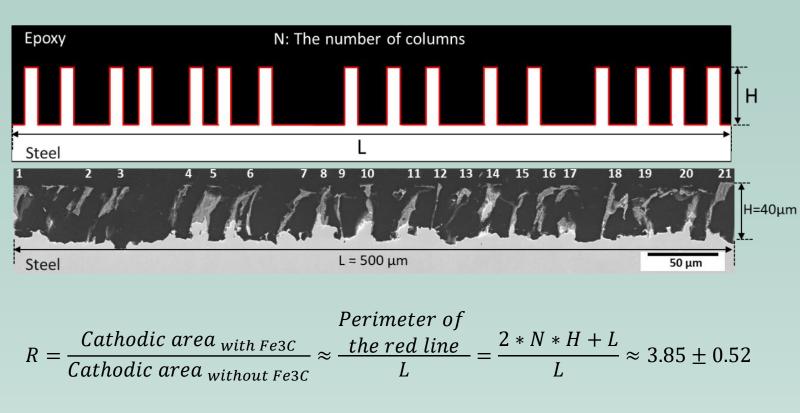
Surface Characterization


A cementite skeleton remained on the specimen surface after pre-corrosion and its thickness remained the same indicating the effectiveness of the inhibition.


|| Potentiodynamic Polarization

Cathodic Polarization Curve Normalization

cementite based on same cathodic reaction area.


the cathodic area for the bare surface.

- After normalization, cathodic reaction was retarded to the same extent as that on bare surface as well.
- The lesser retardation of the cathodic reaction reflected in the polarization curve was only due to the additional cathodic area by residual cementite.

Cathodic Area Ratio Verification

Shuai Ren

INSTITUTE FOR CORROSION AND MULTIPHASE TECHNOLOGY

Quantitative Evaluation

- Purpose: Compare cathodic curves with and without residual
- Method: Cathodic curve with cementite will be normalized based on
- **Assumption:** The ratio of cathodic area with and without cementite was equal to the ratio of corresponding cathodic limiting currents.

Method: The ratio of cathodic reaction area with and without residual cementite was estimated from cross-sectional SEM images.

Conclusions

- Residual cementite harmed inhibition efficiency due to galvanic coupling effects via serving as an additional cathodic area.
- Both anodic and cathodic reactions can be inhibited equally as on bare steel.
- The lesser retardation of the cathodic reaction reflected in the polarization curve was only due to the additional cathodic area.
- The minimum inhibited corrosion rate with residual cementite was always larger than that on bare steel.

Limitation & Future Work

Limitation: Bulk concentration of CI decreased in this close system due to adsorption at different interfaces.

Future work:

- Continuously inject CI for long-term exposure to simulate CI injection in pipelines.
- Study this effect using different types of CIs and steels (different carbon contents and microstructures).

References

- L. Y. He, S. Ren, X. Wang, D. Young, M. Singer, Z. Belarbi, M. Mohamed-Saïd, S. Camperos M. R. Khan, and K. Cimatu, "Delinkage of Metal Surface Saturation Concentration and Micellization in Corrosion Inhibition," Corrosion, vol. 78, no. 7, pp. 625–633, Jul. 2022
- S. Ren, Y. He, Z. Belarbi, X. Wang, D. Young, M. Singer, M. Mohamed-Said, and S. Camperos, "Methodology of Corrosion Inhibitor Characterization Applied to Phosphate Ester and Tetrahydropyrimidinium Model Compounds," in AMPP CORROSION Virtual Conference + Expo, 2021, paper no. 16443 (Houston, TX: AMPP, 2021).
- Y. He, S. Ren, Z. Belarbi, X. Wang, D. Young, and M. Singer, "Micellization and Inhibiti Efficiency," in AMPP CORROSION Virtual Conference + Expo. 2021, paper no. 16872 (Houston, TX: AMPP, 2021)
- E. Gulbrandsen, S. Nesic, A. Stangeland, T. Burchardt, B. Sundfaer, S. M. Hesjevik, and Skjerve, "Effect of precorrosion on the performance of inhibitors for CO₂ corrosion of carbon steel," in NACE Int. Corros. Conf., San Diego, CA, 1998, paper no. 98013.
- Y. Xiong, D. Fischer, F. Cao, and J. Pacheco, "Impact of pre-corrosion on corrosion inhibitor performance: Can we protect aged pipelines," in NACE Int. Corros. Conf., New Orleans, LA, 2017, paper no. 8919.
- R. Nyborg, E. Gulbrandsen, T. Loeland, and K. Nisancioglu, "Effect of steel microstructure and composition on inhibition of CO₂ corrosion," in NACE Int. Corros Conf., 2000, paper no. 23.

Acknowledgements

Advisor: Prof. Marc Singer; Project leader: Dr. Xi Wang; Collaborating prof. **Dr. David Young**; Technical support: Alexis Barxias and Cody Shafer at ICMT, Ohio University. Sponsor: **TotalEnergies**

Contact me: sr100418@ohio.edu