Design of multipass fractionating trays

Paul W. Becker
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses
Part of the Chemical Engineering Commons

Recommended Citation

Becker, Paul W., "Design of multipass fractionating trays" (1974). Theses. 2145.
https://digitalcommons.njit.edu/theses/2145

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

DESIGN OF MULTIPASS

FRACTIONATING TRAYS

BY

PAUL W. BECKER

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF
MASTER OF SCIENCE
WITH A MAJOR IN
CHEMICAL ENGINEERING
AT
NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey
May, 1974

ABSTRACT

Multipass fractionating trays are vapor-liquid contacting devices with high liquid handling capabilities which can be economically used in large fractionating towers. However, process design engineers in the chemical and petroleum industries seem to have an aversion to specifying multipass trays for their tower designs. This thesis presents the case for using multipass trays as well as methods for their design.

Because multipass trays are not symmetrical, as one and two pass trays are, the liquid and vapor need not split equally between the three or four passes. Equations are developed which enable the vapor and liquid flowrate for each pass to be determined. A computer program is presented which is capable of either rating existing multipass trays or designing multipass trays for new services. Also, techniques for the optimum design of multipass trays are suggested.

The present energy shortage has provided strong incentive to build larger refineries, which means larger capacity fractionation towers are required. This thesis demonstrates how the use of multipass trays can reduce investment costs for these large towers.

The use of the tools presented in this thesis enable process engineers to design multipass trays without relying on the proprietary techniques and programs of others, not readily available to them. It is hoped that this will enable multipass trays to be specified whenever they are economically justified.

```
APPROVAL OF THESIS DESIGN OF MULTIPASS
FRACTIONATING TRAYS
BY
PAUL W. BECKER FOR
DEPARTMENT OF CHEMICAL ENGINEERING
NEWARK COLLEGE OF ENGINEERING
```

BY

FACULTY COMMITTEE

APPROVED: \qquad
\qquad
\qquad

NEWARK, NEW JERSEY
MAY, 1974

ACKNOWLEDGEMENTS

The author wishes to acknowledge the guidance provided by his advisor, Dr. Ralph Cecchetti, an adjunct professor at Newark College of Engineering. Thanks are also due to Mr. Richard K. Neeld, at Esso Research and Engineering Company, whose expertise in the area of fractionating tower internal design has been of great value. The author would also like to acknowledge the assistance of Mr. Hal Margo, of Exxon Chemical Company, in developing convergence techniques used in the computer program, and of the author's contacts at the major American tray vendors for the information they have provided. Finally, sincerest thanks are due to the author's wife, Judith, and son, Brian, for their encouragement and patience during the course of his studies, and to Mrs. Gale Salit for her efficient typing of this thesis.

The author wishes to dedicate this thesis to the late Dr. Erwin Amick, of Columbia University, whose instruction inspired the author's interest in the area of fractionation.

CHAPTER PAGE
I INTRODUCTION 1
What is a Multipass Tray? 1
Advantages of Multipass Tray Design. 2
Why Multipass Trays are Important. 5
What Has Been Done So Far? 6
II METHODS OF DESIGNING MULTIPASS TRAYS 9
Background: One and Two Pass Trays 9
Three and Four Pass Trays 12
III EQUATIONS FOR THREE AND FOUR PASS TRAYS 16
Equations For Determining Liquid and Vapor Splits 16
Derivation of Critical Pressure Drop Equations 20
Proofs That Shared Downcomers Have Equal Backups 22
IV COMPUTER PROGRAM FOR RATING AND DESIGNING MULTIPASS 25 TRAYS
Equations Used to Rate Designs 25
Convergence Techniques 30
How to Use the Program 33
Design Logic 34
Use of the Program to Improve Initial Design 40
V SAMPLE PROBLEMS 42
Discussion of Sample Problem Output 67
VI RECOMMENDATIONS FOR THE OPTIMUM DESIGN OF MULTIPASS 68 TRAYS
VII CONCLUSIONS 74
APPENDIX 76
REFERENCES 91
VITA 92
NOMENCLATURE 93

LIST OF FIGURES

1
Liquid and Vapor Flow Patterns on Trays
Photograph of a Four Pass Tray

One Pass Tray Flow Patterns and Pressure Drops 10

Two Pass Tray Flow Patterns and Pressure Drops 11

Design of Center and Off-Center Downcomers With
and Without Vapor Crossover

Three Pass Tray Flow Patterns and Pressure Drops
17
19
Three Pass Tray Geometry 36
Four Pass Tray Geometry
Methods of Providing for Equal Downcomer Lengths 3769

CHAPTER I

INTRODUCTION

What is a Multipass Tray?
Fractionating columns in the chemical and petroleum industries generally utilize perforated metal trays as the contacting devices. These sieve trays facilitate the countercurrent contacting of vapor and liquid. Liquid flows across the tray and contacts the vapor which is bubbling through the perforations. The liquid passes downward from tray to tray via downcomers.

The most common and simplest type of crossflow tray is the single pass tray. On a single pass tray, the liquid travels in only one path, and there is only one contacting or bubble area on each tray. There is also only one downcomer leaving each tray.

Another common type of crossflow tray is the two pass tray. On this type of tray, there are two different paths in which liquid may flow, as well as two distinct bubble areas. Half of the trays have a single center downcomer while every other tray has two outboard downcomers .

Multipass trays, while not used very often, have distinct ad. vantages over single or two pass trays. Multipass trays generally have three or four passes, although five pass trays have at least been considered (1). Three and four pass trays have three or four different liquid paths and distinct bubble areas on each tray. A threepass tray
has two downcomers on each tray: one outboard and one off-center. Half of the four pass trays have two downcomers - both off-center. Every other tray has three downcomers: two outboard and one center.

The liquid and vapor flow patterns on all four types of trays are depicted in Figure 1.

Advantages of Multipass Tray Design

The use of multipass trays becomes economically attractive for large towers. A tower's vapor handling capacity increases proportionately to the tower cross sectional area. Therefore, vapor capacity is proportional to the square of the diameter. However, a tower's liquid handling capacity is proportional to the weir length over which the liquid flows on each tray. Therefore, for a one pass tray, the liquid handling capacity is linearly proportional to the tower diameter.

By increasing the number of passes, the weir length per tray is increased. Therefore, a two pass tray will have almost twice the liquid handling capacity of a one pass tray; a three pass tray will have almost three times the liquid handing capacity; and so on. Therefore, using multiple passes helps the liquid capacity increase as rapidly as the vapor capacity.

For example, a 20 foot diameter tower has roughly four times the vapor capacity of a 10 foot diameter tower. However, if both towers are single pass, the 20 foot diameter tower has only twice the liquid capacity. If the 20 foot tower is made two pass, then it will be able

Figure 1
LIQUID AND VAPOR FLOW PATTERNS ON TRAYS

Three Pass

to handle four times the liquid rate, and four times the vapor rate. If the 10 foot tower was already two pass, then the 20 foot tower would have to be four pass in order to handle four times the vapor and liquid. In such a case, if multipass trays are not used, tower diameter would have to be increased to handle the liquid loading, although it would not be necessary to handle the vapor loading.

Another reason for going to multipass trays is that several capacity correlations indicate that vapor capacity is also dependent on the weir length available for liquid flow (7). The explanation for this is that with a larger weir length, the froth height on a tray is lower. This permits more space for vapor disengaging above the tray, and therefore increased vapor capacity. Because increasing the number of liquid passes decreases the liquid height on each tray, it also decreases the tray pressure drop. This, in turn, decreases the liquid backup in the downcomer. Therefore, multipass trays also provide for designs with lower tray spacings.

The one disadvantage to a multipass tray is that it has a shorter flowpath in which the liquid travels on each tray. There is some evidence that shorter flowpaths reduce tray efficiency (4). But most tray efficiency correlations do not take liquid flowpath into account (8), and it is doubtful that this has much of an effect on large diameter towers, which have large flowpath lengths regardless of the number of liquid passes.

Why Multipass Trays Are Important
The previous section has demonstrated how multipass trays are economically attractive for large towers. With the present energy shortage and the world need for economic expansion of petroleum capacity, there is a strong incentive to build larger and larger refineries. Since single train plants are the most economical, larger capacity fractionating towers are required. For example, atmospheric crude distillation towers in large refineries can be over 30 feet in diameter. With the use of multipass trays, these towers can be designed with smaller diameters, and, therefore, at lower cost.

Another attractive use of multipass trays is in superfractionators. These are towers used to separate close boiling mixtures into high purity components. Some examples are propane/propylene splitters and ethane/ethylene splitters. These difficult separations require a high reflux rate, or liquid loading, and a large number of trays, and, therefore, a larger diameter and a high tower height. In fact, depending on the plant's location and local height restrictions (e.g. if it is - near an airport), the tower may have to be split into two shells. Because, as mentioned in the previous section, multipass trays can decrease tower height and diameter, tower investment for superfractionators can be reduced.

Another reason the use of multipass trays is economically attractive is that it can eliminate the need for special, high cost fractionating devices in some cases. Proprietary devices have been
developed for use especially in heavily liquid loaded services, such as high pressure light ends towers and absorbers and strippers. These devices are marketed at premium prices because they are patented. In some cases, conventional sieve trays designed for three or four liquid passes may have liquid handiing capabilities comparable to such proprietary devices. Because the sieve tray is non-proprietary, no premiums need be paid for patented technology.

What Has Been Done So Far?

It has been noted that, "There seems to be an aversion in the industry to using multipass trays (4).". This is probably because engineers do not know how to design them. The main problem is that unlike one or two pass trays, multipass trays are not absolutely symmetrical. This makes engineers worry about the hydraulic performance of multipass trays, since the liquid and vapor will not necessarily split into three or four equal parts to travel through each of the passes. Therefore, the design of multipass trays requires a little more work (which may be the real reason engineers shy away from such designs).

Actually, engineers who do not work for a tray vendor have no instructional manual in the design of multipass trays. An investigation of the literature has shown no articles or texts which show how to design multipass trays, although Jamison (4) does make some suggestions, and some tray vendors' manuals do give methods of setting up designs (1). However, most tray vendors consider their detailed design techniques
proprietary, and, therefore, do not make them publicly available.

The main drawback to engineers designing multipass trays is that there is no publicly available program for either rating or designing multipass trays. Tray vendors do have their own proprietary programs which utilize their own special design techniques. But there are various methods of designing multipass trays, and, therefore, each vendor's program uses their own technique.

The purpose of this thesis is to present the various methods of designing three and four pass sieve trays, with the appropriate design equations required. In addition, a computer program is presented for the rating of existing multipass trays and for the design of new multipass trays. This program utilizes publicly available correlations for capacity and pressure drop. These equations can be replaced with the user's own proprietary correlations if he wishes. The remainder of this thesis describes the development of these design methods and the program.

A photograph of a four pass tray is shown in Figure 2.

Although the methodology presented in this thesis can be applied to single and double pass trays, their design is not elaborated on in this work. The design of such trays is common knowledge to most process engineers.

FIGURE 2

Photograph of Four Pass Tray
Courtesy of F.W. Glitsch \& Sons, Inc.

METHODS OF DESIGNING MULTIPASS TRAYS

Background: One and Two Pass Trays

The design of one and two pass trays for fractionating columns is relatively straightforward. Nearly every chemical process design engineer in the petroleum and chemical industries has done at least one such design. Figures 3 and 4 depict the liquid and vapor flow patterns and pressure drop equations for one and two pass trays, respectively.

On a single pass tray, there is only one path or bubble area for the 1 iquid and the vapor to travel from tray to tray. The vapor rate on the single pass obviously equals the total vapor rate, and the liquid rate on the single tray pass obviously equals the total liquid rate.

On a two pass tray, both the vapor and liquid have a choice of two paths to take in traveling from tray to tray. But as can be seen in Figure 4, a two pass tray is completely symmetrical. The vapor and liquid have no preference as to which path to travel and consequently split equally into the two paths.

The only way the fluids will not split equally is if something such as improper shop fabrication upsets the symmetry of the trays. For example, if there are more perforations on one side of the tray than the other, the vapor will preferentially travel through this side. Since the total tray pressure drop across each side of the tray must be equal, the liquid will preferentially travel across the other side. However,

Figure 3
ONE-PASS TRAY FLOW PATTERNS AND PRESSURE DROPS

Figure 4
TWO-PASS TRAY FLOW PATTERNS AND PRESSURE DROPS

because two pass trays are always designed symmetrically, an unequal split can only occur as a result of holes plugging or improper field construction or shop fabrication.

In determining the vapor and liquid splits on a two pass tray, the four unknowns $\left(V_{A}, V_{B}, L_{A}, L_{B}\right)$ are determined by the following four simple equations:
(1) $\quad V_{A}=V_{B}$
(2) $\quad V_{A}+V_{B}=V_{\text {total }}$
(3) $L_{A}=L_{B}$
(4) $L_{A}+L_{B}=L_{\text {total }}$

Where $V X$ is the vapor rate in cubic feet per second for pass $X, L X$ is the liquid rate in gallons per minute for pass X. The subscript total refers to rates for the entire tray. Knowing Vtotal and Lotal, it is obvious that the flowrate through any given pass is equal to one-half the total flowrate.

