New Jersey Institute of Technology Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

3-31-1974

An experimental study of parametric pump

Khalid Omar Ranginwala New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Chemical Engineering Commons

Recommended Citation

Ranginwala, Khalid Omar, "An experimental study of parametric pump" (1974). *Theses*. 2157. https://digitalcommons.njit.edu/theses/2157

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

AN EXPERIMENTAL STUDY OF PARAMETRIC PUMP

BY

KHALID OMAR RANGINWALA

A PROJECT

PRESENTED IN FARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This project is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the college and without credit being given in subsequent written or published work.

Newark, New Jersey 1974

APPROVAL OF PROJECT

AN EXPERIMENTAL STUDY OF PARAMETRIC PUMPING

BY 👘

KHALID OMAR RANGINWALA

FOR

•

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

BY

FACULTY

APPROVED :

NEWARK, NEW JERSEY

MARCH, 1974.

(iii)	
INDEX	PAGE
ABSTRACT	(1)
INTRODUCTION	(2)
PREVIOUS WORK	(3)
EXPERIMENTAL PROCEDURE FOR	
LANGMUIR ADSORPTION ISOTHERM	(6)
APPLICATION OF ADSORPTION ISOTHERM	(31)
EXPERIMENT OF PARAMETRIC PUMPING FOR	
BINARY SOLUTION FRUCTOSE & GLUCOSE	(40)
DISCUSSION ON RESULT	(68)
CONCLUSION	(72)
EXPERIMENT OF PARAMETRIC PUMPING	
FOR BINARY SOLUTION OF KC1	(74)
DISCUSSION ON RESULT OF KCL SEPARATION	
FROM KCl + H ₂ O SYSTEM	(83)

REFERENCES

(86)

.

Abstract

In this research for Master's Project, the possibility for separation of glucose and fructose by parametric pumping was investigated. In this research activated carbon was used as adsorbent. First Langmuir's isotherms for glucose and fructose were experimentally found. These results were utilized in the thermal parametric pumping. The pump was run semicontinuously. Parametric pumping was also carried out with KCl +H₂O solution using a resin as adsorbent, and the 'b' value of KCl was found.

Introduction

uptil now there are various methods for the separation of fructose and glucose. There is good possibility for the separation of these by parametric pumping technique.

Activated carbon used is of Calgon Corporation. Filtrasorb 400, Pittsburgh. Before using, activated carbon was heated to 110^{oc} for 30 hours to take out moisture from inside of its pores. There is a good hope that this physical method of separation for fructose and glucose will be an economical method in industries among other methods.

Previous Work

Some people (7, 9, 15, 19) have worked on the separation of glucose and fructose. Here briefly two methods are mentioned.

In this method sugar is used. 2000 grams of granulated sugar is dissolved in 600 c.c. of distilled water. The optical rotation of solution is measured. At room temperature add sufficient quantity of invertase in about 18 hours period. Then the solution is acidified with 2 c.c. of glacial acetic acid, as the activation of invertase become maximum in slite acidified solution. The solution is allowed to stand at 20 to 30° until inversion is completed. For complete inversion the reading should be about 1/3 rd than before but negative instead of positive. Then the solution is deodourize and cleaned and concentrated under vaccume at low temperature and slow evaporation.

(3)

The thick sirup is then mixed with two volumes of hot glacial acetic acid. Then cool to room temperature and glucose is allowed to crystallize at about 15- 20°C in 3 to 4 days. After this crystals are separated by Buchner funnels and washed with glacial acetic acid. The crystals of glucose is dried in vaccume oven at low temperature. The filterate contains allittle bit of uncrystallized glucose, fructose and acetic acid. Now it is diluted with two parts of distilled water and concentrated in vaccume and low temperature to remove acetic acid. In the same way again diluted and concentrated to approximately 90 to 95% solid. Then allowed to crystallize at 15 - 20° for two to three days. Crystals are filtered and washed with glacial acetic acid. Then dried at low temperature in vaccume oven.

In other method sucrose is inverted with little

(4)

amount of hydrochloric acid or sulfuric acid and the solution is cooled to about $0^{\circ c}$, then milk of lime is added so it forms calcium fructosate. This salt is decomposed with CO_2 , sulfuric or oxalic acid. Filterate is concentrated using vaccume distillation at low temperature. Then fructose can be crystallized by using alcohol. Experimental Procedure For

Langmuir Adsorption Isotherms

For Langmuir's adsorption isotherm, the equation for solid - liquid system can be written as

$$X = \frac{N K Y}{1 + KY}$$

Where N is constant and independent of temperature, K is function of temperature, X is the gram mole adsorbed per gram of adsorbent and Y is equilibrium concontration in gram mole of solute per gram mole of solution. K the function of temperature is given by $K = K^0 T^{-0.5} e^{-(\Delta H/RT)}$

where AH is heat of adsorption.

For the experiment aqous solution of 5 % concentration of glucose by weight, was taken in eleven conical flasks. each flask contained 25 grams of solution. Then in each flask different amount of activated carbon was added. From 0.50 gram to 13 grams of activated carbon was used. Then put these flasks in mechanical shaker and the temperature was maintained constant at 25°°. After about three and half hours of shaking in the shaker, the solution was poured in to marked test tubes and the solution was cleaned up of each test tube, first by centri-fuging and then double filtering. First and last portion of filtrate was discarded to get accurate results. Then this clear solution was very carefully analsed by electronic automatic polarimeter. In the same way blank reading i.e. without activated carbon was done with various concentrations to estimate amount of adsorption took place.

The data is mentioned in the table (1) and (2). In the

(7)

Table: 1. Exp	erimental Result	s of Glucose A	dsorption
Initial Conc. gram gram solution	Amount of Act. Carbon used	Equilibrium Conc. gram gram soln.	Grams Adsorbed
0.0125	2	0.0045 ·	0.20
	5	0.0012	0.282
	8	0.0002	0.3075
0.025	3	0.0112	0.345
	6	0.0045	0.501
	8	0.0028	0.555
	10	0.0015	0,5875
-	11	0.0010	0 . 60
0.050	0.5	0.0425	0.187
	1	0.038	0.30
	1.5	0.0356	0.36
,	2.5	0.03	0.50
	3	0.0286	0.535
	6	0.0145	0.8875
	8	0.0095	1.01
	10	0.0060	1.10
	11	0.0050	1.125

Table: 1 .. Continued:

Initial Conc.	Amount of Act.	Equilibrium Conc.	Grams Adsorbed
0.050	12	0.0042	1.145
2.11	13	0.0040	1.15
0.075	4	0.042	0.825
	$oldsymbol{ heta}_{\xi_{i},\xi_{i}}$	0.03	1.125
	8	0.0215	1.3375
42	10	0.015	1.50
	11.	0.0125	1.5625
0.10	0.5	0.090	0.25
	1	0.0857	0.357
-	1.5	0.082	0.45
	2,5	0.075	0.625
	3	0.071	0.725
	4	0.0637	0.907
	ϵ	. 0.051	1.225
	8	0.039	1.525

