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Abstract  Image restoration is the process of estimating the
original image content from a degraded picture. In this pa-
per, the Richardson-Lucy iterative algorithm was developed to
improve the quality of degraded medical images. It has been
assumed that medical images are exposed to two types of degra-
dation. The first type is the blur function in the Gaussian form
with different widths, i.e. σ = 1, 2, and 3. The second type
of degradation was assumed to be of the independent white
Gaussian noise type with different signal-to-noise ratio values:
SNR = 10, 50, and 100. The results obtained from the adaptive
filter are compared, quantitatively, with different conventional
filters: inverse, Wiener, and constraint least square, by applying
different measures, such as: power signal to noise ratio (PSNR),
structural similarity index (SSID), and root mean square error
(RMSE). The comparison showed that the adaptive recovery
filter achieves better results.

Keywords  constraint least square filter, Gaussian blurring func-
tion, Gaussian noise function, inverse filter, non-blind deconvolu-
tion, point spread function, Richardson-Lucy algorithm, Wiener
filter.

1. Introduction
In many applications, recorded or generated images are a de-
graded version of the original picture due to flaws in the
imaging and capturing processes. These imperfections are
very difficult to remove. The process of eliminating them is,
therefore, an important task in image processing [1]. Flaws or
degradation may be caused by noise or may result from blur-
ring. Blurring can occur during image creation, transmission,
and storage, and may result from transmission channel error,
camera defects, atmospheric turbulence, relative motion be-
tween the object and the camera, as well as other factors [2].
The term “noise” refers to an unwanted random variation in
brightness that affects the image. Such noise is part of the
ideal signal and can be caused by a variety of factors, such as
poor detector sensitivity, environmental factors, the discrete
nature of radiation, transmission or quantization errors, and
so on [3]. Additive noise and multiplicative noise are the two
types of interference encountered. Additive noise is a linear
image additive that is unaffected by the strength of the input
signal. The Gaussian distribution with a mean of zero is used
to represent the probability density function. Noise is also
assumed to be white because its spectrum power distribu-
tion is nearly constant. Multiplicative noise differs depending
on whether the input signal is multiplicative or correlated
with the original signal. The Poisson distribution is used to

represent this type of noise [4]. The relationship between
a degraded (blurry and noisy) image g(x, y) and the object
(original image) f(x, y) is given by [1]:

g(x, y) = h(x, y)⊗ f(x, y) + n(x, y) , (1)

where n(x, y) is the additive white Gaussian noise, h(x, y) is
the blurring function, also known as the point spread function
(PSF), and ⊗ denotes the convolution process.
Medical imaging is nowadays essential for guiding disease
diagnosis and treatment. One of the most basic and crucial
aspects of medical imaging is image reconstruction. The main
goal is to have high-quality clinical images used at the lowest
possible cost and risk to the patients. Medical imaging devices
may aid in early detection of diseases and, thus, in improving
public health. MRI and CT scans, for example, are degraded
by poor quality of equipment or patient movements during
the image acquisition phase. This results in images that are
mostly unusable. This shows that medical images must be
of high quality to offer a quick and accurate diagnosis. To
remove blurring and noise from degraded images, restoration
processes must be performed. The goal of the restoration
process is to estimate an image that is as close as possible to
the original image f(x, y), based on its degraded counterpart
g(x, y) [5]. There are two types of image deconvolution
algorithms: blind (in which both PSF and noise are unknown)
and non-blind (in which both PSF and noise are known). The
blurring PSF and SNR from noise added are not known ahead
of time in the case of blind restoration [6]. Figure 1 shows
the degradation and restoration phases.

g(x,y)
Degradation

function 
H(x,y)

Original 
image
F(x,y)

Estimation
(PSF, noise)

Restored
image
f(x,y)

Restoration filter
Adaptive 

Richardson-Lucy

Noise
N(x,y)

Fig. 1. Image degradation and restoration phases.