Three and Four Pass Trays

The design of three and four pass trays, however, is not as straightforward. Although multipass trays are not symmetrical, there are enough equations to solve for the six unknowns in a three pass design, and the eight unknowns in a four pass design. These equations are presented in the next chapter.

There are several methods of setting up multipass tray designs. Because the liquid and vapor do not necessarily have symmetrical paths to choose from, the liquid and vapor do not split equally. That is,
unless great care is taken in the design, the liquid and vapor flowrate for each pass of a three or four pass tray is not equal to one-third or one-fourth the total flowrate. In order to prevent possible vapor maldis. tribution from propogating itself, trays are of ten designed with passageways for vapor to travel from one pass to another.

The most common method of providing for such vapor crossover is to design the inboard or off-center downcomers (those which are not segmental) as envelope or box downcomers. This is depicted in Figure 5. These downcomers are of almost rectangular shape and are fabricated as two separate downcomers. A space is left between them through which vapor can cross over from one pass to another. If no provision for vapor crossover is desired, the downcomer extends across the entire tray with no separation.

Another method of providing for vapor crossover is to place a horizontal pipe or duct running across the downcomer through which vapor can travel. Jamison (4) has suggested this technique.

Through the use of vapor crossover, the pressure above any tray is equalized. Therefore, trays designed with vapor crossover have a different set of equations than trays designed without vapor crossover. Therefore, four sets of equations for determining liquid and vapor splits are presented in the next chapter: three and four pass trays, with and without vapor crossover.

There are two basic methods of laying out the plan view of three

Figure 5
DESIGN OF CENTER AND OFF-CENTER DOWNCOMERS WITH AND WITHOUT VAPOR CROSSOVER

Without Vapor Crossover

and four pass trays. The first method consists of designing for equal liquid flow path lengths. That is, equal distances the liquid must travel in its course from downcomer to downcomer. The other method is to design for equal bubbling areas. That is, the perforated area in which vapor-liquid contacting takes place should be the same for each pass. Each of these methods has its own advantages and disadvantages. Neither is generally accepted as the "proper" method because some tray vendors design for equal flowpath length, while others design for equal bubbling areas.

Some vendors probably prefer the equal flowpath length method because it is easy to fabricate. All tray panels can be made of equal widths. Some also claim that since tray efficiency is dependent on flowpath length, such a design provides for equal tray efficiencies. The equal bubble area method is preferred by some because they can then attempt to design for equal liquid and vapor flowrates for each pass. Chapter VI of this thesis describes how the equal bubble area method can be used in the optimum design of multipass trays.

EQUATIONS FOR THREE AND FOUR PASS TRAYS

The liquid and vapor splits for a multipass tray are determined by various pressure drop equations. There are enough equations to solve for each of the unknown liquid and vapor flowrates on a multipass tray. Because vapor crossover affects the tray pressure drop relationships, a separate but related set of equations are necessary for tray designs with vapor crossover. The first section of this chapter presents the pressure drop equations for the four types of multipass tray designs (three and four pass, each with and without vapor crossover) which are necessary and sufficient to completely determine the liquid and vapor flowrates in each pass. The next section presents the derivation of the critical equations. Finally, it is shown that through the use of these equations, the calculated downcomer backup of a downcomer which is shared by two passes of a multipass tray, is indeed the same, regardless of which pass it is calculated for.

Equations For Determining Liquid and Vapor Splits

Three pass, no vapor crossover. The vapor and liquid flow patterns and pressure drops of a three pass tray are shown in Figure 6. The following six equations (A1 to A6) can be used to determine the three vapor and liquid rates, one for each pass. The first three equations determine the liquid split, and the last three equations determine the vapor split.

Figure 6
THREE-PASS TRAY FLOW PATTERNS AND PRESSURE DROPS

(A1) $L_{A}=L_{C}$
(A2) $\quad \mathrm{HI}_{\mathrm{C}}+\mathrm{HDA}_{\mathrm{C}}-\mathrm{HT}_{\mathrm{A}}=\mathrm{HI}_{B}+\mathrm{HDA}_{\mathrm{B}}-\mathrm{HT}_{B}$
(A3) $\mathrm{L}_{\mathrm{A}}+\mathrm{L}_{\mathrm{B}}+\mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\text {total }}$
(A4) $\quad V_{A}=V_{C}$
(A5) $\mathrm{HT}_{\mathrm{A}}+\mathrm{HT}_{\mathrm{C}}=2 \times \mathrm{HT}_{\mathrm{B}}$
(A6) $V_{A}+V_{B}+V_{C}=V_{\text {total }}$
Where HIX is the inlet head on pass X, HDAX is the head loss under the downcomer for pass X, and $H T_{X}$ is the total tray pressure drop on pass X.

Three pass with vapor crossover. If provision is made for vapor to crossover through the off-center downcomer, equations (A4) and (A5) above can be replaced with the two equations below (B4 and B5). Note that equation (B5) is merely a simplification of equation (A5) knowing (B4) is true.
(B4) $\quad \mathrm{HT}_{\mathrm{A}}=\mathrm{HT}_{\mathrm{B}}$
(B5) $H T_{B}=H T_{C} \quad\left(H T_{A}+H T_{C}=2 \times H T_{B}\right)$

Four pass, no vapor crossover. The vapor and liquid flow patterns and pressure drops for a four pass tray are shown in Figure 7. The following eight equations (Cl to C 8) can be used to determine the four liquid and vapor rates, one for each pass. The first four equations determine the liquid split, and the last four equations determine the vapor split.
(C1) $\mathrm{L}_{\mathrm{A}}=\mathrm{L}_{\mathrm{C}}$
(C2) $L_{B}=L_{D}$
(C3) $\mathrm{HI}_{\mathrm{C}}+\mathrm{HDAC}-\mathrm{HT}_{\mathrm{A}}=\mathrm{HI}_{\mathrm{D}}+\mathrm{HDAD}-\mathrm{HT}_{B}$

Figure 7

FOUR PASS TRAY FLOW PATTERNS AND PRESSURE DROPS

(C4) $\mathrm{L}_{\mathrm{A}}+\mathrm{L}_{\mathrm{B}}+\mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\text {total }}$
(C5) $V_{A}=V_{C}$
(C6) $V_{B}=V_{D}\left(2 \times V_{A}+2 \times V_{B}=V_{\text {total }}\right)$
(C7) $\mathrm{HT}_{\mathrm{A}}+\mathrm{HT}_{\mathrm{C}}=\mathrm{HT}_{\mathrm{B}}+\mathrm{HT}_{\mathrm{D}}$
(C8) $V_{A}+V_{B}+V_{C}+V_{D}=V_{\text {total }}$

Four pass with vapor crossover. If provision is made for vapor to crossover through the off-center and center downcomers, equations (D5) to (D8) below replace equations (C5) to (C8) above. Note that equation (D6) is merely a simplification of (C6) once (D5) is true. Also, note that (C6) is a simplification of (D6) once (C5) is true.
(D5) $\quad \mathrm{HT}_{\mathrm{A}}=\mathrm{HT}_{\mathrm{B}}$
(D6) $\quad \mathrm{HT}_{\mathrm{C}}=\mathrm{HT}_{\mathrm{D}}\left(\mathrm{HT}_{\mathrm{A}}+\mathrm{HT}_{\mathrm{C}}=\mathrm{HT}_{\mathrm{B}}+\mathrm{HT}_{\mathrm{D}}\right)$
(D7) $2 \times V_{A}+2 \times V_{B}=V_{\text {total }}$
(D8) $2 \times V_{C}+2 \times V_{D}=V_{\text {total }}$

Derivation of Critical Pressure Drop Equations

Upon studying Figures 6 and 7, most of the equations presented above become obvious. However, the four pressure drop equations which determine the critical vapor and liquid splits (A2, A5, C3, C7) are dexived below.

Equation (A2). The critical liquid split on a three pass tray occurs at the bottom of the off-center downcomer. The liquid will split such that the pressure drop it must overcome in each possible path is exactly equal. The pressure it must overcome is equal to the sum of the inlet head of liquid (HI) the head loss it undergoes in going through
the area under the downcomer (HDA), and the pressure level in the chamber it is entering. Therefore,
(E1) $\mathrm{HI}_{\mathrm{C}}+\mathrm{HDA}_{\mathrm{C}}+\mathrm{P}_{\mathrm{A}}=\mathrm{HI}_{\mathrm{B}}+\mathrm{HDA}_{\mathrm{B}}+\mathrm{P}_{\mathrm{B}}$
Where P_{X} is the pressure level above pass X.
The pressure level in the chamber (P_{A}, P_{B}) is equal to the pressure level below that chamber ($P^{\prime} A, P^{\prime} B$) minus the tray pressure drop through that pass $\left(H T_{A}, H T_{B}\right)$. That is
(E2) $P_{A}=P_{A}^{\prime}-H T_{A}$
(E3) $P_{B}=P_{B}^{\prime}-H_{B}$
Where $\mathrm{P}^{\prime} \mathrm{X}$ is the pressure level below pass X . Substituting equations (E2) and (E3) into equation (E1),
(E4) $\quad \mathrm{HI}_{C}+\mathrm{HDA}_{\mathrm{C}}+\mathrm{P}^{\prime} \mathrm{A}^{-H T_{A}}=\mathrm{HI}_{\dot{B}}+\mathrm{HDA}_{\mathrm{B}}+\mathrm{P}_{\mathrm{B}}-\mathrm{HT}_{B}$
Since the pressures $P^{\prime} A$ and $P^{\prime} B$ are for the same chamber,
(E5) $\quad \mathrm{P}^{\prime} \mathrm{A}=\mathrm{P}^{\prime} \mathrm{B}$
Therefore, substituting (E5) into (E4) gives equation (A2).
(A2) $H I_{C}+H D A C_{C}-\mathrm{HT}_{A}=H I_{B}+\mathrm{HDA}_{B}-\mathrm{HT}_{B}$
Equation (A5). For trays without vapor crossover, we must consider a pressure balance across two trays because for any one tray, one vapor flow chamber is completely closed off from the other chamber. The vapor from the chamber above pass C travels through the chamber above pass A before it returns to another chamber above another pass C. It cannot travel through the chamber above pass C, then through the chamber above pass B, because $V_{A}=V_{C}$ as defined by equation (A4). Therefore,
(F1) ${H T_{A}}+H T_{C}=H T_{B}+H T_{B}$
(A5) $\mathrm{HT}_{\mathrm{A}}+\mathrm{HT}_{\mathrm{C}}=2 \times \mathrm{HT}_{\mathrm{B}}$

Equation (C3). As with the three pass tray, the critical liquid split occurs at the bottom of the off-center downcomer, and the same type of pressure balance is required:
(G1) $\quad \mathrm{HI}_{\mathrm{C}}+\mathrm{HDA}_{\mathrm{C}}+\mathrm{P}_{\mathrm{A}}=\mathrm{HI}_{\mathrm{D}}+\mathrm{HDAD}+\mathrm{P}_{\mathrm{B}}$
(G2) $\quad \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}}-\mathrm{HT}_{\mathrm{A}}$
(G3) $P_{B}=P_{B}-H T_{B}$
(G4) $\mathrm{HI}_{\mathrm{C}}+\mathrm{HDAC}+\mathrm{P}_{\mathrm{A}}-\mathrm{HT}_{\mathrm{A}}=\mathrm{HI}_{\mathrm{D}}+\mathrm{HDAD}+\mathrm{P}_{\mathrm{B}}-\mathrm{HT}_{\mathrm{B}}$
(G5) $\quad P_{A}^{\prime}=P_{B}^{\prime}$
(C3) $\mathrm{HI}_{\mathrm{C}}+\mathrm{HDA}_{\mathrm{C}}-\mathrm{HT}_{A}=\mathrm{HI}_{\mathrm{D}}+\mathrm{HDAD}_{\mathrm{D}}-\mathrm{HT}_{B}$

Equation (C7). As with the three pass tray, consider the pressure balance across two trays. Vapor from the chambers above passes C and D, must pass through the chambers above passes A and B respectively. Therefore,
(C7) $\mathrm{HT}_{\mathrm{A}}+\mathrm{HT}_{\mathrm{C}}=\mathrm{HT}_{\mathrm{B}}+\mathrm{HT}_{\mathrm{D}}$

Proofs That Shared Downcomers Have Equal Backups.

On multipass trays, liquid from two different passes can flow into a single shared downcomer. For example, liquid from passes B and C on a three pass tray share a common downcomer, as does liquid from passes C and D on a four pass tray. Because the liquid in these downcomers blend and actually form one column of liquid, the downcomer backup (the static head equal to the height of this column) must be the same regardless of which pass it is calculated for. That is, for a three pass tray, H_{C} must
equal HD_{B}; and for a four pass tray, HD_{C} must equal HD_{D}. This is proven below.