Initial Conc.	Amount of Act. Carbon used	Equilibrium Conc.	Grams Adsorbed
0.10	10	0.030	1.75
	11	0.0258	1.855
0.15	0,5	0.1432	0.17
	1 ;	0.1385	0.287
	1.5	0.1351	0.372
	2.5	0.124	0.65
	3	0.120	0.75
	4	0.112	0.95

Table:2.	Experimental	Results	of	Fructose	Adsorption

		1	
Initial Conc. gram gram solution	Amount of Act. *Carbon used in grams	Equilibrium Conc. gram gram soln.	Grams Adsorbed
0 . 0125	4	0.002	0.2625
	6	0.005	0.30
	8	0.0002	0.3075
	1.0	0.0001	0.31
0.025	2	0.0128	0.405
	4	0.0075	0.4375
	6	0.0040	0.525
	8	0.0023	0.5675
	10	0.0015	0.5875
0.05,0	0.5	0.043	0.175
	1	0.0396	0.26
	1.5	0.036	0.35
	4	0.0225	0.6875
	6	0.015	0.875
	8	0.010	1.00

(11)

Table:2 . Continued:

Initial Conc.	Amount of Act. Carbon used	Equilibrium Conc.	Grams Adsorbed
0.050	10	0.007	1.075
0.075	4	0.041	0.85
	6	0.0305	1.1125
	8	0.0225	1.3125
	10	0.0170	1.45
	11	0.0136	1.535
0.10	0.5	0.092	0.2
	1	0.088	0.3
	1.5	0.084	O . 4
	4	0.0637	0.9
0.15	0.5	0.1432	0.17
	1	0.1385	0.287
	1.5	0.1351	0.372
	3	0.1198	0.755
	4	0.112	0.95

same way experiments were performed with 1.25%, 2.5%, 7.5%, 10%, and 15% concentrations by weight glucose and fructose. The purpose of this was to find out the optimum amount of activated carbon should be used. Table (1) and figure(1) shows that 10 grams of activated carbon can give the best equilibrium.

It is very difficult to get the solution at equilibrium if we take more quantity of activated carbon and higher concentration. So we decided to take upto 7.5% concentration by weight and 10 grams of activated carbon.

After this the solution of 1.25%, 2.5 %, 5% and 7.5% concentration by weight of glucose were prepared and 25 grams of each was taken into 125 ml. conical flask. Then 10 grams of activated carbon was added to each of them and put them in to mechanical shaker at constant temperature of $20^{\circ c}$. After 3 $\frac{1}{2}$ hours the solution was taken out in to different marked test tubes. Then the solutions were cleaned by centrifuging and filtration and then analysed on polarometer for the amount adsorbed by the activated carbon. Same procedure was repeated at $40^{\circ c}$ and $60^{\circ c}$ with glucose solution and $20^{\circ c}$, $40^{\circ c}$ and $60^{\circ c}$ with fructose solution. The experimental results are shown in table (4) & (5).

adsorption to get in equilibrium position, we took solution of 5% concentration by weight in 125 ml. conical flaskseach contained 25 grams of solution and 10 gramsof activated carbon, and put in the shaker at constant temperature of 25^{oc} for 15 minutes, 1hr., 2 hrs. and 3 hrs. Equilibrium concentrations were gotten by the polarometer in the same way as done before. Results are mentioned in table (3) and plotted Table: 3., Experimental Result of Glucose and

Fructose Adsorption

Glucose

Water and a second s	A STATE OF A STAT	A CONTRACT OF A
lime in Hours	Equilibrium Conc.	Grams Adsorbed
0.25	0.0096	1.01
1	0.0070	1.075
2	0.0060	1.10
3	0.0057	1.1075
		a 1997 - And S. Barton, S. Barton, S. S
	and construction of a contract product of address of address and address address address of address of address a	nan an
0.25	0.0089	1.027
1	0.0072	1.07
, 2	0.0070	1.075
		1 00

-

in figure (2). Same procedure was_also done by taking 2 grams of activated carbon with different solutions of concentration for different time. The resuls are plotted in figure (2)

For applying our experimental results in to Langmuir's Equation we have obtained, from the table (4 &5), the values for X, Y and Y/X for fructose and glucose.

 $X = \frac{N K Y}{1 + KY}$ is the mathematical expression for the Langmuir's adsorption isotherm as shown in the theory. This can be more simplified in the form of

 $\frac{Y}{X} = \frac{1}{N K} + \frac{Y}{N}$

This equation represent straight line if we plot

 $\frac{Y}{X}$ verses Y and the slope of the line is given by $\frac{1}{N}$.

So we plotted best possible line with our experimental

data obtained (Table 4 & 5). The slope of this line

(Figure 4) gives us as $\frac{1}{N} = 10^3$ and the intercept

i.e. at Y = 0 we get the value of $\frac{1}{NK}$ as we found the value of N so we can calculate the value of K using the value of N and intercept. (Table 6). K is expressed in Langmuir^a's adsorption isotherm as

$$K = K^{\circ} T^{-\frac{1}{2}} e^{-(H/RT)}$$

This can be simplified to

Ln K T^{$$-\frac{1}{2}$$} = Ln K^o + (-H/RT)

This equation expresses a straight line if we plot Ln $KT^{-\frac{1}{2}}$ against $\frac{1}{T}$ on semi log paper, and the slope will give us the value of $\left(-\frac{H}{R}\right)$ and in K^owill be the intercept. So the value of K^o and H were calculated from figure (6,7) and noted in the table (7).

For example let us take the experimental value of glucose at 293^{ok} in table (4). Therevalues $\frac{Y}{X}$ verses Y are plotted in figure (4). This gives us approximately straight line, whose slope ($\frac{1}{N}$) equals 10³ so we get N equals 10⁻³. The intercept i.e. at Y= 0 we get $\frac{-1}{-NK}$ which is from graph equals to 2.83 $\times 10^{-1}$

$$\frac{1}{NK} = 2.83 \times 10^{-1} \text{ and } N = 10^{-3}$$

$$K = \frac{1}{10^{-3} \times 2.83 \times 10^{-1}} = \frac{10^{4}}{2.83} = 3535$$

$$K = 3535$$

In the same way value of K was calculated for 313^{ok} and 333^{ok} and mentioned in table 6. Now: using these values of K we plotted the graph $KT^{\frac{1}{2}}$ verses $\frac{1}{T}$ in figure 6. This gives us straight line. The slope of this line equals

$$\frac{\log 4.6 \times 10^4 - \log 2.3 \times 10^3}{1.95} = 667.5$$

Now from our equation slope $= \frac{\Delta H}{R}$

 $\frac{-H}{R} = 667.5$... (-H) = 3062 cal/gm mole

The intercept from equation is $\text{In } \mathbb{K}^0$ and from our plot in figure 6 is $\text{In } \times 3.1 \times 10^2$

•
$$K^{0} = 3.1x'10^{2}$$

In the same way we found the value of K^0 and H for fructose and mentioned in table 7.