In this study, an iterative restoration technique known as the
Richardson-Lucy algorithm (R-L) was adopted. A modified
filter was created to restore CT scan medical images that have
been blurred with a Gaussian function in different standard
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deviation (STD) “width” of PSF = 1 and 3, and also corrupted
by adding white Gaussian noise with different degrees of
noise variance, i.e. with SNR = 10, 50, and 100.
The R-L algorithm has a problem with amplified noise and
introduces the ringing effect as the number of iterations is
increased, which also renders the computational process com-
plex. The current research concept is based on the enhance-
ment of the R-L algorithm in order to investigate the effect
of strengthening the image’s edges during the restoration
process, as well as the ability of the proposed algorithm to
eliminate ringing and noise issues. This is accomplished by
introducing two parameters, λ and β, into the equation with
varying values, as well as calculating image edge detection
parameters using the Sobel edge detection approach. Then,
we compare the outcomes using various restoration filters, in-
cluding inverse, Wiener, constraint least squares filter (CLSF),
and the standard R-L, before modifying the image, in order to
investigate how this development could affect the outcomes
of the image restoration process. The effectiveness of this ap-
proach is determined using specific criteria, including mean
square error (MSE), peak signal to noise ratio (PSNR), and
structural similarity index (SSIM).
The main contributions of this study are:
– to represent the effect of adding to the priory restored image
f (k)(x, y) with some β weight,

– to strengthen the image’s edges, adding the edges to the
priory restored image with some λ weight.

The rest of this document is organized as follows. Section 2
offers an review of existing approaches that may be found in
the literature. Section 3 describes the general recommend-
ed framework. Section 4 assesses our research experiment.
Section 5 concludes the paper.

2. Related Works

Many research models focusing on this topic have been
implemented to date. However, each strategy employed was
tailored to a specific application area. Panfilova et al. [7]
proposed a method of restoration consisting in extending the
image beyond its original borders, reducing its brightness
to zero at the new borders, and using an empirical criterion
for defining the point at which the iterative process ends. To
lessen the negative impact of the image restoration problem,
linear blur compensation is applied. The Richardson-Lucy
iterative method and its modifications are used to restore the
image. The proposed modifications reduced image distortion
by more than 50% in terms of the RMS metric, allowing the
authors to estimate the number of iterations required to ensure
better performance of the algorithm.
Anacona-Mosquera et al. [8] presented hardware for imple-
menting the R-L algorithm and for accomplishing the image
restoration task, where the images are blurred due to the cam-
era’s motion relative to the scene. The R-L was implemented
in this case with the use of an FPGA-based platform relying
on VHDL and with assumption that the capturing image sys-

tem is free of additive noise. The overall architecture scales
from 3×3 to 9×9 mask sizes for the R-L convolution steps.
The high digital signal processing complexity of this archi-
tecture, which depends on the number of iterations to be
implemented, is a disadvantage.

Tselousov et al. [9] proposed a hybrid estimation method
based on cepstral and gradient field analysis of the distorted
image. The method offers better performance in terms of
blind deconvolution image restoration based on the Bayes
approach. The Richardson-Lucy engine revealed that, in most
cases, images distorted by camera shake are characterized by
better visual quality.

Aouinti et al. [10] introduced a genetic approach to optimize
the iteration count of the R-L deconvolution to obtain a bet-
ter restoration of degraded satellite images, enhancing image
quality by increasing SNR. Panfilova et al. [11] proposed
a control algorithm for R-L restoration to end its iterative
procedure based on the criteria defined by the quality mea-
sure introduced. It was discovered that the restoration quality
criteria based on the analysis of inter-line and inter-column
correlation coefficients act as an alternative rather than a sub-
ordinate to other quality measures in use.

Liu et al. [12] improved the performance of the star sensor
network working in a highly dynamic environment, using the
R-L algorithm based on a radial basis function neural net-
work (RBFNN). Firstly, using angular velocity information
provided by a gyroscope, the point spread function (PSF) is
calculated. RBFNN is then used to predict how many itera-
tions the R-L algorithm will require to complete the process
of deblurring the star image. The authors demonstrated that
quality of the deblurred star image is excellent, even at high
angular rates. Breykina et al. [13] developed an algorithm for
automated image restoration based on the analysis of line-to-
line and column-to-column correlation coefficients. The R-L
method is used for image reconstruction in order to refine the
distortion operator iteratively, and gradient descent is used to
estimate the distorting operator. Experiments showed that im-
ages with smear and blur distortion yield correct restoration
results, and that the method reduces the number of calcula-
tions required.