Three pass. By definition, the backup in a downcomer is equal to the sum of the total tray pressure drop (HT), plus the head loss under the downcomer (HDA), plus the inlet head (HI). Therefore,
(H1) $\quad \mathrm{HDC}_{\mathrm{B}}=\mathrm{HT}_{\mathrm{B}}+\mathrm{HDA}_{\mathrm{B}}+\mathrm{HI}_{\mathrm{B}}$
(H2) $\quad H D C_{C}=H T_{C}+H D A C+H C_{C}$
Where $H D C_{X}$ is the downcomer filling in the downcomer from pass X. For $\mathrm{HDC}_{\mathrm{B}}$ to be equal to $H D C$, the following must hold,
(H3) $\quad \mathrm{HDC}_{B}-\mathrm{HDC}_{\mathrm{C}}=\mathrm{O}=\mathrm{HT}_{B}+\mathrm{HDA}_{B}+\mathrm{HI}_{B}-\mathrm{HT}_{\mathrm{C}}-\mathrm{HDAC}_{\mathrm{C}}-\mathrm{HI}_{\mathrm{C}}$
Now from previous equations,
(A5) ${H T_{A}}+\mathrm{HT}_{\mathrm{C}}=2 \times \mathrm{HT}_{\mathrm{B}}=\mathrm{HT}_{\mathrm{B}}+\mathrm{HT}_{\mathrm{B}}$
(H4) $\mathrm{HT}_{\mathrm{B}}-\mathrm{HT}_{\mathrm{C}}=\mathrm{HT}_{\mathrm{A}}-\mathrm{HT}_{\mathrm{B}}$
Substituting (H 4) into (H3)
(H5) $0=\mathrm{HT}_{\mathrm{A}}+\mathrm{HDA}_{\mathrm{B}}+\mathrm{HI}_{\mathrm{B}}-\mathrm{HT}_{\mathrm{B}}-\mathrm{HDAC}-\mathrm{HI}_{\mathrm{C}}$
Rearranging, this equation is the same as the identity of equation (A2),
(A2) $H I_{C}+H D A_{C}-H T_{A}=H I_{C}+H D A_{B}-H T_{B}$
Therefore, (H3) is true, and
(H6) $\quad \mathrm{HDC}_{\mathrm{B}}=\mathrm{HDC}_{\mathrm{C}}$
Q.E.D.

Four pass. Following the logic used in the derivation for three passes above:
(II) $\mathrm{HDC}_{\mathrm{C}}=\mathrm{HT}_{\mathrm{C}}+\mathrm{HDA}_{\mathrm{C}}+\mathrm{HI}_{\mathrm{C}}$
(I2) $\quad H D C_{D}=H T_{D}+H D A_{D}+H I_{D}$

We will prove
(I3) $H D C_{C}-H D C_{D}=0=H T_{C}+H D A C+H I_{C}-H I_{D}-H D A D_{D}-H I_{D}$
Using the following equations:
(C7) $\mathrm{HTA}+\mathrm{HT}_{\mathrm{C}}=\mathrm{HT}_{\mathrm{B}}+\mathrm{HT}_{\mathrm{D}}$
(I4) $\mathrm{HT}_{\mathrm{C}}-\mathrm{HT}_{\mathrm{D}}=\mathrm{HT}_{\mathrm{B}}-\mathrm{HTA}$
(I5) $0=\mathrm{HT}_{\mathrm{B}}-\mathrm{HT}_{\mathrm{A}}+\mathrm{HDAC}_{\mathrm{C}}+\mathrm{HI}_{\mathrm{C}}-\mathrm{HDAD}-\mathrm{HI}_{\mathrm{D}}$
Now (I5) is the same as the identity (C3) rearranged. Therefore, (I3)
is true, and
(I6) $\quad H D C_{C}=H D C_{D}$
Q.E.D.

COMPUTER PROGRAM FOR RATING AND DESIGNING MULTIPASS TRAYS

A computer program has been written to rate existing multipass trays and to design three and four pass trays for new services. This program uses the equations presented in the preceding chapter to determine the vapor and liquid loadings for each pass.

Equations Used to Rate Designs

In order to rate or design trays, equations are necessary for the various pressure drops required, as well as for tray capacity and efficiency. This section presents the equations used in this program. Most are published equations although the jet flood capacity equation is not from any single source but is contrived to represent known trends in tower capacity. The equations chosen are not intended to be recommended as the best possible equation available. It is expected that those interested in using this program will substitute some or all of these rating equations with their own proprietary rating equations.

Jet Flood. The jet flood point normally sets the maximum vapor capacity of a sieve tray. Jet flooding is the condition in which liquid entrained from one tray to the next by the vapor jets becomes excessive. Tower pressure drop increases significantly, and the tower may become filled with liquid. Tray efficiency decreases drastically.

Many tower capacity correlations predict the vapor velocity through the bubble area at which jet flooding occurs. This jet flood
point decreases as the liquid rate across the weir increases. This program calculates the percentage of the flood point at which the tray is operating for each pass. A desirable design is generally at about 85 percent of the flood point. This maximizes tower capacity without debiting tower efficiency due to excessive entrainment.

The following equation used in this program to calculate the jet flood point is not taken from any one source. It is a contrived equation based on known trends in tower capacity.
($\mathrm{V}_{\mathrm{L}} / \mathrm{A}_{\mathrm{B}}$) $\mathrm{flood}=$ HFACT1 $\times 0.55-0.035$ (GPHFTWEIR/1000)
where $V_{L}=\operatorname{CFS}_{V} \sqrt{\rho_{V} /\left(\rho_{L}-\rho_{V}\right)}$ and $\mathrm{HFACTI}=\sqrt{\mathrm{H} / 24}$
Where V_{L} is the vapor load in cubic feet per second, A_{B} is the bubble area, $\mathrm{CFS}_{\mathrm{V}}$ is the vapor flowrate in cubic feet per second, ρ_{V} is the vapor density in pounds per cubic foot, ρ_{L} is the liquid density in pounds per cubic foot, H the tray spacing in inches, HFACTI is a tray spacing capacity factor, and GPHFTWEIR is the liquid weir loading in gallons per hour per foot of weir length.

Allowable downcomer inlet velocity. As the frothy liquid from the tray enters the downcomer, the froth disengages. The liquid goes down through the downcomer to the next lower tray while the vapor goes up through the vapor space to the next higher tray. There is an upper limit to the velocity at which the froth can enter the downcomer and successfully disengage without carrying vapor downward to be recycled to the tray below.

This allowable downcomer inlet velocity increases as the tray spacing increases. As the tray spacing or downcomer height increases, the disengaging residence time increases, and, therefore, the vapor and liquid separate more easily. The allowable velocity also increases as the difference between the $1 i q u i d$ and vapor densities ($\rho_{L}-\rho_{V}$) increases. As the liquid and vapor densities come closer, the two phases are more difficult to separate, and, therefore, a lower downcomer inlet velocity is allowed.

ALLVEL $=$ HFACT2 \times RHOFAC
Where $\mathrm{HFACT} 2=\mathrm{H} / 24$
and RHOFAC $=\mathbf{f}\left(\rho_{L}-\rho_{V}\right)$
Where ALLVEL is the allowable downcomer inlet velocity, HFACT2 is a tray spacing downcomer design factor and RHOFAC is a function of the density difference.

Dry tray pressure drop. The dry tray pressure drop is the pressure drop the vapor would undergo in passing through the tray's perforations if there were no liquid on the tray. This is calculated from a typical velocity head equation. All pressure drop equations used are similar to those presented by Smith (9). To simplify the dry tray pressure drop equation, the constant $C_{V o}$ was set at an average value of 0.70 . The literature gives several methods of predicting CVo, including correlating it with the ratio of hole to bubble area (A_{0} / A_{B}) and the ratio of hole diameter to tray thickness ($\mathrm{D}_{0} / T \mathrm{~T}$).
$\mathrm{HH}=0.186\left(1 / \mathrm{CVO}_{\mathrm{V}}\right)^{2} \mathrm{~V}_{0}{ }^{2}\left(\rho_{\mathrm{V}} / \rho_{\mathrm{L}}\right)$
where $\mathrm{V}_{0}=\mathrm{CFSV} / \mathrm{A}_{0}$
and $\mathrm{C}_{\mathrm{VO}}=0.70$
where $H H$ is the $d x y$ tray pressure drop, V_{0} is the vapor velocity through the open area to feet per second, A_{0} is the open area in square feet, and C_{v} is a dry tray pressure drop coefficient.

Clear liquid height. The height of the froth on a tray is given as the sum of the weir height, plus the static head of the crest of liquid overflowing the weir (the Francis weir formula). The static head of this froth, as a clear liquid, is equal to the froth height multiplied by an aeration factor (β) . Some texts give β as a function of the weir liquid loading and the ratio of weir length to diameter (9). This program uses average values of 0.70 and 1.00 for β and F_{W}, respectively.

$$
\mathrm{HL}=\beta \text { (HOW }+\mathrm{HWO})
$$

Where $\beta=0.70$

$$
\text { HOW }=0.48 \mathrm{~F}_{\mathrm{W}}(\mathrm{GPM} / \mathrm{LWO})^{2 / 3}
$$

and $F_{W}=1.00$
Where $H L$ is the clear liquid height on a tray, HOW is the crest over the weir, HWO is the outlet weir height in inches, β is an aeration factor and F_{W} is a weir factor, GPM is liquid flowrate in gallons per minute, and LWO is the weir length in inches.

Total tray pressure drop. The total pressure drop a vapor undergoes in passing from one tray to another (HT) is generally agreed to be equal to the sum of the dry tray pressure drop plus the clear
liquid head on the tray.

$$
\mathrm{HT}=\mathrm{HH}+\mathrm{HL}
$$

Inlet head. The static head of liquid at the tray inlet is used in calculating downcomer filling. It is usually equal to the clear liquid height on a sieve tray (a sieve tray is generally regarded to have no crossflow pressure gradrent) unless there is an inlet weir. If there is an inlet weir, the inlet head is equal to the inlet weir height plus the crest over the inlet weir. Since the liquid at this point is clarified, no aerator factor is necessary (i.e. $\beta=1,00$).

Without an inlet weir $\mathrm{HI}=\mathrm{HL}$
With an inlet weir $\mathrm{HI}=0.48 \cdot \mathrm{FW}(G P M / L W I)^{2 / 3} \mathrm{HWI}$
Where HI is the inlet head, LWI is the inlet weir length in inches and HWI is the inlet weir height in inches.

Head loss under downcomer. As the liquid passes through the area under each downcomer, it changes direction from vertical to horizontal. This requires a pressure loss (HDA) which is predicted by the submerged weir formula.

$$
\mathrm{HDA}=0.06(\mathrm{GPM} / \mathrm{AUD})^{2}
$$

Where AUD $=C \times$ LUD
Where AUD is the area under the downcomer in square inches, C is the downcomer clearance in inches, and $L_{U D}$ is the length under the downcomer in inches.

By curving the outlet lip of the downcomer, this head loss is reduced. If a shaped lip downcomer is used, this program calculates
the head loss to be one-half the value calculated by the above equation.

Downcomer filling. A static head of liquid builds up in the downcomer (HDC) to compensate for the pressure drop between trays plus enough head to overcome the tray inlet head and the head loss under the downcomer.
$\mathrm{HDC}=\mathrm{HT}+\mathrm{HI}+\mathrm{HDA}$
If a recessed box or inlet weir is used, HDA is doubled, because the 1iquid makes two turns in leaving the downcomer.

If downcomer filling is excessive, liquid may back up to the tray above and flood the column. Because the froth in the downcomer is not completely clarified, it is generally recommended that the downcomer clear liquid filling not exceed 50 percent of the tray spacing.

Tray efficiency. There are many tray efficiency equations. This program uses a simple correlation of overall tray efficiency with the liquid fluidity on the tray, as presented by Maxwell (8). The liquid fluidity is defined as the reciprocal of the liquid viscosity in centipoises.

Convergence Techniques.
The equations presented in Chapter III are solved simultaneously to determine the liquid and vapor flowrates in each pass. These convergence techniques are summarized in this section.

Three pass, no vapor crossover.

1. Guess $\mathrm{L}_{\mathrm{A}}=\mathrm{L}_{\mathrm{B}}=\mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\text {total }} / 3$
$V_{A}=V_{B}=V_{C}=V_{\text {total }} / 3$
2. Calculate HL, HDA, and HI for each pass
3. Calculate HH and HT for each pass
4. Solve for V_{A} such that
$\mathrm{HH}_{\mathrm{A}}=\mathrm{HT}_{\mathrm{B}}+\mathrm{HI}_{\mathrm{C}}+\mathrm{HDA}_{\mathrm{C}}-\mathrm{HL}_{\mathrm{A}}-\mathrm{HI}_{\mathrm{B}}=\mathrm{HDA}_{\mathrm{B}}$
which is equivalent to equation (A2)
5. Recalculate $V_{C}=V_{A}$

$$
\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\text {total }}-\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{C}}
$$

Return to Step 3 until V_{A} is converged.
6. Once V_{A} is converged, solve for L_{A} such that $\mathrm{HL}_{\mathrm{A}}=2 \times \mathrm{HT}_{\mathrm{B}}-\mathrm{HT}_{\mathrm{C}}-\mathrm{HH}_{\mathrm{A}}$ which is equivalent to equation (A5)
7. Recalculate $L_{C}=L_{A}$

$$
\mathrm{L}_{\mathrm{B}}=\mathrm{L}_{\text {total }}-\mathrm{L}_{\mathrm{A}}-\mathrm{L}_{\mathrm{C}}
$$

Return to Step 2 until L_{A} is converged.