Table: 4. Experimental Results of Glucose Adsorption

Temp.	I	• X x10 ⁻⁴	¥ x10 ⁻⁴	$\frac{Y}{X} \times 10^{-1}$	Slope
293 ^{0k}	1.25	1.694	0.6	3.54	10 ³
	2.5	3.33	1.0	3.005	•
	5	6.138	6.5	10.6	
	7.5	8.4027	16.2	19.28	
313 ^{0k}	1.25	1.652	0.7	4.23	10 ³
	2.5	3.236	2.0	6,195	
	5	5.97	8.5	14.21	. •
ж.	7.5	7.94	20.0	25.2	
333 ^{0k}	1.25	1.6736	0 e 8	4.78	10 ³
	2.5	3.18	2.6	8.18	
	5	5.694	10.4	18.28	
: 	7.5	7.694	. 22.0	28.6	

I= Initial % concentration by weight

X= Gram mole adsorbed/gram of adsorbant

Y = Equilibrium concentration $\frac{\text{mole of solute}}{\text{mole of solution}}$

· .

FIGURE NO. 4 GLUCOSE

· . 30

(24)

60⁰⁰

28

•					
Temp.	I	X x10 ⁻⁴	¥ x10 ⁻⁴	$\frac{Y}{X} \times 10^{-1}$	Slope
293 ^{0k}	1.25	1.611	0.60	3.72	1047
	2.5	3.333	1.0	3.005	
	5	6.08	7.2	11.84 _	
	7.5	8.222	_18,0-	21.9	
313 ^{0k}	1.25	1.666	0.3	1.8	1047
	2.5	3,208	2.2	6.86	
	5	5.77	9.7	16.8	
	7.5	7.819	21.3	27.25	
333 ^{0k}	1.25	1.68	0.4	2.38	1047
	2.5	3.19	2.2	6.9	
	5	5,68	10.6	18.68	
0-1-144 24 26 26 26 14 14 14 14 14 14 14 14 14 14 14 14 14	7.5	. 7.5	23.2	30.95	
0	1.2	. 1			

Table: 5 . Experimental Results of Fructose Adsorption

I= Initial % concentration by weight

X = Gram mole solute adsorbed Gram of adsorbent

"Y= Equilibrium concentration

gram mole of solute gram mole of solution

Temperature	К.	N
293 0 k	3535	10 ⁻³
313 ^{0k}	2355	10 ⁻³
333 ⁰ k	1766	10 ⁻³
	FRUCTOSE	
293 ^{0k}	3324	9.555' x10 ⁻⁴
313 ^{0k}	2324	9.555 x10 ⁻⁴
333 ^{0k}	1742	9.555 x10 ⁻⁴

Applications Of Adsorption Isotherms

The purpose of finding the adsorption isotherms was to decide, the posssibility and the suitable operating conditions for thermal parametric pumping.

The graph x verses y was drawn where x is in gram mole of solute adsorbed per gram of activated carbon, and y is equilibrium concentration in gram mole of solute per c.c. of solution.

For finding the dimensionless parameter "b" the procedure of H. T. Chen et. al (2) was used. First find the average slopes M of the adsorption isotherm at $20^{\circ \circ}$ & $40^{\circ \circ}$; and $20^{\circ \circ}$ & $60^{\circ \circ}$ were determined for fructose and glucose. Then m was calculated by the equation $m = \frac{(1 - e) \int_{S} M}{\int_{I} e}$

where e = porosity = 0.561; $P_s = 1.35 \frac{grams}{c.c.}$

 $f_{f} = 0.05555 \frac{\text{gram mole}}{\text{c.c.}}$ and M the slopeshould be

Temperature	I	E	А	C x10 ⁻⁴
293 ^{0k}	0.0125	0.0003	0.305	0.05
•	0.025	0.0010	0, 60	0.10
	0,050	0.0058	1.105	0.37
	0.075	0.0145	1.5125	0.87
313 ^{0k}	0.0125	0.0006	0.2975	0.075
	0.025	0.0017	0.5825	0.15
	0.050	0.007	1.075	0.48
	0.075	0.0178	1.43	1.06
333 ^{0k}	0.0125	0.00045	0.30125	0.07
· · · · · ·	0.025	0.0021	0.5725	0.17
	0.050	0.0090,	1.025	0.57
	0.075	0.0196	1.385	1.15

I= Initial concentration in gram/gram solution

E= Equilibrium concentration in gram/gram solution

A= Grams of solute adsorbed

C= Equilibrium concentration in gram mole/cc of soln.

T

		/		on	
Temperature	I	Е	A	$C \times 10^{-4}$	un in frankrige
293 ^{0k}	0.0125	0.0009	0.29	0.06	
	0.025	0,0010	0.60	0.09	
	0.050	0.006	1.095	0.38	
	0.075	0.0158	1.48	0.93	
313 ^{0k}	0.0125	0.0005	0.30	0.03	nu; vervenkisteriim kiene
	0.025	0.0019	0.5775	0.13	
	0.050	0.0084	1.04	0.52	
	0.075	0.0187	1.4075	1.12	
	for starting of sector sector with the starting sector starting of sector sectors at 1000 at 1000 at 1000 at 10	nen er en	1		
333 ^{0k}	0.0125	0.0004	0.3025	0.03	·
	0.025	0.0020	0.575	0.13	
	0.050	0.0091	1.0225	0.58	
	0.075	0.021	1.35	1.21	

Experimental Results of Fructose Adsorption Table: 9

in mole fraction.

The value of m at mean temperature m_0 between 20^{oc} & 40^{oc} was calculated, and same way m_0 between 20^{oc}

& 60^{0C} was calculated.

Then $a = m_{hot} - m_o$

and the dimensionless equilibrium parameter "b" was obtained by the equation

$$b = \frac{a}{1 + m_0}$$

Values of "b" for glucose and fructose are summerized in table (10).

The success of separation in parametric pump much depends on the value of "b". From the graph figure (Figure 8), the maximum time for reaching equilibrium is about 15 minutes when 10 grams of activated carbon was used, and about 1 hour when 2 grams of activated carbon was used. So the time for half cycle was selected as 20 minutes.