Zhao et al. [14] proposed a new image quality assessment
index-based on the R-L algorithm. This method was designed
for self-adaptive image de-blurring. Through experimental
verification and comparison to other methods, the authors
prove that the method achieves higher levels of efficiency,
accuracy, and real-time performance. Bhonsle proposed,
in [15], the R-L algorithm to correct the blurring problem,
and the krill herd optimization to fine-tune the quality of the
restored image, which results in a better restored image with
higher PSNR, SNR and SSIM metrics.

Lyu et al. [16] attempted to improve ultrasonic c-scan image
quality by combining the R-L algorithm and a faulty measure-
ment model. Through the restoration of the simulated images,
a connection between the optimal number of iterations and
the flaw size-to-sound wavelength ratio is established, and
the R-L iterative algorithm is used to restore the experimental
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ultrasonic c-scan images with the optimal number of itera-
tions. The proposed restoration method improves the accuracy
of ultrasonic c-scan imaging significantly.
Li et al. [17] presented the Richardson-Lucy network (RLN),
a fast and lightweight deep learning method for the decon-
volution of three-dimensional fluorescence microscopy. The
R-L is combined with a fully convolutional network structure
in RLN, establishing a connection to the image formation pro-
cess and thus improving network performance. The authors
prove that RLN outperforms classical R-L deconvolution on
volumes contaminated with severe out-of-focus fluorescence
or noise, and it reconstructs large, cleared-tissue datasets four
to six times faster than traditional multi-view pipelines.

3. Proposed Method

The purpose of this paper is to recover the quality of degraded
medical images by using an inverse filter, Wiener filter, con-
strained least squares filter (CLSF), and the Richardson-Lucy
algorithm to restore original images and to compare these re-
sults with adaptive Richardson-Lucy filter. Figure 2 shows
the architecture of the proposed system.

Input medical image

Degradation
phase

Estimation
phase

Restoration
phase

Restored image

Preprocessing stages:
rescaling, normalization, resizing

Convolve object with Gaussian
PSF of given width

Add white Gaussian noise 
with given variance

PSF estimation

Direct
inverse filter

Wiener
filter

Richardson
Lucy filter

Adaptive Richardson
 Lucy filter

Constrained
last square filter

Noise variance estimation

Fig. 2. Block diagram of the proposed system.

Direct inverse filtering is the simplest method of restoration.
In this method, the Fourier transform (FT) of the degraded
imageG(u, v) is divided by the FT of the degradation function
H(u, v) to estimate of the FT of the image F (u, v) [18]:

F (u, v) =
G(u, v)
H(u, v)

. (2)

This method works fine when the degraded image contains
no additive noise. The inverse filter has the advantage of

requiring only the blur PSF as a priori knowledge and allowing
for perfect restoration in the absence of noise. As a result, it
excessively dominates inverse-filtered images.
The Wiener filter is also known as the minimum mean square
estimator. Some of the difficulties associated with inverse
filtering were alleviated by attempting to recreate the error in
the restored image using statistical methods. After modeling
the error mathematically, the average error is minimized. As
a result, the term minimum refers to a square estimator. The
Wiener filter equation is [4]:

F (u, v) =
H∗(u, v)

|H(u, v)|2 + δn(u,v)
δf (u,v)

G(u, v) , (3)

whereH∗(u, v) denotes the complex conjugate ofH(u, v),
δn(u, v) is the noise power spectrum, and δf (u, v) is the
original image power spectrum.
The constrained least squares filter (CLSF) is another method
for overcoming some of the Wiener filter’s drawbacks, because
only prior knowledge of the noise’s mean and variance is
required. This is accomplished by incorporating a smoothing
criterion into the filter derivation, so that the result does not
contain undesirable oscillations which affect the image by
forming “waves”. The constrained least squares filter is given
by [8]:

F (u, v) =
1

H(u, v)

∣∣∣ |H∗(u, v)|2

|H(u, v)|2 + γ|p(u, v)|2
∣∣∣G(u, v) , (4)

where γ is the adjustment factor, p(u, v) is the smoothness
criterion’s Fourier transform (FT). The value is determined
experimentally and is application dependent. A common func-
tion to use for p(x, y) which is the inverse Fourier transform
of P (u, v) is the mask of the Laplacian filter [4]:

P (u, v) =

∣∣∣∣∣∣∣∣
0 −1 0

−1 4 −1

0 −1 0

∣∣∣∣∣∣∣∣ , (5)