Three pass, with vapor crossover.

1. Guess $L_{A}=L_{B}=L_{C}=L_{\text {total }} / 3$
$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\text {total }} / 3$
2. Calculate HL, HDA, and HI for each pass
3. Solve for L_{A} such that
$\mathrm{HI}_{\mathrm{C}}=\mathrm{HI}_{\mathrm{B}}+\mathrm{HDA}_{\mathrm{B}}+\mathrm{HDA}_{\mathrm{C}}$
which is equivalent to equations (A2) and (B4)
4. Recalculate $L_{C}=L_{A}$

$$
\mathrm{L}_{\mathrm{B}}=\mathrm{L}_{\text {total }}-\mathrm{L}_{\mathrm{A}}-\mathrm{L}_{\mathrm{C}}
$$

Return to Step 2 until L_{A} is converged
5. Solve for V_{B} such that
$\mathrm{HH}_{\mathrm{B}}=\mathrm{HT}_{\mathrm{C}}-\mathrm{HL}_{\mathrm{B}}$
6. Solve for V_{A} such that
$\mathrm{HH}_{\mathrm{A}}=\mathrm{HT}_{\mathrm{B}}-\mathrm{HL}_{\mathrm{A}}$
which is equivalent to equation (B4)
7. If $V_{A}+V_{B}+V_{C}$ does not equal $V_{\text {total }}$, recalculate $V_{C}=$ $V_{\text {total }}-V_{A}-V_{B}$

Repeat, starting at Step 5, until $V_{A}+V_{B}+V_{C}$ does equal Vtotal

Four pass, no vapor crossover.

1. Guess $\mathrm{L}_{\mathrm{A}}=\mathrm{L}_{\mathrm{B}}=\mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\mathrm{D}}=$ Ltotal $/ 4$

$$
V_{A}=V_{B}=V_{C}=V_{C}=V_{\text {total }} / 4
$$

2. Calculate HL, HDA, and HI for each pass
3. Solve for V_{A} such that
$H_{A}=H T_{B}+H I_{C}+H D A C_{C}-H L_{A}-H I_{D}-H D A_{D}$
which is equivalent to equation (C3)
4. Recalculate $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{A}}$

$$
\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{D}}=0.5 \mathrm{v}_{\text {total }}-\mathrm{v}_{\mathrm{A}}
$$

Return to Step 3 until V_{A} is converged
5. Solve for L_{A} such that
$\mathrm{HL}_{\mathrm{A}}=\mathrm{HT}_{\mathrm{B}}+\mathrm{HT}_{\mathrm{D}}-\mathrm{HT}_{\mathrm{C}}-\mathrm{HH}_{\mathrm{A}}$
which is equivalent to equation (C7)
6. Recalculate $L_{C}=L_{A}$

$$
\mathrm{L}_{\mathrm{B}}=\mathrm{L}_{\mathrm{D}}=0.5 \mathrm{~L}_{\text {total }}-\mathrm{L}_{\mathrm{A}}
$$

Return to Step 2 until L_{A} is converged

Four pass, with vapor crossover.

1. Guess $L_{A}=L_{B}=L_{C}=L_{D}=L_{\text {total }} / 4$

$$
V_{A}=V_{C}=V_{\text {total }} / 4
$$

2. Calculate HL, HDA, and HI for each pass
3. Solve for L_{C} such that
$H I C=H I_{D}+H D A D-H D A C$
which is equivalent to equations (C3) and (D5)
4. Recalculate $L_{A}=L_{C}$

$$
\mathrm{L}_{\mathrm{B}}=\mathrm{L}_{\mathrm{D}}=0.5 \mathrm{~L}_{\text {total }}-\mathrm{L}_{\mathrm{A}}
$$

Return to Step 2 until L_{A} is converged
5. Recalculate $V_{B}=0.5 V_{\text {total }}-V_{A}$
6. Solve for V_{A} such that
$\mathrm{HH}_{\mathrm{A}}=\mathrm{HT}_{\mathrm{B}}-\mathrm{HL}_{\mathrm{A}}$
which is equivalent to equation (D5)
Return to Step 5 until V_{A} is converged
7. Recalculate $V_{D}=0.5 V_{\text {total }}-V_{C}$
8. Solve for V_{C} such that
$H_{H}=H T D_{D}-H_{C}$
which is equivalent to equation (D6)
Return to Step 5 until V_{C} is converged

How to Use the Program
This section describes how to fill out the input form for the eight possible options this program is capable of evaluating. These are three and four pass trays, each with or without vapor crossover,
and each as either a rating or a design case.

The input form for this program is presented on the next page. The input form is, for the most part, selfexplanatory. The following are notes describing the use of this input form, as referenced by the numbers in parentheses on the form. Note that all 14 cards must be submitted for each case. Even if there is no input on a card for a given case, a blank card must still be submitted in its place.

1. Any alphanumeric titles may be placed on these three cards. They will be printed out exactly as submitted.
2. At the present time, this information is not used by the program. It is simply read and printed out as submitted.
3. Omit for a design case. Submit a blank card if entire information on a card is to be omitted.
4. Enter geometry values as described in Figure 8 and Figure 9. All geometry values are in inches.
5. Enter 0.0 or a blank card if another case follows. Enter 1.0 if this is the last case.

Design Logic.

This section describes the logic that this computer program uses to design three and four pass trays. Given the liquid and vapor loadings and the number of tray passes, the program proceeds to develop a tray design in the manner described below.

Tray spacing is set at 24 inches. This is a typical tray spacing

CARD \#
CARD ${ }^{2}$
CARD 3

CARD $: 4$

CARD *

CARD ${ }^{\text {a } 6}$

CARD 47

CARD * (3,4)
CARD *9 (3.4)

	OUTLET WEIR HT
	12345678910
CARD 10 (3,4)	
CARD ${ }^{11}(3,4)$	
CARD ${ }^{12}(3,4)$	
CARD 13 (3,4)	
	12315678910
CARD 14 (s)	-

Figure 8
THREE-PASS TRAY GEOMETRY

Figure 9
FOUR-PASS TRAY GEOMETRY

used in commercial fractionation towers.

A diameter is then selected using double table lookups (see Table 2 and Table 3 in the Fortran computer program presented in the appendix) with vapor load and volumetric liquid rate as parameters. These tables were not developed from any single source, but are based on the data presented by a tray vendor (6). They follow the general trends that vapor capacity increases with tower diameter and decreases with liquid rate.

The minimum diameter for three pass trays is 7 feet, for four pass trays it is 10 feet. This program is incapable of designing three pass trays for liquid rates greater than 5000 GPM, four pass trays for 11 quid rates greater than 6000 GPM , and all trays for vapor loads (V_{L}) greater than 100 CFS. These are the limits of the prediction methods used (7).

The program determines the allowable downcomer inlet velocity as described in a previous section (see Table 1 of the program in the appendix). The total downcomer area is then calculated as the area required to maintain the total downcomer inlet velocity exactly at the allowable level. This total downcomer area is then divided into parts for each pass as proposed by a tray vendor (). All downcomers are straight. That is, the inlet area is equal to the outlet area.

Now the program has a tower cross-sectional area and a total downcomer area. It then splits the remaining bubble area into three
or four segments with equal flow path length. Although this thesis does not propose that equal flow path length designs are the most desirable, it is a common method of designing multipass trays, and is therefore the only method used by this program.

At this point, the program has the entire plan layout (top view) of the tray. Now the program sets the outlet weir height (HWO) so that the average clear liquid height (HL) is 3 inches. It sets the hole area (A_{0}) so that the average dry tray pressure drop (HH) is 2 inches. These are typical design values which should give good operability and efficiency. It then sets the downcomer clearance (C) so that the average head loss under the downcomer (HDA) is 1 inch. The maximum downcomer clearance is 3 inches, and the program will design a shaped lip downcomer if HDA is greater than 1 inch with a 3 inch straight lip downcomer. This yields an average tray pressure drop (HT) of 5 inches and an average downcomer filling of 9 inches, or 37.5 percent of the 24 inch tray spacing.

The following section describes how these suggested values can be adjusted to obtain a more desirable design than is printed out by the program. For example, if the particular circumstances require a low pressure drop (e.g. a low pressure service), low weir heights and higher open areas will reduce both the clear liquid height and the dry tray pressure drop, which, in turn, reduces the total tray pressure drop.

The program does not design for recessed inlet boxes or inlet weirs. A recessed inlet box is a sump below the downcomer to assure that no vapor can enter the downcomer through the clearance. That is, it is a method of providing a positive seal on the downcomer.

Use of the Program To Improve Initial Design.

It is not proposed that this program will give an optimum design the first time it is run. In fact, the first design the program picks can have several deficiencies. In order to make optimum use of this program as a design tool, the original design case should be altered as necessary and rerun as a rating case. This may have to be done several times until a final optimum design is reached. Several possible deficiencies of a design case are described below.

The program only designs for 24 inch tray spacing. Greater or smaller tray spacings may be chosen to increase tower capacity, reduce downcomer filling or reduce tower height.

The program chooses a tower diameter which can have any value. Very often a company prefers to order tower shells on one foot or half foot diameter increments. Therefore, the diameter chosen by the program should be changed to conform to the specific standard procedures of the user.

Similarly, flow path lengths, downcomer widths, weir heights, and downcomer clearances are often preferred to be specified on some standard increment (say one quarter inch). Since the program chooses any value it
needs to meet its design logic, these values should be changed to conform with specific standard procedures of the user.

The program also sets all weir heights and clearances equal. Therefore, clear liquid heights and other pressure drop values can vary greatly for different passes even though the average value conforms with the design logic of the program. Therefore, it is suggested that the original values be altered to equalize pressure drops somewhat. In particular, the outboard downcomer (the shortest downcomer) clearance should usually be increased and the outboard downcomer weir height should usually be decreased.

Also, alchough the average downcomer velocity is at the allowable Iimit, the velocity for any one downcomer may exceed this limit. The suggestions in the preceding paragraph should help in balancing the downcomer inlet velocities.

Although this program may not give an optimum design on the first trial, good engineering judgment can be used to obtain an economic and well-balanced design with one or two additional trials.

CHAPTER V

SAMPLE PROBLEMS

This chapter presents sample problems run on the Multipass
Tray Design computer program. Included are input forms and two pages of printout for each of the following eight cases:

1. Four pass rating case, no vapor crossover.
2. Four pass rating case, with vapor crossover.
3. Three pass rating case, no vapor crossover.
4. Three pass rating case, with vapor crossover.
5. Four pass design case, no vapor crossover.
6. Four pass design case, with vapor crossover.
7. Three pass design case, no vapor crossover.
8. Three pass design case, with vapor crossover.

The printouts include all inputted information, tray geometry information, vapor and liquid loadings per pass, pressure drops and downcomer backup in inches of hot liquid, percent of jet flood, downcomer inlet velocity, and overall tray efficiency.

Note that for four pass trays, the downcomer for passes C and D are shared, and, for three pass trays the downcomer for passes B and C are shared. Also, for four pass trays, a single downcomer is used for liquid from two individual passes B. On the program printout, these downcomers are split in half, and downcomer inlet velocities per pass are calculated by dividing the liquid flowrate per pass by the area of the "half" downcomer.

CARD 3

LIOUID RATE HLBS/HR	min. lig. rate mLBS/HR (2)	LIQUIO DENSTTY LB/CUFT	LIQuid viscosity	SURFACE TENSION DYNES/CM (2)
123450678910	11213141516 17 18:1920	2122.23:24.25:26:2720:2930	31 32 33344358363738.3940	142:43: 44:45:46:4748:4950
554.6	$272 \cdot 3$	31.55	$0 \cdot 113$	6.16

TEMPERATURE DEGF(2)	PRESSURE P51A (2)
12345678910	(1112 13, 4, 15,16 17,18:19:20
140	125

$\begin{aligned} & \text { NO. OF PASSES } \\ & 3 \text { OR } 4 \end{aligned}$					HOLE DIAMETER INCHES(2)						TOWER DIAMETER FEET (3)					tray spacing INCHES (3)					
12345878910											21:2723 24.2520 .27 2862930					31:32, 33, 34, 35.36 37:38:39:40					
		4					$0 \cdot$	38					$3 \cdot 5$.			