For finding the slope M from graph y vs x , Simpson's Rule was used to find the area under the curves For more accuracy, very small intervals were taken. The slope was checked out by least square method. The values of M are as follows from figure 8 Slope of curve (1) Glucose $20^{\circ \circ} = M_{G20} = 0.745$ Slope of curve (2) Fructose $20^{\circ \circ} = M_{F20} = 0.725$ Slope of curve (3) Glucose $40^{\circ \circ} = M_{G40} = 0.657$ Slope of curve (4) Fructose $40^{\circ c} = M_{F40} = 0.614$ Slope of curve (5) Glucose $60^{\circ \circ} = M_{G60} = 0.582$

Slope of curve (6) Fructose $60^{\circ \circ} = M_{F60} = 0.580$

The value of (m were calculated by the formula

$$m = \frac{g_s (1-\epsilon) M}{f_f \epsilon}$$

Where

$$\begin{split} \int_{S} = \text{ Jensity of Activated Carbon } = 1.35 \text{ gm/c.c} \\ \in = \text{ Forosity } = 0.561 \\ \int_{f} = 0.05555 \text{ gm mol /c.c} \end{split}$$
The values of m are as follows

$$\begin{split} m_{g} 20^{0^{\circ}} = 14.15 \\ m_{F} 20^{0^{\circ}} = 12.47 \\ m_{F} 40^{0^{\circ}} = 11.65 \\ m_{G} 60^{0^{\circ}} = 11.02 \end{split}$$

$$m_{F}^{60}$$
 =11.01

So 'b' values were calculated by using equation

(37)

$$b = \frac{a}{1 + m_0}$$

where m_o = m at average temperature.

a = m at cold temperature - m_o

The values of b are mentioned in table (10)

Table: 10.

Solute	"b" Dimentionless Parameter	Temperature Range ok
Glucose	0.0594	293 - 313 ^{0k}
Glucose	0.114	293 - 333 ^{0k}
Fructose	0.0774	293 - 313 ^{0k}
Fructose	0.1055	293 - 333 ^{0k}
· · · · · · · · · · · · · · · · · · ·		

Experiment of Parametric Pumping For Binary Solution

The theory of parametric pumping can be found in the literature(3, 4, 16). The schematic diagram of thermal Parametric pumping is shown in figure (9). The activated carbon Filtrasorb 400 of Calgon Corporation, Pittsburgh, Pa., was heated to 110°c for 30 hours to get rid of moisture. Then the cleaned column was packed by the activated carbon. Then the top and bottom connections were connected to top and bottom reservoir respectively. The syringes of top and bottom reservoir and feed were lubricated by thin film of grease. This also makes syringes air-tight. 5% by weight, the glucose solution was prepared for feed. The feed and bottom reservoir syringes were filled with feed solution upto 45 c.c. and the volume in top reservoir syringe was kept about 5c.c. as dead volume.

Then the column was filled at ambient temperature

(41)

by allowing feed solution to flow from bottom reservoir to top reservoir. We can also fill up the column from top reservoir to bottom reservoir, in that case the volume of top reservoir at the beginning should be about 45 c.c. and bottom 5 c.c. First method seems to be better as it can take out air from the column more perfectly than the later method. Feed syringe does not operate at this time. After the column is filled up, the both lines of reservoirs were closed and the reservoir syringes were refilled by feed solution and the volumes of bottom reservoir was maintained to 45 c.c. and in top reservoir 5 c.c. which will act as dead volume of top reservoir. After this the column was kept overnight so that complete equilibrium adsorption should reach in the column. Next day the temperature in hot and cold bath were maintained to 60°C and 20° respectively.

The operation of pump was started by first half hot cycle. The fluid was flowing from bottom reservoir to top reservoir through the column. No feed was fed in hot half cycle. Timer and solinoid were used to change the hot and cold water flow through jacket after each 20 minutes of half cycle. The speed of reservoir pumps was maintained to supply 2 c.c.per minute, and the speed of feed pump was 0.80 c.c.per minute.

In first half hot cycle after 20 minutes when the timer changes from hot water flow to cold water flow through the jacket, the reservoir switch should be off immediately and change the direction of reservoir pump. At this point the volume of solution in top and bottom reservoir must be 45 c.c. and 5 c.c. respectively. Immediately after changing the direction of reservoir pump the switches of reservoir and feed were on. Feed is alwavs fed in half cold cycle. In this cold half cycle the bottom product is first collected then top product is collected as it is easier to take out top product than bottom product. Total feed of 16 c.c. was fed in each half cold cycle. During this cold half cycle 0.80 c.c. of bottom product and 15.2 c.c. of top product was collected. As it is very difficult to analyse 0.80c.c. So the products from 1 to 5 cyclesare combined to gether and considered as average for 3rd cycle product. In the same way average of 6 to 10 cycles is cosidered as 8th cycle, average of 11 to 15 cycles as 13th cycle product and average of 16 to 20 cycles products as 18 th cycle product.

After 20 minutes the timer change the solinoid value and hot water start flowing through the jacket. At this point the volume of solution in top and bottom reservoir should be 5 c.c. and 45 c.c. respectively as to be sure that. displacement should be around 40 c.c. After changing the direction the switch of reservoir pump should be on. Now the solution will flow from bottom reservoir to top reservoir in this half hot cycle. After every two cycles the feed syringe was refilled. During the refilling the feed syringe, slight amount of feed solution was lost as feed line is always in some pressure. So there might be slight error in the volume of product. The column was run uptil 20 cycles completed. After every half cycle, the position of the reservoir pumps, feed pump and the volume of product collected, were

recorded.

After this the top and bottom product was analysed in polarimeter. The results are shown in tables (11 t020)

Same procedure was done in the experiment of binary solution of fructose i.e. fructose + water.

(45)

Then/the results of the experiments have plotted
on semilog paper as
$$\text{Log} \underbrace{\langle Y_B \rangle_n}{Y_0}$$
 versus n and
 $\text{Log} \underbrace{\langle Y_T \rangle_n}_{Y_0}$ versus n for glucose + water system
and fructose + water system in graph (Fig. 10 to 14)

• •

•

In binary solution of fructose, the system was in slightly more pressure than glucose & water system.

	Table:11.	FRUCTOSE	+ H ₂ 0	
		PARAMETRIC PU	MP RUN NO.1	
	TOP	POLARIMETER	CORRECTED	(Y _T /Y _O)
. (61 0000-00-00000	PRODUCT NO.	READING	READING	4 1017 1 8 15 16 17 16 16 16 17 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16
	T 5	3.439	3.739	0.750
	T6	4.027	4.327	0.869
	Т7	4.567	4.867	0.976
	T8	4.917	5.217	1.048
	Т9	4.972	5.272	1.059
	T10	5.554	5.854	1.177
	T11	5.447	5.747	1.150
	T12	5.402	5.702	1.146
	T13	5.949	6.249	1.252
	T14	5.774	6.074	1.220
	T15	5.934	6.234	1.250

INSTRUMENTAL ERROR= 0.30

(48)