3.1. Richardson-Lucy Deconvolution

The Richardson-Lucy deconvolution is a well-known image
restoration method classified as a non-blind image restoration
approach, because it necessitates prior knowledge of the blur
and noise [13]. It is an iterative process that is dependent
on the number of iterations, i.e. the most important factor in
determining image quality. The R-L algorithm can be used
efficiently when PSF is known or there is little or no noise
data available [19]. The R-L algorithm is built on a maximum
likelihood technique which uses Poisson statistics to model the
image. Maximizing the model’s likelihood function produces
an equation that is satisfied when the next iteration converges
[15]. The R-L algorithm was derived from Bayes’ theorem.
Because it is based on conditional probabilities, the algorithm
considers statistical fluctuations in the signal and can thus
reconstruct degraded images. Bayes’ theorem is given by [20]:

p(x|y) p(y|x)p(x)∫
p(y|x)p(x)dx

, (6)
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where p(y|x) is the event’s conditional probability y, given
event x. p(x) is the probability of event x, and p(x|y) is the
conditional probability in reverse, i.e. the probability of event
x given event y. Probability p(x) can be identified as the
distribution of objects f(x), while conditional probability
p(y|x) can be recognized as PSF-centered at x, i.e., g(y, x).
Probability p(y) can be recognized as a degraded image or
a convolution c(y). The Richardson-Lucy algorithm equation
is defined as [21]:

f (k+1)(x, y)=
[

g(x, y)
h(x, y)⊗f (k)(x, y)

⊗hT(x, y)
]
f (k)(x, y) , (7)

where f (k+1)(x, y) is the new estimate of a blurred image
from the previous one f(i)(x, y), g(x, y), i is the iteration step,
h(x, y) is the blur filter (PSF) and hT (x, y) is the complex
conjugate of PSF h, while ⊗ denotes convolution.
The R-L deconvolution algorithm has gained popularity in
astronomy and medical imaging [20]. It is one of the most
widely used deblurring algorithms in the field of image pro-
cessing. It happens for a variety of reasons, including the
fact that it operates efficiently regardless of the type of noise
affecting the image. Furthermore, it does not require any infor-
mation from the original clean image. This algorithm works
in the presence of noise, but the noise increases along with
the increase in the number of iterations [21]. Despite its bene-
fits, the R-L method has several serious drawbacks, e.g. noise
amplification.

3.2. Sobel Edge Detection

In an image, an edge is formed between the boundaries of
two distinct regions [22]. The main goal of edge detection is
to reduce the amount of data that needs to be processed by
simplifying the pixels that make up the image’s boundaries.
The Sobel edge detection filter is one of the best edge detec-
tion algorithms, with a relatively low complexity [23]. The
algorithm recognizes the boundaries of an image’s horizontal
and vertical axes separately. Typically, a pair of 3×3 hori-
zontal and vertical convolution kernels is used by the Sobel
operator to perform a 2D spatial gradient measurement on
images [24]. To calculate approximate derivatives, the Sobel
operator is given by two kernels (Gx, Gy) that are convolved
with the original image. One of the kernels is for horizontal
changes, and the other one is for vertical modifications, and
at each location in the image, it can be written as [24]:

G =
√
G2x +G2y . (8)

0 +2–1 +1+1 +1

0 0 –2 –2–2 +2

0 0–1 –1–1 +1

G Gx y

Fig. 3. Sobel masks with 3×3 dimensions.

As shown in Fig. 2, the first kernel Gx determines the incline
in the x (columns) direction, while the other kernel Gy
determines the tilt in the y (rows) direction [23].

4. Experimental Results and
Discussions

The proposed work was implemented using the Matlab soft-
ware. Before the restoration process, different preprocessing
steps of raw data are completed.

Rescaling – the input image must be changed from an RGB
color image to a 8-bit grayscale space picture in order to
reduce the amount of data needed to represent the image.
Consequently, computational efficiency and speed will be
increased significantly. The conversion is given by a common
formula from [25]:

Gray = 0.30 R + 0.59 G + 0.11 B . (9)

Normalization – the process of data normalization makes
sure that every input parameter has a consistent data dis-
tribution for each pixel. As a result, data is normalized by
subtracting the mean from each pixel and dividing the result
by the standard deviation (STD) value. The normalization
process can be expressed as [26]:

xnew = a+
(x−mmin)(b− a)
(xmax − xmin)

, (10)

where x represents a collection of the observed values, xmin
represents the minimum values and xmax represents the
maximum values in entire collection.