WIDTH \#1	WIDTH \#2	wIDTH \#3	WIDTH ${ }^{\text {a }}$	WIDTH *5
WIDTH ${ }^{\text {\% }}$	WIDTH \#7	WIDTH 8	WIDTH \#9	WIDTH 110
12345678910	1112 1314 15:16:77181920	21 22:23 24.25262728 .2930	31.3233.34:35 36.37 38.39.40	4142 43 44:45:46 47484950
$\begin{aligned} & 19.4375 \\ & 19.4375 \end{aligned}$	$\begin{aligned} & 26.5625 \\ & 26.5625 \end{aligned}$	$\begin{aligned} & 9.25 \\ & 9.25 \end{aligned}$	$\begin{aligned} & 21 \cdot 75 \\ & 21 \cdot 75 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& OUTLET WEIR HT HWO \& inlet weir ht HWI \& DC clearance \& hole area AO. SQ FT \& SHAPED LIP \& RECESSED

$=$
1.0

\hline \& |1234.6:78910 \& 117213141516.17181920 \& 21:22:23.24:25.28.27:28:29:30 \& 31:32:33:34:35:36:37:38:39:40 \& 11.42 13.44.45:46:47. 48.49:50 \& 51:52:53:54 55:56 57.58:59:60

\hline CARD $100(3,4)$ \& $1 \cdot 25$ \& $\square \square$ \& 1.54 \& 2.39 \& - \&

\hline CARD $\operatorname{H11}(3,4)$ \& 2.13 \& - \quad : \& 1.0 \& 2.34 \& - \bullet \& $\bigcirc{ }^{1}+$

\hline CARD 112 (3,4) \& 200 \& 1 \quad ! \& 1.0 \& 2.39 \& \bullet \& - $\quad \vdots$

\hline CARD 113 (3,4) \& $2 \cdot 0$ \& - \& 1.0 \& 2.39 \& \cdots \& \bigcirc

\hline \& \& \& \& \& \&

\hline CARD \#14 (5) \& 0 - \& \& \& \& \&

\hline
\end{tabular}

VCE TEST RASE: FJOR pASS -ATI,

ve vapjr coossoviz

TPERATING CINDITIN:S

ML BS/HA VAPJA MAX MLBS/HZ VAPTR MIV		
LBS/Cij Ft Vapor at cons		
tray liquid terperatur	OEG F	14
operating pressure	PSIA	12
CFS VAPOR AT COND		
vapof loaj	CFS	
tray geometry		
DIAMETER	FT	13.50
tray spacing	IN	21.00
NUMBER OF PASSES		4.00
hole diameter	IN	0.38
CROSS SECT AREA	SQ FT	143.14
BUBBLE/CROSS SECT APEA	PCT	\$6.85
vapor crossover (yes or nou		Nu

			Pass a	OASS ${ }^{\text {B }}$	PASS C	PASS 0
DOWVCCMER INLET WIDTH **	IN		19.438	4.050	4.625	4.625
DOWVCOMER DUTLET HIDTA **	IN		19.438	4.000	4.625	4.625
flow path length	IN		25.563	21.750	26.563	21.750
CHORD LENGTH AT TUP OF DC	IN		105.295	102.018	145.884	153.558
CHORO LENGTH AT BTM OF DC	IN		105.285	152.018	145.884	153.563
DC Inlet area		FT	9.703	4.370	4.742	4.879
OC OUTLET AREA		FT	0.739	4.390	4.742	4.879
DUTLET WEIR HEIGHT	Iv		1.250	2.13)	2.000	2.000
INLET WEIR HEIGHT On tray below	IN		0.0	0.0	0.0	0.0
dC CLEARANCE to tpay below	IN		1.540	1.030	1.000	1.000
SHAPEOLIP IYES CR NJI			V5.	NO	V	NO
RECESSE) 8OX (YES OR NJ)			*	N3	Na	No
gubale area			23.031	?4.253	23.501	24.250
FREF AREA			33.303	$29.0 \div 2$	24.343	29.128
HOLE ARTA			2.709	2.390	2.390	2.390
HOLF/GUABLE AREA	PCT		12.127	3.856	20.127	0.856

619.000
303.300
1.403
140.000
125.000
122.357
20.395

$$
\begin{array}{r}
619.000 \\
303.300 \\
1.403 \\
143.000 \\
125.000 \\
122.357 \\
20.395
\end{array}
$$

MLSS/HR LIOJIO MAX
MLES/HR LIQSTO AIN
LOS/CU FT LIDUTO AT ECYO
SURFACE TENSIGA at CRN) SURFALETENSTGAAT liscositr at cund

	544.600
	272.300
	31.550
OYVESEM	5.150
CP	0.113
GPY	2151.932

544.600
272.300
272.300
31.550

CARD*
CARD *2
CARD *

CARD

ARD

TEMPERATURE DEGF (2)	pressure PSIA (2)
6789	112131415961718:19
140	25

WIDTH \#1	WIDTH ${ }^{2}$	WIDTH 3	WIDTH \#4	WIOTH *5
WIDTH ${ }^{\text {\# }} 6$	WIDTH 17	WIDTH *8	WIDTH 9	WIDTH 110
12345678910	$11.1213141316: 1718.1920$	21 22:23: 24:35 2627.28 .2930	313233 3435363738.3940	414243 44:4546474849
$\begin{aligned} & 19.4375 \\ & 19.4375 \end{aligned}$	26.5625 26.5625	$\begin{aligned} & 9.25 \\ & 9.25 \end{aligned}$	$\begin{aligned} & 21.75 \\ & 21.75 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { OUTLET WEIR HT } \\
& \text { HWO }
\end{aligned}
$$ \& inlet weirht HWI \& dC CLEARANCE \& hole area AO-SO FT \& $$
\begin{gathered}
\text { SHAPEO LIP } \\
=1.0
\end{gathered}
$$ \& \& RECESSED

$=1.0$

\hline 12345678910 \& 11121314159617181920 \& 21: 22:23:24:25:20:27]:38:29:30 \& 31:32.33 34.35 36.37 38.39.40 \& 4142,43:44:45:46:47.48.4950 \& \& 2:53,54:55:56:57:58:59:60

\hline - $1-25$ \& \% \quad ¢ \& 1.354 \& 2.39 \& ¢ \& \& - \bullet

\hline 213 \& \cdots \& 100 \& 2239 \& - \& \& - 0

\hline 200 \& \bigcirc \& 1.0 \& 2.39 \& - ! e ! \& \& -

\hline $2 \cdot 0$ \& - \& 1.0 \& $2 \cdot 39$ \& - \& \& \bullet - :

\hline
\end{tabular}

\square

ML BS／H2 Vioje Max		
MLES／H：VAPJR MIN		30
LBS／CU FT VAPJR AT COND		
tray liolid teyperature	DES F	14
OPERATING PEESSURE．	PSIA	12
CFS VAPOR AT COMS		12
VAPOE LGAD	CFS	2
tray geometry		
DIAMETER	FT	13.50
TRAY SPACING	IN	21.00
NuMBER OF PASSES		4.00
hole oiameter	IN	0.39
CROSS SECT AREA	SQ FT	143.14
BUBBLE／CROSS SECT AREA	PCT	65.86
VApOR CROSSOVER（yES or not		YES

$61 \div .090$	MLBS／H2 LIOMID MAX		544.600
304.000	MLBS／HP LIQUIO MIN		272.300
1.403	LBS／CU FI LIOUIO AT CJVO		31.550
140.009	SURFAC＝TENSION AT CBND	วyvesぐ号	6.160
125．000	viscusity at cond	C^{P}	0.113
122．357	LIquio flow zate	g．py	2151.932
25.306			

WNCOMER OUTLET WIDTH＊＊
FLOA Path LENGTH
CHURD LENGTH AT TOP OF DC
CHORD LENGTH AT BTM OF OC
DC INLET AREA
DC DUTLET AREA
OUTLET WEIK HEIGHT
NLET WEIR HEIGHT OM TRAY belon
oc clearance to tray belon
SHAPED LID（YES חR NO）
RECESSECN aOX（YES OR NO）

BUBBLE $+2=4$	SO Fit	23.501
FREE ADEA	SQ FT	33.373
hole area	SO Ft	2.300
HCLE／3133t E 1254	pet	1.129

19.438
19.439
25.503
105.285
105.235
9.708
9.708
1，259
0.01.54 .3
Ne
23.501
33.323
2.300
1.127

PASS 8
4.000
4.000
21.750
162.018
162.018
4.390
4.390
2.130
0.0
1.030
$N 17$
$N 0$
24.259
28.569
2.390
9.955

PASS C	PASS D
4.625	4.625
4.625	4.625
26.563	21.750
145.894	153.568
145.884	153.568
4.742	4.879
4.742	4.879
2.000	2.060
0.0	0.0
1.000	1.000
43	10
43	$N 0$
33.601	24.250
28.343	29.128
2.390	2.390
10.127	9.856

LOADINGS per pass			DASS A	PASS B	2ess C	PASS 0
GPM LIDUID			574.215	531.750	E74.215	501.750
GPH/FT WEIR			3926.894	2229.756	2533.079	2352.444
CFS Vapor			31.387	29.792	23.316	30.852
VAPGr loas		- 5	6.771	6.427	C.540	6.658
VLoditruqble area		FPS	0.287	0.265	3. 277	0.275
VLOADICFS LITUIT			5.292	5.749	5.1:2	5.955
DOWNCOMER FILLING CALCULATISNS						
dry tray pressupe drop	(HH)	IV	2.911.	2.623	2.715	2.815
Clear liouio height	(HL)	IN	1.917	2.255	2.239	2.140
total tray pressure drop	(HT)	14	4.828	4.828	4.954	4.955
INLET HEAD	(HI)	I*	2.238	2.140	1.917	2.205
DC HEAD LOSS ?	(HOA)	IN	0.753	0.575	0.930	0.641
DC FILLING ((HOC)	iv	7.818	7.544	7.900	7.801
DC Filling		DSt	37.230	35.922	37.144	37.145
adottional cal culations						
PERCENT JET Flood			75.091	50.727	66.727	63.534
dC Inlet yelocity	.	EPS	0.132	0.255	0.270	0.229
ALLONABLE DC INLET VELDCity		FPS	0.341			
overall tray efficiency		PCT	98.933			

CARD ${ }^{1}$
CARD *2

	vapor rate MLBS/HR						IN. V	$\begin{aligned} & \text { VAPOR } \\ & \text { LBS/HR } \end{aligned}$	$\begin{aligned} & \text { P RATE } \\ & \text { i(2) } \end{aligned}$		$\begin{gathered} \text { VApor } \\ \text { LB } \end{gathered}$	R DENS /CU FT		O. = NO VAPOR CROSSOVER I. = VAPOR CROSSOVER											
1	23	$4{ }_{4}{ }^{5}$	567	B	910	[12 1	1314	41516	1718,1920		27324	25:26:27	28		32: 3	33	35.363	37,38	39:40	114	4	14.	$5: 46$		889
		61	80					1090				40											0.		

temperature DEGF(2)	PRESSURE PSIA (2)
123450789	111213 14:15:16:17:18:19:20
140.	125

NO. OF PASSES$3 \text { OR } 4$								$\overline{\mathrm{LE}}$ INC	DIAMET CHES (2)			tower diameter FEET (3)							tray spacing INCHES (3)				
1	23	15	67	8			112	,	4151617	$18: 3$				23.24	$4 \times$	28:27	2	2930		32:33:3435			38:39:40
			3.						$0 \cdot 36$											210			

WIDTH \#1	WIDTH \#2	wIoth 3	WIDTH 4	WIDTH ${ }^{\text {a }}$
WIDTH \#6	WIDTH ${ }^{1} 7$	WIDTH 18	WIDTH 19	WIDTH 110
12345678910	$11.1213: 141516: 17.18: 19.20$	$2122: 2324.25$ 26 27 28:29 30	31323334.3536373839 .40	4142.43 44:45.46 47 48 49.50
240	240	21	24	≥ 4
24	210	\cdots.	-	\cdots

NCE TKST CAS: THREE DASS RATING
DESIGVER: P.W.BECKER
NO VAPIUR CROSSOVER

OPERATING EODITIOVS

MLBS/4k VAPOa max.		
MLBS/4D $\triangle A P, 3 E$ MIV		
LBS/CU $=T$ Vapgr at cong		
Tray lioulu tempepatupe	PEG F	
OPERATING PRESSURE	PSIA	
CFS VAPOR AT COND		
VAPJR load	CFS	
tray gedmetay		
diameter	FT	13.50
Tray spacing	1 N	21.00
NUMBER OF PASSES		3.00
HOLE DIAMETER	IN	0.38
CROSS SECT AREA	SQ FT	143.14
BURBLEJCRESS SECT AREA	PCT	49.30
VAPOR CROSSOVER (YES JR NOI		No

PASS A
24.000
21.000
24.030
115.332
109.019
13.153
10.854
1.250
0.0
1.540
NO
NO

NO

$\begin{array}{ll}50 \mathrm{FT} & 22.174\end{array}$
 $59 \mathrm{ET} \quad 32.302$
 $\begin{array}{lr}\text { SO FT } & 2.390 \\ \text { PCT } & 10.778\end{array}$

619.000
309.000
1.403
140.000
125.000
122.357
26.305
3. 50
3.00 143.14
49.30
4.30
NO
6. 30
onncomer inlet wioth
a no comer ujtlet
CHORD LENGTH AT TOP DF DC CHORD LENGTH AT BTM OF DC
OC INLET AREA
DC DUTLET AREA
OUTLET WEIR HEIGHT
INLET WEIR HEIGHT ON TRAY RELON
CC CLEARANCE TO TRAY QELOM
SHAPEO LIP (YES UN MO)
RECESSES GOX (YES OK NJ)