Table:12

FRUCTOSE + H₂O

PARAMETRI	0]	PUMP	RUN	NO.	1
-----------	-----	------	-----	-----	---

BOTTOM PRODUCT NO	POLARIMETER READING	CORRECTED READING	∠Y _B >n Y _o
B1	2.654	2.954	аналанын сэллэл байсан орон нэ үнээрэл антаа сэлсэл сэлсэллэг байлай байлай байлай байлан орон ойлаг байлаг. 0 + 592
) B2	2.386	2.686	0.540
B3	1.750	2.050	0.411
) B4	1.391	1.691	0.340
B5	1.144	1.444	0.289
B6	0.942	1.242	0.2495
B7	0.821	1.121	0.225
_B8	0.746	1.046	0.210
В9	0.969	1.269	0.2545
B10	0.802	1.102	0.2115
B11	0.943	1.243	0.2497
B12	0.791	1.091	0.2190
B1 3	0.762	1.062	0.2130
B14	0.745	1.045	0.210
B15	0.750	1.050	0.211
FEED	4.687	4.987	

INSTRUMENTAL ERROR = 0.30

Slope =
$$\alpha = -\frac{\log 0.68 - \log 0.15}{10 - 2}$$

 $\alpha = -\frac{\overline{1.832} - \overline{1.176}}{8} = -\frac{0.656}{8} = -0.082$
 $\therefore 10^{\circ} = 0.827$

'b' value can be calculated by the equation

$$b = \frac{(1 - 10^{\circ}) + C_2 (1 - 10^{\circ})}{(1 + 10^{\circ}) - C_2 (1 - 10^{\circ})}$$

$$C_2 = \frac{\text{Dead volume of bottom reservoir}}{\text{Volume of displacement}} = \frac{5.2}{40.27}$$

$$C_2 = 0.129$$

••

•

• .

$$b = \frac{(1 - 0.827) + 0.129 (1 - 0.827)}{(1 + 0.827) - 0.129 (1 - 0.827)}$$

b = 0.1085

(51)

Table:13 FRUCTOSE + H₂O

PARAMETRIC PUMP RUN NO.2.

TOP Product no.	POLARIMETER READING	CORRECTED READING	(Y _T / Y _O)
		•	•
T 1	4.145	4.235	0.885
T11	4.936	5.026	1.050
T111	5,360	5.450	1.111
TIV	5.304	5.394	1.090
FEED	4.828	4.918	1.00

INSTRUMENTAL ERROR = 0.090

	Table:14	FRUCTOSE PARAMETRIC P	+ H ₂ 0 JMP RUN NO.2	
- 	BOTTOM PRODUCT NO.	POLARIMETER READING	CORRECTED READING	Υ _B / Υ _O
	B1	1.820	1.910	0.399
	B11	0.840	0.930	0.1942
	B111	0.410	0.500	0.118
	B1V	0.246	00.336	0.0682

INSTRUMENTAL ERROR = 0.090

Slope =
$$\frac{\alpha}{10} = -\frac{\log 0.70 - \log 0.050}{17 - 2}$$

 $\alpha' = -0.0764$
 $10^{\infty} = 0.84$
 $C_2 = \frac{\text{Dead volume of bottom reservoir}}{\text{Displacement volume}} = \frac{2.25}{35.5}$
 $C_2 = 0.0634$
 $b = \frac{(1 - 10^{\circ}) + C_2 (1 - 10^{\circ})}{(1 + 10^{\circ}) - C_2 (1 - 10^{\circ})}$
 $b = \frac{(1 - 0.84) + 0.0634 (1 - 0.84)}{(1 + 0.84)}$

$$\therefore b = 0.093$$

Table:15.

GLUCOSE + H₂O PARAMETRIC PUMP RUN NO1

antikingan tanahin katikan tana ana ini tanàna mandrina dana dalam tanàna da		ana statute de la companya de la com	in the second	
TOP Product no	INITIAL READING	FINAL READING	NET READING	(<y7 th="" y0)<=""></y7>
1	0.073	0.500	0.427	0.178
2	0.069	0.702	0.633	0.224
3	0.071	1.354	1.283	0.448
4	0.072 (2.096	2.024	0.7069
5	0.073	2.370	2.297	0.8023
6	0.069	2.527	2.458	0.8585
7	0,070	2.796	2.726	0.9520
8	0.075	2.864	2.789	0.9741
9	0.071	3.065	2.994	1.0457
10	0.065	3.122	3.057	1.06776
11	0.060	2.888	2.828	0.9877
12	0.065	3.327	3.262	1.1393
13	0.071	3.233	3.162	1.1044
14	0.069	3.307	3.238	1.1309
15	0.069	3.280	3.211	1.1215
16	0.059	3.051	2.992	1.045
17	0.065	3.233	3.168	1.1065
18	0.072	3.426	3.354	1.1715
19	0.071	3.200	3.129	1.0929
20	0.069	3.180	3.111	1.0866
21	0.067	3.382	3.315	1.1578
FEED	0.070	2.933	2.863	menera
		and the second		

(56)

Table:16GLUCOSE + H20PARAMETRICPUMPRUNNO1.

BOTTO PRODU	M INITIAL CT NO. READING	FINAL READING	NET	$\frac{\sum_{B} \sum_{D}}{Y_{O}}$
маеционогоникание издание колта чистические В1	0.072	1.405	1.333	0.471
·B2	0.068	0.580	0.512	0.181
B3	0.063	0.330	0.267	0.0945
В4	0.044	0.221	0.177	0.0627
			· · ·	
FEE	D 0.066	2.890	2.824	1

Slope =
$$\alpha' = -\frac{\log 0.67 - \log 0.032}{17 - 2}$$

 $\alpha' = -\frac{1.826 - 2.505}{15} = -0.088$
 $10'' = 0.816$
 $C_2 = \frac{\text{Dead volume of bottom reservoir}}{\text{Displacement}} = \frac{5.3}{40.65}$
 $C_2 = 0.1306$

$$b = \frac{(1 - 10^{\circ}) + C_2 (1 - 10^{\circ})}{(1 + 10^{\circ}) - C_2 (1 - 10^{\circ})}$$

$$b = \frac{(1 - 0.816) + 0.1306 (1 - 0.816)}{(1 + 0.816) - 0.1306 (1 - 0.816)}$$

•

lable:17.	PARAMETRIC	PUMP RUN	NO 2	
NO OF CYCLES	INITIAL READING	FINAL READING	NET .	< Y _T 7 Y _O
Т1	0.040	0.047	0.007	0.00247
Т2	0.031	0.592	0.561	0.19858
Т3	0.037	. 1.365	1.328	0.47000
Т4	0.036	1.974	1.938	0.68600
Т5	0.053	2.415	2.362	0.83600
Т6	0.031	2.754	2.723	0.96390
Т7	0.039	2.822	2.783	0.98510
T 8	0.047	3.036	2.989	1.0580
Т9	0.023	2.973	2.950	1.0440
·T10	0.042	3.289	3.247	1.1493
T11	0.033	3.140	3.107	1.0998
T12	0.044	3.378	3.334	1.1801
T13	0.035	3.340	3.305	1.1699
T14	0.025	3.313	3.288	1.1639