Resizing an image increases or decreases its resolution and
is equivalent to scaling. The image size can be specified
manually or by using a scaling factor. There are various
algorithms for resizing an image that is stored in a compressed
form, e.g. [27] which converts an image of sizem×m into
an image of size k×k, wherem is the number of pixels in the
original image and k is the number of pixels in the compressed
image.

4.1. Degradation Phase

A blurred image is produced by convolving the original image
with Gaussian PSF. Two different values of PSF widths have
been taken in consideration: σ = 1 and 3, as shown in Fig. 4b-c.
To simulate a noisy image, we add white Gaussian noise
(WGN) to the original one to achieve SNR= 10, 50, and 100,
as shown in Fig. 4d-i.

4.2. Estimation Phase

In the case of blind restoration, the degradation parameters
(PSF, noise) must be estimated. Inverse, Wiener, constraint
least squares (CLSF) and R-L filters are non-blind restoration
techniques. Known degradation parameters are applied to
the degraded image during processing. Therefore, PSF and
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a) original image b) σ = 1

d) σ = 1, SNR = 10 e) σ = 1, SNR = 50 f) σ = 1, SNR = 100

g) σ = 3, SNR = 10 h) σ = 3, SNR = 50 i) σ = 3, SNR = 100

c) σ = 3

Fig. 4. Results of a degraded CT scan image for different values of σ and SNR.

noise must be estimated by using one of the estimations
techniques.

4.3. Restoration Phase

To restore the original image f(x, y), filters such as the inverse
filter, Wiener filter, constraint least squares filter (CLSF)
and R-L have been used. All filters were used to restore the
degraded CT scan image, blurred with the Gaussian blurring
function with various standard deviation values and distorted
with Gaussian noise with different noise levels.
We note from Fig. 5, which represents the effect of a restored
CT scan image for different values of σ and SNR by using
the inverse filter, that the restored images are not good and
the landmarks and details are not clear with or without noise
and different values of PSF.

From Fig. 6, which represents the effect of a restored CT scan
image for different σ and SNR values by using the Wiener
filter, we note that the restored images look good for small
PSF levels in the absence of noise, but quality is bad when
the noise is present and PSF is increased.
From Fig. 7, which represents the effect of restoration by
using CLSF, we see that the restored images are good for low
PSF values in the absence of noise, but with high PSF levels,
the resonance effect begins to appear on the edges. Moreover,
when the noise is present, the image quality decreases with
high PSF and low SNR.

4.4. Adaptive Richardson-Lucy Filter

Development of an RL algorithm to eliminate the problem
of noise amplification and reduce the number of iterations
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a) σ = 1 c) σ = 1, SNR = 10 d) σ = 1, SNR = 50

e) σ = 1, SNR = 100 f) σ = 3, SNR = 10 g) σ = 3, SNR = 50 h) σ = 3, SNR = 100

b) σ = 3

Fig. 5. Results of restoration for different σ and SNR values by using the inverse filter.

a) σ = 1 c) σ = 1, SNR = 10 d) σ = 1, SNR = 50

e) σ = 1, SNR = 100 f) σ = 3, SNR = 10 g) σ = 3, SNR = 50 h) σ = 3, SNR = 100

b) σ = 3

Fig. 6. Results of image restoration for different σ and SNR values using the Wiener filter.

since the increasing iteration causes increase the effect of
resonance on the image. In our research, two new adapta-
tions have been introduced. These two adaptations are done
by introducing two parameters into the original RL algo-
rithm:

– the first additive term represents the priori restored image
(restored image from the previous iteration), through the

iteration process of specified weighting factor β, in order
to reduce the number of iterations,

– second additive term represents the strengthing of the edges
of the images, during the restoration process of the specified
weighting factor λ.

The final RL filter after adding the above two new parameters
can be described as:
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a) σ = 1 c) σ = 1, SNR = 10 d) σ = 1, SNR = 50

e) σ = 1, SNR = 100 f) σ = 3, SNR = 10 g) σ = 3, SNR = 50 h) σ = 3, SNR = 100

b) σ = 3

Fig. 7. Results of restoration of a CT scan image for different σ and SNR values by using the CLSF.

f̂(i+1)(x, y) =
[

g(x, y)
h(x, y)⊗ f(i)(x, y)

⊗ hT (x, y)
]
f(i)(x, y)

+βf(i)(x, y) + λ
(
f(i)(x, y)⊗ s(x, y)

)
(11)

where s(x, y) represents the Sobel operator.