BUBSLE AREA	SO F
FREEAREA	SO F
HOLE AREA	SJF
HOLFIGJSSIF SQEA	PCT

HOLF/G1391F SQES

4LES/4र LIOUTD MAX
MLSS/HR LIQUID MIM
LBSICUFT LIOUID AT CONO
SURFACE TENSIDN AT CONO
viscosity at cund
LIQUID FLON RATE

LOADINGS PER dass			PASS A
GPM LIQUIU			710.954
GPH/FT WEI?			4475.820
CFS VAPCR			39. +31
VAPOF LOAD		$\mathrm{c}=5$	8.550
VLCAD/BURRLE AFEA		FDS	0.386
VLItancfa ligula			5.35?
downcomer fillivg calculations			
DRY TRAY PRESSURE DROP	(HH)	I4	4.641
CLEAR LIQUIO HEISHT	(HL)	IN	2.012
total tray pressije drap	(HT)	IN	0.653
inlet head	(HI)	IN	2.376
DC HEAD LOSS	(HDA)	IN	1.094
DC FILLING	(HDC)	IN	10.123
OC FILLING		PET	49.207
ADDITIONAL Calculations			
PERCENT JET FLOUD			107.753
DC INLET VELOCITY		FPS	0.121
ALlowable dc inlet velority		FPS	0.241
OVERALL tray efficievey		PCT	98.833

CARD ${ }^{11}$
CARD ${ }^{2}$
CARD ${ }^{3}$

CARD ${ }^{4}$

TITLE 1 (1) TITLE 2 (1)

	$\begin{aligned} & \text { VAPOR RATE } \\ & \text { MLBS/HR } \end{aligned}$						MIN. VAPOR RATE MLBS/HR (2)				vapor density LB/CUFT							0. = NO VAPOR CROSSOVER 1. = VAPOR CROSSOVER											
1	23	4	561	a	9		1112	\%13141516	1718	$19: 20$	2021	1122:2	23.242	8:20:27	272	28:29:			323	334	35.3	36.37	3838	39:40	11	4243.	445	45.47	7:4848:50
			18.					309	-					. 40	03													\bullet	

LIQUID RATE MLBS/HR	MIN. LIO. RATE MLBS/HR (2)		LIQUID DENSITY LB/CU FT		LIQUID VISCOSITY CP		SURFACE TENSION DYNES/CM (2)
12345 678910	11121314151617181920	212		30)		32:3934 $35 \times 36.37 .38 .39: 401$	41:42:43.4445;46:47:48:49
55406	27203		31×5			0,113	6.16

TEmperature DEGF(2)	PRESSURE PSIA (2)
12343678910	1112931415:16:17 18:19:20
40	125

$\begin{array}{r}12345678910 \\ 1 \\ \hline\end{array}$

NCE T-ST CASE: THREE PASS GATIUG
DESIGNER: P.W. BECKER
WITH VAPGR CROSSOVER

JPERATIAG CONDITIMAS

ML $35 / \mathrm{H}^{\circ}$ VADMK MAX
MLBS/HE VAPOR MIN
LAS/CU FT VAPOR AT COND
tray lioutn temp ecature DPERATIMG PRESSURE
CFS Vapur at cond
vapor loda
tray geometry

OIAMETER	FT	13.50
TRAY SPACING	IN	21.00
NUMBER OF PASSES		3.00
HOLE OIAMETER	IN	0.33
CROSS SECT AREA	SOTFT	143.14
GUBSLE/CROSS SECT AREA	PCT	49.30
VAPOR CROSSOVER IYES OR NOI		YES

BUBBLE/CROSS SECT AREA
VAPOR CROSSOVER (YES OR NO)
VAPOR CROSSOVER (YES JR NOI

		PASS 4
DOWNCOMER INLET WIDTH **	IN	24.000
DOWNCOAER DUTLET WIDTH **	1 V	21.000
FLOw Path length	IN	24.600
CHORD LENGTH AT TOP JF oc	IN	115.332
CHDRD LENGTH AT BTY OF DC	IV	109.019
DC Inlet area	So Ft	13.168
OC OUTLET AREA	So Ft	10.854
OHTLET HEIR HEIGHT	IN	1.259
INLET HEIR HEIGHT ON TRAY RELEW	1 N	0.0
dc clearavce to tray belun	I ${ }^{\text {a }}$	1.540
SHADED LIP (YES JR WJ)		N:
recesseg box (yEs OR vol		Ni
buable meca	SO Ft	22.174
FREE AREA	SO 5 T	32.302
Hule arfa	So FT	2.200
4TLF/BJARL: AREA	PCT	12.778

MLAS/HR LIOUID MAX
MLBS/HR LIQUID MIN
LAS/CU FT LIGUID AT CONO
surface tensicy at conj
LIquid FLDe qate

CARD 11
CARD.*2
CARD ${ }^{3}$

TITLE 1 (1) TITLE 2 (1) TITLE 3 (1)

llquid rate MLBS/HR	min. LIG. rate MLBS/HR (2)	LIQUID DENSITY LB/CU FT	LIould viscosity CP	SURFACE TENSION DYNES/CM (2)
123456789	11)213 14 1516 171819	21:2723:24:25:20:37 28: 29:30	31:32:3334 35 : $36: 373839300$	4 14243 44.45:46:47:48:4950
554.6	$272 \cdot 3$	31055	0.113	6.16

TEMPERATURE DEGF (2)	PRESSURE PSIA (2)
	117213141516:77.18:1920
140	125

WIDTM	WIDTH *2	widin \#3	WIDTH 4	wIDTH 75
WIDTH ${ }^{\text {a }}$	WIOTH 7	WIDTH 48	WIDTH 9	WIDTH \#10
12345678910	$11.1213: 1415: 16$ 17 18:19 20	21 22:23:24:25:26.27:28:29 30	3132333435363738.3940	414243 44.454647484950
\bullet				


```
VE TESTCASF: FJJK PASS DESIGN
gESISVER: P.W. BECKER
yu yapor crossover
```

MLes/hr vadjr yax		513.070
MLBS/H2 VApore MIn		30.000
LBS/CU FT VAPJR AT CUND		$\pm .403$
tray liduid teyoerature	neg F	140.003
OPERATING PRESSURE	PSIA	125.000
CFS Vapor at cona		122,357
YAPOR LUAD	CFS	25.395

tray gejmetry

DIAMETER	FT	11.80
TRAY SPACING	IN	24.00
NUMBER OF PASSES		4.00
HOLE DTAMETEQ	IN	0.38
CROSS SECT AREA	SQFT	109.45
BUBGLEICRUSS SECT AREA	PCT	77.40
VAPRR GROSSOVER (YES OR NO)		NO

DOWNCOMER INLET HIOTH	IN	8.305
DOWVCTMER DUTLET SIOTH **	IN	5.295
FLG* Path levgth	IV	25.889
ChORE LENGTH AT TOP OF CC	IN	09.072
CHORD LENGTH AT BTM OF DC	iv	69.072
OC INLET AREA	SQ FT	2.804
DC jutlet arga	SO FT	2.804
DUTLET *EIR HEIGHT	IN	2.944
INLET WEIR HEIGHT ON tray relow	IN	2.0
DC CLEARANGE TO TRAY 3ELOM	IN	1.144
SHADEOLIP (YFS UR VI)		N,
RECESSES PfX (YES TR NU)		*,
Bug3l = Anea	50 FT	17.549
FREE AマEA	So ft	2). 3 - 3
HOLE Aर-A	SO FT	2.361
	PCt	13.45:

PASS 8	PASS C	PASS 0
3.593	3.531	3.531
3.593	3.531	3.531
25.839	25.889	25.889
141.665	121.320	128.612
141.665	121.320	128.612
3.452	3.009	3.101
3.452	3.009	3.101
2.944	2.944	2.944
0.0	0.0	0.0
1.144	1.144	1.144
NO	N)	NO
NO	NO	NO
24.807	17.549	24.807
23.259	20.559	27.909
3.250	2.361	3.250
13.141	13.451	13.141

PAGE 2

			PASS A	PASS ${ }^{\text {B }}$	PASS C	－ASS 0
GDN LIA：			495．924	590.042	495.924	590.042
GPhat ：$=:=$			5169.500	2948.019	2943.150	3247.218
CFS Va＝－			25.275	35.104	25.075	35.104
VAP－－－${ }^{\text {d }}$		CFS	5．200	7.789	5.409	7.789
		FPS	0.339	3.314	0.308	0.314
VLこムご行－！2 U			4.805	0．026	4.395	0.026
DRY TESY F2ESSURE DROO	（HH）	IN	1.005	2.071	1．905	2.071
	（HL）	IN	3.312	2.921	2.920	2.978
TOTAL TXAY PRESSURE DROP	（HT）	IN	5.215	4.991	4.825	5.049
INLET＋EAO	（HI）	IN	2.920	2.978	3.312	2.921
DC HES 1055	（HDA）	IN	2.363	0.769	0.755	0.933
OC＝HLIng	（ HOC ）	IN	10.500	8.738	8.903	8.902
DC chalic		PCT	43.749	36.410	37.094	37.093
ADOITIOYAL Catculations						
PEFCEVT JET FLOOD			83.513	70.266	68.959	71.953
OC INET VElocity		FPS	0， 294	0.374	0.367	0.417
		FPS	0.390			
		PCT	98.833			

CARD 1
CARD 12
CARD ${ }^{3}$

CARD ${ }^{4}$

CARD *

CARD ${ }^{*}$

TITLE 1 (1)
title 2 (1)
TITLE 3 (1

liquid rate MLBS/HR	min. LIG. RATE MLBS/HR (2)	LIQUID DENSITY LB/CU FT	LIQUIO VISCOSITY CP	SURFACE TENSION DYNES/CM (2)
		21:22:2324.25 26:27:38, 29:30	31:32:33:34.35 36-37 38:39:40	11:42.43-44:45:46:47/484950
554.6	$272 \cdot 3$	$31 \cdot 55$	0.113	6016

TEMPERATURE DEGF(2)	PRESSURE PSIA (2)
123450:78,	1112131415961718:1920
140	125

$\begin{aligned} & \text { NO. OF PASSES } \\ & 3 \text { OR \& } \end{aligned}$						HOLE DIAMETER IMCHES (2)						TOWER DIAMETER FEET (3)							tray spacing inCHES (3)					
	23	15	67	8			1112	14	14151610	1718	920		22332		:2	27:		29:30		323	4:3		37	8, 39:40
			4						0.38					-	,									

CARD ${ }^{10}(3,4)$
CARD \#11 (3,4)
CARD \#12 (3,4)
CARD \#13 (3,4)

NCF TEST CASE: FOUP DASS RESIGN
DESIGNER: POW, BECKER
WITH VAPUR CRUSSUVER

MLBS/42 VAPJR max			617.000	MLBS/H2 LIOJIO M 4			544.600
M 3 / $/ H$? VAPIJR MIN			309.000	MLBS/HP LIQUIO MIN			272.300
LBS/Cy ${ }^{\text {et Vapgr at cond }}$			1.403	LAS/CU FT LIOUIO at	covo		31.550
Trar lijulg tempirature D	Deg ${ }^{\text {F }}$		140.000	SURFACE TENSION AT	Cuno	DYYESISM	6.160
OPEq-TIAG PRESSURE P	PSIA		125.000	viscasity at cono		C^{\prime}	0.113
CFS vapir at cono			122.357	LIquid flow rate		GPM	2151.932
VAOJR LJAD CFS	CFS		25.396				
tray geometry							
DIAMETER F	FT						
TRAY SPACING IN	IN						
Matber df passes							
HCLE DIAMETER IN	IN						
CROSS SECT AREA SO	SQ FT						
yapor crossover (yes or nol	PCT						
	YES						
	.		PASS A	DASS ${ }^{\text {B }}$	- 0455 C		PASS D
DOWVCJMER INLET WIOTH **	IN		- 8.396	3.593	3.531		3.531
DJ*VEJucr OUflet AIDTH**	IN		3.306	3.593	3.531		3.531
FLJ. PATH LENGTH	IN		25.889	25.889	25.899		25.889
CHGR L LEMSTH AT TOP JF DC	IN		69.072	141.665	121.320		128.612
CHOM L LENGTH AT BTM OF DC	IV		69.072	141.665	121.320		128.612
DC INLET AREA		FT	2.804	3.452	3.009		3.101
D JUTLET AREA		FT	2.804	3.452	3.009		3.101
DJTLET AEIR HEIGHT	IN		2.944	2.944	2.944		2.944
INLET WEIR HEIGHT ON TRAY below	OW IN		0.0	0.0	0.0		0.0
OT Cleazance to tzay below	IV		1.144	1.144	1.144		1.144
SHPES LIP (YES JR NO)			No	NO	1		NO
「ECESSE) 30X (YES OR N!			N0	No	4		NO
33^{2+1} - 42E4	SO FT		17.549	24.837	17.549		24.807
FPEE $\mathrm{AVFA}^{\text {a }}$		FT	20.353	29.259	22.558		27.909
+2= 4 204	SO FTOCT		2.351	3.250	2.351		3.260
+2. $=13336 \mathrm{E}$ M EA			13.45!	13.141	:3.451		13.141