Table: 18GLUCOSE + H20

PARAMETRIC PUMP RUN NO 2

NO OF CYCLES N	INITIAL READING	FINAL READING	NET	< Y _B >,/ Y _O
B1	0.039	2.155	2.116	0.749
B2	0.045	1.667	1.622	0.5741
B3	0.052	1.109	1.057	0.3740
B4	0.044	0.845	0.801	0.2835
B 5	0.062	0.671	0.609	0.21557
Вб	0.040	0.536	0.496	0.17557
B7	0.044	0.459	0.415	0.14690
B8	0.042	0.414	0.372	0.13168
B 9	0.046	0.375	0.329	0.11646
B1O	0.041	0.369	0.328	0.11610
B11	0.052	0.358	0.306	0.10831
B12	0.041	0.310	0.269	0.09522
B1 3	0.035	0.332	0.297	0.10513
B14	0.045	0.330	0.285	0.10100
B15	0.046	0.319	0.273	0.09664

Slope =
$$\alpha = -\frac{\log 0.60 - \log 0.078}{10 - 2}$$

 $\alpha = -0.1107$
 $10^{\alpha} = 0.775$

¢2	=	Dead	volume	of	bottom	reservoir		5.2	
			Displa	acei	ment		citerada	40.2	
		•	*					· ·	

$$b = \frac{(1 - 10) + C_2 (1 - 10)}{(1 + 10) - C_2 (1 - 10)}$$

$$b = \frac{(1 - 0.775) + 0.129 (1 - 0.775)}{(1 + 0.775) - 0.129 (1 - 0.775)}$$

$$b = 0.146$$

(62)

Table:19.	GLUCOSE PARAMETRIC	+ H ₂ O PUMP RUN NO.	3.	
NO. OF CYCLES	INITIAL READING	FINAL READING	NET	<y th="" y="" yo<=""></y>
un une une de la construction de la The second de la construction	0.040	0.047	0.007	0.0248
T 2	0.031	0.592	0.561	0.1985
Ψ3	0.037	1.396	1.359	0.481
Т4	0.036	1.974	1.938	0.685
Т5	0.053	2.415	2.362	0.836
т6	0:031	2.754	2.723	0.915
T 7	0.039	2.822	2.783	0.987
TS	• 0.047	3.036	2,989	1.059
Т9	0.023	2.973	2.950	.1.043
T10	0.042	3.289	3.247	1.150
T11	0.033	3.140	3.107	1.100
T12	0.044	3.378	3.334	1.179
T13	0.035	3.340	3.305	1.170
T14	0.025	3.313	3.288	1.163
T15	0.032	3.281	3.249	1.150
FEED	0.040	2.865	2.825	1

Table:20.	GLUCOSE + H ₂ O PARAMETRIC PUMP RUN NO 3					
NO. OF CYCLES N	INITIAL READING	FINAL READING	NET	<y>/Y BN /Y</y>		
	0.070	0 155	0 116	0 749		
B1	0.039	1 667	1.622	0.574		
DZ HZ	0.052	1,109	1.057	0.374		
BA	0.044	0.845	0.801	0.284		
B5	0.062	0.671	0.609	0.2158		
TIG	0.040	0,536	0.496	0.1758		
В7	0.044	0.459	0.475	0.147		
B8	0:042	0.414	0.372	0.1317		
В9	0.046	0.375	0.329	0.1164		
B10	0.041	0.369	0.328	0.1160		
B11	0.052	0.358	0:306	0.1083		
B12	0.041	0.310	0.269	0.0952		
B13	0.035	0.332	0.297	0.1050		
B14	0.045	0,330	0.285	0.1019		
B15	0.046	0.319	0,273	0.0965		
FEED	0.040	2,865	2.825	1.00		

(64)

Slope =
$$\alpha' = -\frac{\log 0.66 - \log 0.032}{17 - 2}$$

 $\alpha' = -0.0876$
 $10' = 0.818$

 $C_2 = \frac{\text{Dead volume of bottom reservoir}}{\text{Volume of displacement}} = 0.131$

$$b = \frac{(1 - 10^{\alpha}) + C_2 (1 - 10^{\alpha})}{(1 + 10^{\alpha}) - C_2 (1 - 10^{\alpha})}$$

$$b = \frac{(1 - 0.818) + 0.131 (1 - 0.818)}{(1 + 0.818) - 0.131 (1 - 0.818)}$$

b = 0.1086
VALUE 191 COMPARISON OF FRUCTOSE GLUCOSE 'b' VALUE PARAMETRIC FROM PUMP $\phi_{\mathcal{B}} = 0.02$ 0.095 0.116 $Tc = 293^{ok}$ $T_{\rm H} = 333^{\rm ok}$ 101 VALUE 0.0594 0.0774 ·FROM ADSORPTION $Tc = 293^{olc}$ $Tc = 293^{ok}$ ISOTHERM $T_{\rm H} = 313^{\rm Ok}$ $T_{\rm H} = 313^{\rm ok}$ 0.1055 Tc= 293 0.114 Tc=293^{ok} $T_{\rm H} = 333^{\rm ok}$ T_H =333^{0k}

DISCUSSION ON RESULT

(A) GLUCOSE +H₂O SYSTEM:

By observing the figure (12) (13) and(14)we can conclude that after ten cycles the separation per cyéle $\frac{Y_B}{Y_O} / n$ decreases. From the graph we can say after some cycles the bottom concentration might become constant . Regarding the top product concentra ation if we observe the concentration is less than feed concentration upto few cycles i.e. $\frac{Y_T}{Y_O} < 1$. The reason for this can be this that initially active ated carbon had not adsorbed to its maximum capacity of adsorption . After couple of cycles when activated carbon adsorbs its maximum amount then we see the concentration of top product increasing.

The concentration of top product does not increase too much as we take out large amount of top product and as to have material balanced . get very good separation for example looking into the graph FIGURE NO. 12 the separation i.e. $\frac{Y_B}{Y_C}$ at eighteenth cycle is 0.062, which in FIGURE NU. 13 and 14 is around 0.09. in first run which was plotted in FIGURE NO. 12 we took 0.8c.c of bottom product and 15.2c.c top product while in other two experiments of Glucose run, volume of bottom product was around 3c.c and top product 13c.c So in this way we can say lesser the $\phi_{
m B}$ taken, more separation we get and hence greater the (b) value. There might be some good separation if we take higher concentration of feed and difference in cold and hot half cycle temperature more. The (b) value got from adsorbent isotherm and fr-

om parametric pump resembles very closely. From adsorbent isotherm (b) value of glucose was 0.114 and

(69)

from parametric pump-ing it came out 0.116

(B) FRUCTOSE +
$$H_2O$$
 SYSTEM

The behaviour of experimental result of fructose and water system resembles very closely.to glucose. Two parametric pump runs were done. In one total bottom product was about 3c.c and in other 0.8c.c of bottom product was taken. Uther parameters were same as glucose. Here also we observe that lesser ' the $\Phi_{\mathbf{B}}$ we choose we get better separation. For example in FIGURE 11 the separation is 0.068 in 18thcycle but in FIGURE 10 the separation is around 0.2 the value of $\phi_{\rm B}$ in FI-GURE 11 is $\frac{0.8}{40} = 0.02$ and in FIGURE 10 $\phi_{B} = \frac{4}{40} = 0.1$. This experiment shows that the separation in Fructose + H₂O System is slightly less than Glucose+ H₂O System. In Glucose + Water System we had got maximum separation of 0.062 in eighteenth cycle at