Algorithm 1 shows the steps of the restoration filter by using
an adaptive RL filter.

Algorithm 1. Adaptive Richardson-Lucy filter.

Input: degraded image, estimated point spread function
(PSF), number of iteration (I).
Output: restored image f̂(i+1)(x, y)
1: Set value of f(i)(x, y) = g(x, y) in the first iteration
2: Calculate the transpose of matrix ht(x, y)
3: Choose γ and β within the range 0 to 1 with an increment

of 0.25
4: For i = 1, 2, 3, . . . , I
5: Convolve the estimation PSF h(x, y) with the previous

estimate value of f(i)(x, y) to produce a reblurred image:

h(x, y)⊗ f(i)(x, y)

6: Divide the blurred image g(x, y) by the value from step 5
7: Convolve the value from step 6 with transpose of matrix
ht(x, y)

8: Multiply the value from step 7 with the previous estimated
value of f(i)(x, y)

9: Multiply β with the previous estimated value of f(i)(x, y):

βf(i)(x, y)

10: Add the value from step 8 to the value from step 9

11: Apply Sobel edge detection to the previous estimated
value of f(i)(x, y):

f(i)(x, y)⊗ s(x, y)
12: Multiply λ with the value from step 11
13: Add the value from step 10 to the value from step 12 to
f̂(i+1)(x, y) calculate the new estimate of restored image

14: Repeat until iteration > maximum
15: Return f̂(i+1)(x, y)

Figure 8 represents the effect of a restored CT scan image for
different λ and β values using various filters in the follow-
ing order: a) non-blurred, b) Gaussian blurred with σ = 3,
SNR = 10, c) restored by inverse filter, d) restored by Wiener
filter, e) restored by CLSF, f) restored using R-L method,
g) restored using R-L λ = 0.5, h) restored using modified R-L
method; λ = 0.5, β = 0.25, and i) restored using modified
R-L method, λ = 0.25, β = 1.

4.5. Performance Evaluation
To demonstrate and evaluate the performance of the im-
age restoration and enhancement techniques, several met-
rics have been used. First, we simulate the degraded images
with different cases, i.e. Gaussian for blurring, different de-
grees of blurring, and different standard deviation “widths” of
PSF, σ = 1, and 3, and so on. We also added white Gaussian
noise of varying intensities to the noise function, i.e. different
degrees of noise variance, different SNR = 5, 10, and 100.
Figure 5 shows the original and degraded image using various
degradation parameters.
Three different metrics have been used to validate the degree
of similarity and loss of quality between the original image
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a) non-blurred image b) Gaussian blurred and noisy image 
with σ = 3, SNR = 10

d) restored image 
using the Wiener filter

e) restored image using the CLS filter f)  restored image using LR method

g)  restored image using modified LR
method with λ = 0.5

h) restored image using modified LR 
method with λ = 0.5,  β = 0.25

i) restored image using modified LR 
method with λ = 0.25,  β = 1

c) restored image 
using the inverse filter

Fig. 8. Results of the restored CT scan image for σ = 1, SNR = 10.

and the degraded (blurred and noisy) image: peak signal
to noise ratio (PSNR), structural similarity index (SSIM),
and root mean square error (RMSE). A reference metric that
requires both a reference image and a processed image to
be acquired from the same image is called a full reference
metric. These metrics are given by [28]:

PSNR = 20 log
MAXf√
MSE

, (12)

where MAXf is its highest possible pixel value, i.e. 255
for 8 bits per sample, and MSE stands for root mean square
error:

SSIM(x,y) =
(2µxµy + C1)(2σXY + C2)
(µ2x + µ2y + C1)(σ2x + σ2y + C2)

, (13)

where: x and y are windows of similar size, µx, µy are
the means of x and y, respectively, variances of x and y are σ2x
and σ2y , respectively, and covariance between x and y is de-
noted by σXY . To keep the stability of computation, constants
C1 and C2 are utilized. By default: C1 = (k1l)2, C2 =
(k2l)2, where l is the pixel values’ dynamic range (255 for
8-bit), k1 = 0.01, k2 = 0.03:

RMSE =

√√√√ 1
MN

m−1∑
x=0

n−1∑
y=0

[
f(x, y)− g(x, y)

]2
, (14)

where: f(x, y) is the original image, g(x, y) is the de-
graded image, while N andM represent the image dimen-
sions.
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Tab. 1. RMSE of restored images with a different type of filter.