LCANINGS PFP DASS			PAS5 :	PAS 6	OASS C	PASS 0
GPM LIDJID			473.539	634.953	4.70 .798	604.969
GPH/FT WEIR			4099.652	3074.705	2795.239	3386.761
CFS Vatonz			24.43)	36.608	26.119	35.060
vapar L? ${ }^{\text {do }}$		CFS	5. $2^{2} 1$	7.917	5.035	7.563
VLuadi 3ijarle axea		FOS	?.221	$0.31 ?$	0.321	0.305
VLOADICES LIPUIO			5.032	5.373	5.369	5.411
DGWncsmer fillivg calcilaticus						
DRY TRAY PRESSURE DREP	(HH)	IN	1.315	2.139	2.067	1.953
clear liouio height	(HL,	IN	3.270	2.945	2.891	3.004
Total tray dressure drop	(HT)	IV	う.085	5.085	4.957	4.957
inlet head	(HI)	IN	2.891	3.004	3.270	2. 945
DC HEAD LOSS	(HOA)	IN	2.232	0.836	0.691	1.014
DC FILLING	(HOC)	IN	10.108	8.925	8.918	8.917
oc filling		$p=T$	42.115	37.183	37.158	37.153
ADOITIONAL CALCULATIONS						
PERCENT JET FLOOO			79.577	72.139	71.008	70.663
DC INLET VELOCITY		FOS	0.374.	0.391	0.349	0.435
allonarle dc inlet velocity		FPS	0.390			
OVERALL TRAY EFFICIENCY		PCT	98.833			

multipass tray design progran

CARD \#1

CARD ${ }^{2}$
CARD *3

TITLE 1 (1)
TITLE 2 (1)
TITLE 3 (1)

CARD $\$$

vapor rate MLBS/HR								min.	vapor LBS/H	$\begin{aligned} & R R A \\ & R(2) \end{aligned}$				$\begin{aligned} & \text { POR } \\ & L B / C \end{aligned}$	$\begin{gathered} \text { DENS } \\ \text { CU } \end{gathered}$			0. = NO VAPOR CROSSOVER 1. = VAPOR CROSSOVER												
1	23	15	67	1	9	10		12131	141518	17118	8:19:20	2021	12223	2425	3227	8	2930	31	32:3	$33: 34$	35136	37 38	$38 \cdot 38$	3:40	4142	4344	1	6:47		49.50
		61	8.						309					16	40												0			

TEMPERATURE DEGF (2)	Pressure PSIA (2)
12345678910	11:12 13:1415:6,1718:19 20
140	25:

VE: TMST GAS: : THREE PASS OES: OH
JこSIGVER: P.W.BFCKER
v) VApIR cass sover

OPERATIMG GOMDITIUNS

MLBS/HK VAPIR MAX
MLBS/HR VAPJR MII
LBS/Cl FT VAPOO AT COND
tray lionio temp feature
operating pressure
CFS VAPCR AT GCM?
vapor luad
tray genmetry

DIAMETER

TRAY SPACING
NUMBER OF PASSES
HOLE OIAMETER
CROSS SECT AREA
BJBBLE/CROSS SECT AREA
VAPOR CROSSTVER (YES OR NO)

	617.029
	309.039
OEGF	1.403
PSIA	143.020
CFS	125.000
	122.357
	26.39.

		PASS A
DOWNCOMER INLET WIDTH **	IN	10.685
OOWNCOMER DUTLET WIOTH $* *$	I	10.685
FL.OW PATM LENGTH	14	37.655
CHORO LENGTH AT TOP OF OC	IN	75.673
CHORD LENGTH AT GTM DF DC	14	75.693
DC INLET AREA	S) Ft	3.387
oc gutlet mirea	SO FT	3.887
DUTLET WEIR HEIGHT	IV	2.678
InLET deir height on tray belum	IN	0.0
dC clearance to tray below	Iv	1.499
SHAPEJ LID (YES OR NO)		No.
RECESSE. rox (Yej or Nu)		N:
Bygale hax	S9 FT	29,192
FHEE AOEA	So FT	33.073
HOL $=$ A2EA	S3 Ft	3.485
	D. F	$11 . \operatorname{Mr~}^{7}$

FT 11.94
IN $\quad 24.00$
$\begin{array}{lr}1 \mathrm{~N} & 0.3 \mathrm{~A} \\ \mathrm{SO} \mathrm{FT}\end{array}$
$\begin{array}{ll}\text { SQ FT } 111.89 \\ \text { PC.T } & 77.71\end{array}$
77.71

ML95/42 LIDU10 Max
MLBS/HR LIQUIO MIN
LBS/CU FT LIOUIO AT COVD
SURFACE TENSIOV AT COND VISCOSITY AT CCND LIQUID FLOW RATE

PASS B
PASS C
PASS D
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

NO
NO
0.0
0.0
0.0
0.0
544.600
272.300
31.550
6.160
0.113 2151.032

4.445	4.445	0.0
4.445	4.445	0.0
37.655	37.655	0.0
140.414	135.412	0.0
140.414	135.412	0.0
4.342	4.242	0.0
4.342	4.242	0.0
2,578	2.678	0.0
0.0	0.0	0.0
1.499	1.499	0.0
N.	N	NO
NJ	N7	NO
29.531	29.192	0.0
32.733	33.434	0.0
4.272	3.485	0.0
14.956	11.937	0.0

CARD $\# 1$
CARD $\# 2$

$\begin{aligned} & \text { VAPOR RATE } \\ & \text { MLBS/HR } \end{aligned}$						MIN. VAPOR RATE MLBS/HR (2)					VAPOR DENSITY LB/CUFT						0. = MO VAPOR CROSSOVER i. = YAPOR CROSSOVER												
1	23	15	67	8	9		2131	14151611	718	19.20		22:23	2435	27	21	29:30	313	32:33	334	3536	36	38	39.40	41.	42:43	13:40:4	15:46		4e:49:50
		61	8.					309					$1{ }^{4}$	03													-	-	

liguid rate MLBS/HR	MIN. LIG. RATE MLBS/HR (2)	LIGUID DENSITY LB/CU FT	LIquid viscosity CP	SURFACE TENSION DYNES/CM (2)
12:345678910	11121314181617181920	21:22:23:24:25:26:27:28: 2930	31 32 32:34 35 35 36:37.38:39:40	61:42:43:4445:46:47] 48:49:50
554 ¢ 6	2723	31.55	0.113	6116

TEMPERATURE DEGF (2)	Pressure PSIA (2)
12345678900	
140	125

VCE T=ST CASE: THREE PASS DESION

OESIGNEK: P.W. JECKER
Nith vapeo cagssover

MLBS/LR VAPDR MIN		
LBS/CU FT VAPOR AT COVO		
tray liquio temperature	OEG F	
OPEQATING PRESSURE	PSIA	
CFS VAPDR at cond		
VApOf lija	CFS	
tray geouetry		
DIAMETER	FT	11.94
TRAY SPACING	IN	24.00
NUMBER OF PASSES		3.00
HOLE OIAMETER	IN	0.38
CROSS SECT AREA	SO FT	111.89
BUBBLE/CROSS SECT AREA	PCT	77.71
VAPJR CROSSOVER (YES JR ND)		YES

[^0]| LOATINGS PEF. PASS | | PASS A | PASS ${ }^{\text {a }}$ | PASS C | PASS 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| gom LIould | | 657.959 | 836.015 | 657.958 | 0.0 |
| GPH/ET NEIO | | 6253.599 | 4286.844 | 3498.439 | 0.0 |
| CFS VAPOR | | 35.404 | 47.175 | 39.776 | 0.0 |
| VAPOR LIAD | CFS | 7.634 | 10.177 | 8.521 | 0.0 |
| VLOAO/3!日BLE AREA | FOS | 2.252 | 3.355 | 0.274 | 0.0 |
| VLOAMCES LIJUI) | | 5.21. | 5.453 | 5.853 | 0.0 |
| DOWVCOMER FILLINS CALCULATIONS | | | | | |
| DRY TRAY DRESSJRE DRJP (HH) | IN | 1.742 | 2.059 | 2.190 | 0.0 |
| clear liouio height (hl) | IN | 3.296 | 2.979 | 2.339 | 0.0 |
| total tray dressure drop (ht) | IN | 5.039 | 5.038 | 5.039 | 0.0 |
| INLET HEAD (HI) | IN | 2.839 | 2.979 | 3.296 | 0.0 |
| DC HEA) LJSS (HDA) | IN | 2.017 | 0.946 | 0.630 | 0.0 |
| DC FILLING (HDC) | IN | 9.895 | 8.964 | 8.965 | 0.0 |
| dC Emling | PCT | 41.230 | 37.350 | 37.356 | 0.0 |
| ADOITIONAL CALCULATIONS | | | | | |
| PERCENT JET FLOOD | | 79.056 | 89.091 | 68.751 | 0.0 |
| DC INLET VELOCITY | FPS | 0.377 | 0.429 | 0.346 | 0.0 |
| allowable oc inlet velocity | FPS | 0.390 | | | |
| overall tray efficiency | PCT | 98.833 | | | |

Discussion of Sample Problem Output

The output for the first two sample problems (four pass rating cases) show that these trays should have no problems operating under the conditions inputted. The highest downcomer filling is about 37 percent, the highest percentage of jet flood is about 76 , and the downcomer velocity for each downcomer is below the allowable value of 0.341 feet per second.

The three pass rating cases do show some potential problems, For both cases, the vapor velocities for passes A and C exceed 100 percent jet flood. This indicates that if the tower were run under these conditions, it is likely to flood. Note, however, that the downcomer velocities are well below the allowable level. Therefore, this tower could be made operable by changing the tray geometry so that the downcomers are smaller (this will increase the downcomer inlet velocities) and the bubbling areas greater. (This will reduce the percentages of jet flood.)

The three and four pass designs are, of course, workable, although downcomer velocities for some individual downcomers are slightly higher than allowable. Methods of balancing and improving such designs are discussed in Chapter IV.

RECOMMENDATIONS FOR THE OPTIMUM DESIGN OF MULTIPASS TRAYS

This chapter presents the techniques recommended for the optimum design of multipass trays. The use of these techniques should provide designs with maximum flexibility and should eliminate those potential problems which have made engineers apprehensive about specifying multipass trays. In summary, the following rules are proposed for the design of multipass trays. They guarantee equal vapor and liquid flow rates for each pass.

1. Design for equal bubble areas and equal hole areas for each tray pass. This will enable each pass to accommodate equal vapor loadings. Equal downcomer areas are not necessary, and downcomers should be designed to meet the other criteria recommended.
2. Equalize weir lengths and lengths under downcomers for each pass, using the techniques depicted in Figure 10. Also, specify equal downcomer clearances and weir lengths for each pass. This will make the resistance to liquid flow the same for each pass.
3. Provide for vapor crossover through the downcomers using either pipes, ducts, or box-type downcomers, depicted in Figure 5. The box-type downcomer may be preferred by tray vendors as it is easier to fabricate. Also, the box-type downcomer provides another means of reducing downcomer weir

Figure 10

METHODS OF PROVIDING FOR EQUAL DOWNCOMER LENGTHS

length, as in recomendation 2. Vapor crossover will make the total tray pressure drop across each pass equal, and will provide a means of any vapor maldistribution (e.g. due to poor distribution at vapor inlet nozzles) to be corrected.

The first recommendation provides for equal dry tray pressure drops (HH) for each pass. The second recommendation provides for equal clear liquid heights (HL) and equal downcomer head losses (HDA) for each pass. If no inlet weirs or equal inlet weir heights and lengths are used, the tray inlet head (HI) will also be equal for each pass. Therefore, the total tray pressure drop (HT) will be equal for each pass. This is guaranteed by the third recommendation. Based on the equations presented in Chapters III and IV, these three recomendations guarantee equal vapor and liquid flowrates for each pass.

Although such a design may be slightly more difficult to fabricate than an equal flowpath length design (which can utilize tray panels of the same width), it has distinct advantages. An equal flowpath design, or, for that matter, any design, can be specified to provide any desired vapor and liquid split between the three or four passes. However, the desired split will only occur at the design vapor and liquid loadings. If the total vapor and liquid rates vary at all from the design values, the split will vary.

This variation is due to the fact that the clear liquid height equation is dependent on a term which includes the liquid rate, plus
a constant term dependent on the weir height:
$\mathrm{HL}=\beta($ HOW +HWO$)$
Where HWO $=0.48 \times \mathrm{F}_{\mathrm{W}}(\mathrm{GPM} / \mathrm{LWO})^{2 / 3}$
The head over the weir (HOW) depends on the liquid rate (GPM), but the weir height (HWO) is a constant.

For example, suppose the total liquid flowrate is 4000 GPM on a four pass tray. If the tray is designed for equal weir length and height, the clear liquid height for each pass will be equal. With weir height set at 2 inches and every weir length set at 200 inches, the clear liquid height for each pass with 1000 GPM is 2.38 inches ($\mathrm{F}_{\mathrm{W}}=1.0, \beta=0.7$) .

$$
\begin{aligned}
H L & =0.7\left[0.48 \times 1.0 \times(1000 / 200)^{2 / 3}+2.0\right] \\
& =2.38 \text { inches }
\end{aligned}
$$

If one weir length is 240 inches, and another 120 inches, the two clear liquid heights can still be made equal for an equal liquid split by making the longer weir 2.16 inches high and the shorter weir only 1.43 inches high.

$$
\begin{aligned}
\mathrm{HL}_{\mathrm{A}} & =0.7\left[0.48 \times 1.0 \times(1000 / 240)^{2 / 3}+2.16\right] \\
& =2.38 \text { inches } \\
\mathrm{HL}_{\mathrm{B}} & =0.7\left[0.48 \times 1.0 \times(1000 / 120)^{2 / 3}+1.43\right] \\
& =2.38 \text { inches }
\end{aligned}
$$

This example shows how even designs with unequal weir lengths can be made to have equal clear liquid heights for any given set of
loadings. Only the weir height need be varied.