 $\Phi_{\rm B} = 0.02$ while in Fructose + Water System 10.068 So therefore the ,b, value of Ffurtose + WAter System is also slightly less than ,b, value of Glucose+ Water System. According to this experiment the separation in Fructose+ Water System can be more after eighteenth cycle i.e. less than 0.068. The behaviour of top product concentration is the same i.e. initially less than feed then gradually when system attains equilibrium it started rising and maintain slightly higher concentration than feed. CONCLUSION

It is a great success in the separation of Glucose and Water System and Fructose and water System, by using parametric pumping. The adsorbent used for this came out to be of good properties for separation by parametric pumping.

By observing the graph of separation i.e. $\frac{Y_B}{Y_O}$ vs Number of cycles and $\frac{Y_T}{Y_O}$ vs Number of cycles we can predict that after twenty cycles the separation will be more than 0.06 in the bottom product in both glucose and fructose system.

The system can be of great advantageous to industries specially pharmaceutical industries for separating glucose and fructose from the water solution and can economically extract maximum amount of glucose and fructose from their waste solution and make their

(72)

extraction more economical.

Possibilities for separating glucose and fructosè from ternary mixture (glucose * fructose + water) as the b value of glucose + Water system and b value of fructose + water system are very close, so according to chen's theory there is very small possibility of separation from ternery mixture. there might be pos sibility of possibility of separation of glucose and fructose from ternery mixture if we use two different type of adsorbents. If the difference between b value of glucose + water system with one adsorbent ab value of fructose + water system with other synd stem, is more, than we might have good chances of success in separating glucose and fructose from ternery mixture which will be of great success, although it need more more research in this field.

Experiment Of Parametric Pumping For Binary Solution OF KCl.

This experiment was carried out more or less the same way as glucose and fructose parametric run. In this case we used. Ion Retardation Resin (AG11A8) manufactured by Bio-Rad. Cold temperature of 15^c and hot temperature of 65° was selected. This temperature was selected on the basis of the previous experiences. The feed solution of 5% KCl solution by weight was used. The resin was filled into column very carefully as there is too much chance of air bubbles, and it is very hard to remove them afterwards. After filling up column with resin and KCl solution, flushed the lines with feed solution and filled the top and bottom reservoir syringes upto 5c.c and 25c.c respectively. This was kept for overnight for getting better equilibrium.

1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -

The semi continuous run started with hot half cycle at 65^{c} and the displacement of reservoir was kept 20c.c in 20 minutes. $\phi_{\rm g} \leq 0.050, \phi \approx .450$ total feed of 0f 10c.c was used. The feed was fed at cold half cycle at 15^{c} . The top and bottom products were collected about 9.1c.c and 0.9c.c and very accurately diluted to 25c.c and concentration obtained by using bridge co nductivity meter.

The results are noted in table 21, 22 and plotted in graph FIGURE NO. 16.

(76)

Table:21. POTASSIUM CHLORIDE PARAMETRIC PUMP RUN NO1

	1			
Cycle No.	Reading Of Bottom Product Con	Concentration Of Rottom Product Gram Mole / 100c.c	< ⊼ [₽] , ⊼ ⁰	
1	42	2.375 $\times 10^{-3} \times 27.8 = 0.0658$	0.984	
2	49	$1.098 \times 10^{-3} \times 27.8 = 0.055$	10.821	
3	55	$1.75 \times 10^{-3} \times 27.8 = 0.0486$	0.726	
	57	$1.67 \times 10^{-3} \times 27,8 = 0.0464$	0.692	
5	63	$1.48 \times 10^{-3} \times 27.8 = 0.0411$	0.614	
6	67	$1.375 \times 10^{-3} \times 27.8 = 0.0382$	0.570	
7	70	$1.3 \times 10^{-3} \times 27.8 = 0.0361$	0.539	
8	69	1.325x10 x 27.8= 0.0367	00.548	
9	41	1.28 $x10^{-3}x27.8=0.356$	0.532	
10	73	$1.25 \times 10^{-3} \times 27.8 = 0.0348$	0.519	
11	76	$1.18 \times 10^{-3} \times 27.8 = 0.0328$	0.489	
12	80	$1.125 \times 10^{-3} \times 27.8 = 0.0313$	0.467	

Table:21.POTASSIUM CHLORIDEPARAMETRIC PUMP RUN NO1

•

Cycle No.	Reading(Bottom Product Co	Of Concentration Of Bottom Product on. Gram Mole/100c.c	< Y > Y 0	
		- 3	nder von synder i Skonstfronder var glev ster om som som som som som som som som som	
13	83	1.075 x10 °x 27.8=0.0298	0.445	
14	95	9.3 x 10^{-4} x 27.8 = 0.0258	0.386	
15	92	9.6 x 10^{-4} x 27.8 = 0.0267	0.398	
1.6	96	9.2 x 10^{-4} x 27.8 = 0.0256	0.382	
17	100	8.8 x 10^{-4} x 27.8 = 0.0245	0.366	
18	103	8.2 x 10^{-4} x 27.8 =0.0228	0.341	
19	105	8.4 x 10^{-4} x 27.8 = 0.0235	0.349	
20	125	$6.9 \times 10^{-4} \times 27.8 = 0.0192$	0.287	
21	123	7.1 x 10^{-4} x 27.8 = 0.0197	0.295	
22	134	$6.21 \times 10^{-4} \times 27.8 = 0.01725$	0.257	
23	151	5.55x 10^{-4} x 27.8 =0.01672	0.250	
Feed	79	0.067		

Table:22. POTASSIUM CHLORIDE PARAMETRIC PUMP RUN NO 1

Cycle No.	Reading Of t Product	op Concentration Of Bottom Product Con. Gram Mole /100c.c	≺YT Yo
Аланышалышалын төрсө 1	13. 6	$1.4 \times 10^{-2} \times 2.8 = 0.0392$	0.585
2	11.5/	$2.1x \ 10^{-2} x 2.8 = 0.0588$	0.878
3	11.4	2.2x 10 $^{-2}$ x2.8= 0.0616	0.920
4	11.3	$2.25 \times 10^{-2} \times 2.8 = 0.063$	0.940
5 .	11.1	$2.3 \times 10^{-2} \times 2.8 = 0.0644$	0.963
6	11.0	$2.3 \times 10^{-2} \times 2.8 = 0.0644$	0.963
7	10.9	$2.35 \times 10^{-2} \times 2.8^{-} = 0.0658$	0.982
8	10.7	$2.3 \times 10^{-2} \times 2.8 = 0.0644$	0.961
9	11.0	$2.3 \times 10^{-2} \times 2.8 = 0.0644$	0.961
10	10.9	$2.35 \times 10^{-2} \times 2.8 = 0.0658$	0.982
11	10.8	$2.4 \times 10^{-2} \times 2.8 = 0.0672$	1.001
12	10.9	$2.35 \times 10^{-2} \times 2.8 = 0.0658$	0,982