Filter type STD σσσ RMSE, RMSE, RMSE, RMSE,
no noise SNR = 10 SNR = 50 SNR = 100

Direct inverse filter
1 0.511 0.511 0.511 0.511
3 0.544 0.544 0.544 0.544

Wiener filter
1 0.508 0.495 0.506 0.507
3 0.544 0.526 0.538 0.541

Constrained least 1 0.508 0.506 0.508 0.508
squares filter 3 0.544 0.526 0.538 0.540

R-L filter
1 0.196, 2 iter. 0.263, 1 iter. 0.237, 1 iter. 0.207, 2 iter.
3 0.269, 15 iter. 0.293, 13 iter. 0.268, 15 iter. 0.267, 15 iter.

Adaptive R-L filter 1 0.195 0.263 0.217 0.206
λ = 0.5 3 0.256 0.295 0.262 0.261
Adaptive R-L filter 1 0.252 0.261 0.256 0.251
λ = 0.5, β = 0.25 3 0.306 0.290 0.311 0.315
Adaptive R-L filter 1 0.341 0.364 0.260 0.343
λ = 0.25, β = 1 3 0.356 0.380 0.310 0.371

Tab. 2. RMSE of images restored with the R-L filter, versus iteration number.

σσσ = 1 σσσ = 3 σσσ = 1 σσσ = 1 σσσ = 1 σσσ = 3 σσσ = 3 σσσ = 3
no noise no noise SNR = 10 SNR = 50 SNR = 100 SNR = 10 SNR = 50 SNR = 100

1 0.212 0.304 0.263 0.237 0.216 0.323 0.304 0.304
2 0.196 0.295 0.267 0.244 0.207 0.313 0.294 0.294
3 0.207 0.289 0.281 0.262 0.212 0.308 0.288 0.288
4 0.221 0.285 0.293 0.280 0.228 0.304 0.284 0.284
5 0.231 0.282 0.295 0.295 0.249 0.301 0.281 0.281
6 0.246 0.279 0.316 0.307 0.264 0.300 0.279 0.278
7 0.266 0.277 0.333 0.320 0.289 0.298 0.277 0.276
8 0.282 0.275 0.356 0.331 0.305 0.297 0.275 0.274
9 0.293 0.274 0.366 0.341 0.315 0.295 0.274 0.272

10 0.299 0.273 0.376 0.350 0.308 0.294 0.273 0.271
11 0.313 0.272 0.384 0.358 0.317 0.294 0.272 0.270
12 0.322 0.271 0.389 0.365 0.326 0.293 0.271 0.269
13 0.336 0.270 0.395 0.372 0.341 0.293 0.270 0.268
14 0.349 0.269 0.402 0.378 0.352 0.293 0.269 0.267
15 0.356 0.269 0.407 0.383 0.358 0.293 0.268 0.267

Table 1 shows the performance evaluation results with varying
width σ of the blurring function, for different values of real
widths.
The variation of RMSE in filters presented in Tab. 1 can be
summarized as:
– RMSE of degraded images in (Wiener, CLSF, R-L) fil-

ters decreases with increasing SNR and increases with
increasing σ of the Gaussian blurring function,

– for an inverse filter, RMSE of degraded images increases
with increasing σ of the Gaussian blurring function and is
unaffected by SNR variation,

– RMSE of the restored image is lower than that of the inverse
filter when using (Wiener and CLSF) filters,

– the R-L filter reduces RMSE of the restored image more
than Wiener and CLSF,

– RMSE of the restored image is lower than RMSE
of all other filters when using an adaptive R-L with
λ = 0.5,

– RMSE of the image restored using an adaptive R-L filter
with λ = 0.5 and β = 0.25 is lower than the R-L filter with
SNR = 10.
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Tab. 3. Metrics of images restored with the adaptive R-L filter with various λ, β.

λλλ; βββ σσσ, SNR σσσ = 1 σσσ = 3 σσσ = 1 σσσ = 1 σσσ = 3 σσσ = 3
no noise no noise SNR = 10 SNR = 100 SNR = 10 SNR = 100

0.25, 0
RMSE 0.19 0.25 0.26 0.20 0.29 0.25
PSNR 28.39 23.51 23.21 27.24 21.17 23.45
SSIM 0.89 0.76 0.48 0.76 0.47 0.66

0.5, 0
RMSE 0.19 0.25 0.26 0.20 0.29 0.26
PSNR 28.39 23.61 23.15 27.40 21.20 23.32
SSIM 0.89 0.77 0.49 0.76 0.46 0.66

1, 0
RMSE 0.19 0.26 0.26 0.20 0.29 0.26
PSNR 28.51 23.20 23.25 27.35 21.24 22.85
SSIM 0.89 0.76 0.48 0.76 0.47 0.66

0.25, 0.25
RMSE 0.25 0.30 0.28 0.25 0.32 0.30
PSNR 23.92 20.46 21.97 23.63 19.70 20.55
SSIM 0.86 0.70 0.43 0.71 0.38 0.60

0.5, 0.25
RMSE 0.25 0.30 0.26 0.25 0.29 0.31
PSNR 23.91 20.54 22.01 23.97 19.51 20.01
SSIM 0.86 0.69 0.43 0.71 0.37 0.59

1, 0.25
RMSE 0.26 0.31 0.28 0.25 0.33 0.32
PSNR 23.76 19.96 21.80 23.81 19.08 19.76
SSIM 0.86 0.70 0.42 0.71 0.36 0.58

0.25, 0.5
RMSE 0.19 0.26 0.28 0.20 0.32 0.31
PSNR 22.91 20.24 21.59 23.20 19.29 20.17
SSIM 0.83 0.69 0.44 0.70 0.37 0.60

0.5, 0.5
RMSE 0.26 0.31 0.29 0.26 0.33 0.31
PSNR 23.37 20.20 21.28 23.33 19.25 20.00
SSIM 0.84 0.69 10.73 0.71 0.39 0.60

1, 0.5
RMSE 0.26 0.32 0.28 0.26 0.32 0.31
PSNR 23.40 19.73 21.79 23.14 19.40 19.90
SSIM 0.85 0.69 0.44 0.70 0.37 0.59

0.25, 1
RMSE 0.34 0.35 0.36 0.34 0.38 0.37
PSNR 18.67 17.93 17.53 18.56 16.79 17.20
SSIM 0.76 0.66 0.48 0.69 0.44 0.60

0.5, 1
RMSE 0.31 0.34 0.34 0.32 0.36 0.35
PSNR 19.83 18.72 18.51 19.71 17.43 18.0
SSIM 0.79 0.67 0.47 0.70 0.43 0.61

1, 1
RMSE 0.28 0.32 0.31 0.29 0.34 0.33
PSNR 21.57 19.69 20.20 21.47 18.32 19.04
SSIM 0.81 0.68 0.49 0.72 0.43 0.60

RMSE summary for the R-L filter is shown in Tab. 2. The
commentary is as follows:

– RMSE of degraded images increases along with increasing
σ of the Gaussian blurring function and decreases with
increasing SNR,

– the number of iterations increases with increasing the
degradation parameters.

The restoration iteration is achieved when no change may
be detected between the current restored image and the pre-

vious one. In such a situation, the repetition process is ter-
minated.

5. Conclusion and Future Work

The results from simulation show that when using a small
value of parameters λ and β, the adaptive R-L filter performs
better in image quality restoration, as the Gaussian blurring
function’s standard deviation values and SNR increase with
each iteration. The experimental results show a decrease in
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the RMSE value of up to 0.25 when using λ = 0.5 in one
iteration, compared to other existing methods, for example
the Wiener filter, where RMSE values reach 0.5442. This
demonstrates the effectiveness of our proposal in terms of
improved accuracy of the medical image by adapting the R-L
algorithm, but the results were not satisfactory when using
large values of the parameters λ and β. We will continue
work to improve the accuracy of the solution and to solve
that problem in the future. It is also possible to use another
type of the point spread function (PSF ) and noise that can be
applied in conjunction with the proposed framework in the
near future.
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