(80)

POTASSIUM CHLORIDE PARAMETRIC PUMP RUN NO 1

Cycle No.	Reading Of toptom Product Con	Concentration Of Bottom Product Gram Mole /100c.c	<yyyo< th=""></yyyo<>
13	11	$2.3x \ 10^{-2}x^{2.8} = 0.0644$	0.961
14	10.55	2.6x 10^{-2} x2.8 = 0.0728	1.088
15	10.8	$2.4 \times 10^{-2} \times 2.8 = 0.0672$	1.001
16	10.55	$2.6x \ 10^{-2}x^2.8 = 0.0728$	1.088
17	10.65	$2.5x \ 10^{-2}x^{2.8} = 0.070$	1.045
18	10.5	2.6x 10^{-2} x2.8 = 0.0728	1.088
19	10.6	$2.5x \ 10^{-2}x^2.8 = 0.070$	1.045
20	10.7	$2.45x \ 10^{-2}x^{2.8} = 0.0658$	0.982
21	10.55	2.6x 10^{-2} x2.8 = 0.0728	1.088
22	10.6	$2.5x \ 10^{-2}x^2.8 = 0.070$	1.045
23	10.5	$2.6 \times 10^{-2} 2.8 = 0.0728$	1.088
FEED	79.0	0.067	1.00

(82)

Slope =
$$\propto = -\frac{\log 0.930 - \log 0.245}{22 - 1}$$

 $\propto = -\frac{\overline{1.968 - 1.389}}{21} = -0.0276$
 $10 = 0.92$

 $C_{2} = \frac{\text{Dead vol. of bottom reservoir}}{\text{Displacement}} = \frac{5.0}{20} = 0.25$ b = $\frac{(1 - 10^{\circ}) + C_{2}(1 - 10^{\circ})}{(1 + 10^{\circ}) - C_{2}(1 - 10^{\circ})}$

$$b = \frac{(1 - 0.92) + 0.25 (1 - 0.92)}{(1 + 0.92) - 0.25 (1 - 0.92)}$$

<u>Discussion On Result - Of KCl , Separation From</u> <u>KCl + H₀O System</u>

By observing the figure 16 we can see that the separation in this case is slower than glucose and fructose system. We can get better separation than 0.2 after twenty five cycles. There are far more chances that after infinite cycles the concentration of KCl in bottom product becomes considerably low. b value of this system is calculated by Chen's method and comes out to be 0.0516. \bigoplus_R for this system was chosen equals less than $\frac{4}{20} = 0.05$. Bottom product was less than 1c.c and displacement volume was 20c.c. If $c_{\rm B}$ is take ken still less i.e. if we take displacement volume th-. ere might be better separation and b value might increase.

The behavior of top product concentration again

(83)

very much resembles to that of glucose and fructose system. Initially top product concentration decreases and gradually becomes more and more until it becomes slightly more than feed concentration. At this time the system has acquired its complete equilibrium, and there is no more accumulation of salt in the column. So whatever KCl fed in, comes out of the system in bottom and top product. As bottom product has low concentration so obviously top product must have more than feed concentration.

This might be very helpful separation process in industries where it needed to reduce the concentration of KCl in the solution which might be required by certain processes. as KCl is present in sea water. It might be also helpful in cleaning waste water treatment and disposal.

(84)

Parametric pumping has created a vast field for research and development in separation science and Engineering. This can be proved as most economical method for the separation of various solutes using different adsorbents. The separation can be attained in some cases to considerably large factor. The time has come now that this process might be utilized by industries and great research can be done on this line.

References

	(1)	Aris, R. Ind. Engg. Chem. Fundamental 8 603 (1969)				
	(2)	Chen, H.T.; et, al. AIChE J. <u>18</u> , 2, 356 (1972)				
	(3)	Chen, H. T. and Hill, F. B., Separation Science <u>6</u> (3) 411, 1971.				
	(4)	Chen, H. T. and Hill, F. B., Atomic Energy Comm-				
1) 	ision Report BNL 13976 September 1969.				
	·(5)	Dubrunfaut, A.P.C.R Acad. Science, Paris <u>69</u>				
		1366 (1864),<u>42</u>, 901 (1856)				
	(6)	Gyani, B. P., J. Indian Chem. Soc., <u>21</u> , 79 (1944)				
	(7)	Harding, T.S., J. Am. Chem. Soc. <u>44</u> 1765, (1922)				
	(8)	Harding, T. S., Sugar Chicago 25,406, (1923)				
	(9)	Hatt, H. H., and Triffett, C. K., J. App. Chem.				
		<u>14</u> 195 (1964)				
	(10)	Jones, J. K. N., and Wall, R. A., Canad. J. Tec-				
		hnol. 29 243 (1951)				
	(11)	Kniaseff, Valsily, J. Phy. Chem. <u>36</u> 1191 (1932)				
	(12)	Langmuir, I., J. Am. Chem. Soc. <u>38</u> 221, (1916)				

(13).	Langmuir, I., J. Am. Chem. Soc. <u>48</u> 1361, (1918)					
(14)	Lefre, L.J., U.S.P. 3.044, 904					
(15)	Movery, D.F., J.Am. Chem. Soc. <u>73</u> 5049, (1951)					
(16)	Pigford, R.L., Baker, B. and Blum, D.E., Ind.Eng Chem., Fundam. <u>8</u> 144 (1969)					
(17)	Swead, N,H,, Ph.D. Dissertation, Princeton Univ.					
	(1969)					
(18)	Smith, F., and Priesterbach, D.R., J. Am. Chem.					
	Soc. <u>76</u> 4191 (1954)					
(19)	Tink, R.R., and Neish, A.C., Canad. J. Technol.,					
	<u>29</u> , 243, (1951)					
(20) Whistler R.L. Durso, D.F. J. Am. Chem. Soc. 72,						
	677, (1968)					
(21) Wilhelm, R.H, and Sweed, N.H., Science 159,522,						
	(1968)					
(22)	Wilhelm, R.H., Rice, A.W,, Rolke, R.W. and Sweed,					
	N.H.; Ind. Eng. Chem., Fundam. 7, 337, (1968)					

(87)

(23)	Wolfrom,	M.L.,	J.Am.	Chem. S	oc. <u>72</u>	4778 (1950)
(24)	Wolfrom,	М.Ц.,	J.A.U.	s., <u>68</u>	1449	(1946)
(25)	Chen; H.I	., and	Jaferi	, J.A.	Unpubl:	ished work