Suppose, however, that during the course of a tower's life, it must be operated at less than design rates. Suppose half rates, or a total liquid rate of 2000 GPM , were run through the tower. The equal weir length design would still have equal clear liquid heights for each pass.

$$
\begin{aligned}
\text { HL } & =0.7\left[0.48 \times 1.0 \times(500 / 200)^{2 / 3}+2.0\right] \\
& =2.02 \text { inches }
\end{aligned}
$$

However, the unequal weir length design, which gave equal clear liquid heights for the design rates, does not give equal clear liquid heights for half rates.

$$
\begin{aligned}
\mathrm{HL}_{\mathrm{A}} & =0.7\left[0.48 \times 1.0 \times(500 / 240)^{2 / 3}+2.16\right] \\
& =2.06 \text { inches } \\
\mathrm{HL}_{\mathrm{B}} & =0.7\left[0.48 \times 1.0 \times(500 / 120)^{2 / 3}+1.43\right] \\
& =1.87 \text { inches }
\end{aligned}
$$

For this reason, if both designs were specified to provide for equal vapor and liquid rates to each pass for the design conditions, only the equal weir length design would have equal splits under all conditions. Only the equal weir length design provides for equal clear liquid heights for all conditions, which, combined with the other recommendations, guarantees equal vapor and liquid splits for each pass. Tray vendors have revealed that equal flowpath length designs have had operability problems due to imbalanced flowrates at other
than design conditions (2).

Abstract

The procedures presented in this chapter guarantee symmetrical multipass tray designs. Therefore, using these recommendations, engineers should have no "aversion" to specifying multipass trays in fractionating towers.

CHAPTER VII
CONCLUSIONS

This thesis has presented the case for the usefulness of multipass trays for large fractionating towers. An example will demonstrate how multipass trays are economically attractive.

Holland, et al (3) have stated that the cost of a tower of constant height increases linearly with capacity.

$$
C_{2} / C_{1}=Q_{2} / Q_{1}
$$

Where C_{2} and C_{1} are costs for 2 towers and Q_{1} and Q_{2} are their respec. tive capacities. Because capacity increases linearly with tower cross sectional area, it increases proportionately to the square of the diameter.

$$
Q_{2} / Q_{1}=\left(D_{2} / D_{1}\right)^{2}
$$

Where D_{2} and D_{1} are the required tower diameters for the two towers. Therefore, tower cost increases with the square of tower diameter. $C_{2} / C_{1}=\left(D_{2} / D_{1}\right)^{2}$

Using this relationship we can compare the costs of towers using trays of varying number of liquid passes for a given service. For a system with a liquid load of 2000 GPM and a vapor load (V_{L}) of 37 cubic feet per second, one tray vendor (7) suggests the diameters given below for a typical column with 24 inch tray spacing. If the cost of the four pass design is set at 100 , the relative costs of each of the other designs is given below.

No. of passes	Diameter (ft)	$\frac{\text { Relative Cost }}{18}$
1	14.5	192
2	13.5	124
3	13.0	108
4	100 (Base)	

As shown in the table above, one, two and three pass designs are 92, 24 and 8 percent more costly than a four pass design. With the cost of large towers running in the six and seven figure range, substantial savings can be realized if multipass trays are used.

Through the use of the equations, recommendations, and computer program presented in this thesis, multipass fractionating tray design should be made easier to those engineers in the chemical and petroleum industries who do not have access to proprietary procedures. Although multipass trays sometimes have slightly lower tray efficiencies than trays with longer flowpath lengths, this effect becomes negligible for large size towers. Therefore, multipass trays are economical for many large tower designs, and should be specified more frequently by process design engineers.

APPENDIX

Fortran IV Computer Program for Rating and Designing Three and Four Pass Sieve Trays


```
MAIN

```

T=MP, PSIA,

```
T=MP, PSIA,
vP, DunLE, IT, T
vP, DunLE, IT, T
(w(1),I=1,5),
(w(1),I=1,5),
(m(x);
```

(m(x);

```


```

HNC(2), thi(2), C(2), AC(2),SHAPF(2),2FCSOX(2),

```
HNC(2), thi(2), C(2), AC(2),SHAPF(2),2FCSOX(2),
, (3), AC(3), SHADE(3), DEC 3-x(3),
, (3), AC(3), SHADE(3), DEC 3-x(3),
4wO(4), HW[(4), [(4), AO(4),SHADE(4), DEC9N\times(4)
4wO(4), HW[(4), [(4), AO(4),SHADE(4), DEC9N\times(4)
ATAIN
ATAIN
10J2 FNO:AAT
10J2 FNO:AAT
ASAlN
ASAlN
1002 FNO:AT (2F10.3,F10.5,10X,F10.4,1
1002 FNO:AT (2F10.3,F10.5,10X,F10.4,1
F10,3,F10.5,2F10,4,1,
F10,3,F10.5,2F10,4,1,
2F10.3,1,
2F10.3,1,
10.3,3F10.5,1
10.3,3F10.5,1
(5F1004,7),
(5F1004,7),
4(6F10.4,N),
4(6F10.4,N),
F10.4)
F10.4)
mfegmedate calculations: loadings and geometey
mfegmedate calculations: loadings and geometey
ERO = 0.0
ERO = 0.0
ORHOL = RHOL ( (RHOL - RHOV)
ORHOL = RHOL ( (RHOL - RHOV)
VTOT = VADOES /RRHOV * 3.6)
VTOT = VADOES /RRHOV * 3.6)
CFSLL= LIQDES /(RHOL * 3.6)
CFSLL= LIQDES /(RHOL * 3.6)
LTOT = CFSLL* 448.8
LTOT = CFSLL* 448.8
ORHOV = RHOV / \RHOL - RHOV 
ORHOV = RHOV / \RHOL - RHOV 
LTOT = VTOT * SQRT(DRHOV)
LTOT = VTOT * SQRT(DRHOV)
IF (TS.EO.O.0) TS = 24.
IF (TS.EO.O.0) TS = 24.
C
C
DOWNCOMER INLET VELOCITY: A TYPICAL EQUATION
DOWNCOMER INLET VELOCITY: A TYPICAL EQUATION
HFACT2 = TS/24.
HFACT2 = TS/24.
RHOFAC = (RHDL - RHOV)
RHOFAC = (RHDL - RHOV)
IF (RHOFAC.LT.16.)RHDFAC = 15
IF (RHOFAC.LT.16.)RHDFAC = 15
IF (RHOFAC.GT.30.1RHOFAC = 30
IF (RHOFAC.GT.30.1RHOFAC = 30
ALLVEL = STLUIPHDFAC,TABLEI
ALLVEL = STLUIPHDFAC,TABLEI
ALLVEL = ALLVEL * HFACT
ALLVEL = ALLVEL * HFACT
OTOCA = CFSLL/ALLVEL
OTOCA = CFSLL/ALLVEL
F IDT.GT.0.21 GO TO 1003
F IDT.GT.0.21 GO TO 1003
FFLTUT.GT.100. ) GO TO 2154
FFLTUT.GT.100. ) GO TO 2154
F (NO.EQ.3.0) GO TO 1004
F (NO.EQ.3.0) GO TO 1004
c. DESIGN - FIUR PASS
c. DESIGN - FIUR PASS
(FILTOT.GT.6000.) GOTO 216
```

(FILTOT.GT.6000.) GOTO 216

```


```

 T = DTLUTVLTOT,LTOT,TASLE?
    ```
    T = DTLUTVLTOT,LTOT,TASLE?
    ACS =.7.45 % (0T**2.)
    ACS =.7.45 % (0T**2.)
    4-pasS re DESIGN
    4-pasS re DESIGN
    A0D1(1) = 21 * TCTmCA
    A0D1(1) = 21 * TCTmCA
    A)c口(1)=A0CI(I)
    A)c口(1)=A0CI(I)
    (1) = q[SE(100.*AOR[11)/ACS) * 2.12 * !T
    (1) = q[SE(100.*AOR[11)/ACS) * 2.12 * !T
    A(r) = 5.73 # TMTMCA/OT
```

 A(r) = 5.73 # TMTMCA/OT
    ```




```

Fumpen IN Gl {-LEASE 2.0
G% T? 100
%
TRIAL AVD ERFOD FOR VADOR SPLIT
15 V(1)= VTOT/4.
0) 50 1V =1,50
V(2)=0.5*VTOT - V(1)
V(3)=V(1)
V(4)=V(2)
00 20 1=1,4
voli)=V(I) / aO(I)
HED(I)= XCVO
Hr(I) = HC(I) + HED(I)
C CONTMME
HED3=HT(4) +HMD(4) + HI(4) -HC(3) -HJD(3) -HI(3)
HED3=HT(4) +HJO(4) \& HI(4)
VO3 = SORT((HED3*RHCL)/(RHOV*XCVO))
VFARSIV3 * V{3)
VV(1) = AMIN1((V(3)+V2)), 0.49\#VTOT)
YAPCON=1.0
5 HCl = HT(2) +HT(4) - HT(3) - HED(1)
QLTERM = (HC1-RETA*HWO(1)) (0.48*FW*BETA)
OLT = OLTERM** 1;
101 IF(ABS(QLI-L(1)).LT,0.01) G0 TO 107
IFIQLI.GT.L(I).AND.DELTAL.GE.0.D) DELTAL = -0.4*DELTAL
IFIQLI.LT.L(1).AND.DELTAL.LE.0.0) DELTAL = -0.4*DELTAL
IF(QLI.LT.LII)AND.D
100 (11) = AMIN1(L(1),0.49*LTOT)
LIOCON=1.0
107 IFICPOSS.NE.1.0)GO TO 1.N5
C VAPOR SPLIT - FOUR PASS - WITH VAPOR CROSSOVER
V(1)=VTOT/4.
00 400 I1=1,50
V(2) = 0.50 * vTOT - V(1)
VO(2)=V(2)/AO(2)
HED(2)= XCVO * ((vO(2))**2.) * RHOV / RHOL
HT(2)=HC(2)+HED(2)
HED1 = 4T(2)-HC(1)
HED1 = 4T(2) - HC(1)
Vl = VO1 * AO{1)
IF IABS(VI-VI1)I:LT.0.01) GO To 401
400 VIL)= AMINI(IV(I)+VI)/?.,0.40*VTOT)
VAPCON = 1.0
4V V(3)= VTOT/4.
D) 40? 12=1,50
V(4) = 0.50*VTOT-V(3)
Vn(4) = V(4)/aO(4
"5)(4)=X`VO*((VO(L))**2.) * 4,HOV/RHOL
HT(4) =H:(4) +HET(<.)

```

```

225		$v 3=203 * A 73)$
223		
ごら	$\rightarrow 02$	
了294．		vapean $=1.0$
3273	03	covtinue．
327		50 T0 505
	${ }_{6}$	TH25E Pass
3291	$5: 4$	（14）$=$ ）．${ }^{\text {（ }}$
327？		$\mathrm{V}(4)=0.0$
3273		L（1）$=$ LTOT／3．
$\mathrm{P}_{2} \mathrm{O}_{4}$		
［235		no $500 \mathrm{Jl}=1,40$
2296		1（3）$=1111$
3297		L（2）$=$ LTOT－L（3）－L（1）
0209		D0 $516 \mathrm{I}=1,3$
3297		
3903		IF（SHADE111611，611，612
3301	311	
2302		go T3 513
$\bigcirc 303$	512	HUD（I）$=0.03$（ L（I）（ C（II）＊LUD（I）I）＊＊ 2 。
3304	513	HI（I）$=0.48 *($ LI） 1 LII（1）$) * * 0.667+4 W(1)$
－305		IF（HWI（I）．GE．C（I）．OR．RECBCX（1）．GT．0．0）HUD（I）$=2 *$ HUD（I）
3306	515	continue
0307		IF（HHIII）．GT． 0.0 ）go to 614
Ј308		HIT（1）$=$ HC（3）
0309		H（12）$=$ HC（2）
3310		HI（3）$=$ HC（1）
0311	614	continue
2312		IFICROSS．NE．1．0）Go TO 615
	$\begin{aligned} & c \\ & c \\ & c \end{aligned}$	three pass－l／v split－with vapor crassover
2313		H13 $=$ HI（ 21 ＋HUO（2）－HUD（3）
0314		IF1HW1（3）．LE．0．0） 60 TQ 703
－${ }^{\text {a }}$		OLTEPM $=($ HI3－HW1（3）$) / \mathrm{C} .48$
3315		OLT＝OLTERM＊＊1．5
0317		WLI＝OLT＊LWI（3）
3313		1FIARS（OLI－L（1）．LT．0．01）SO TO 507
9317		IFI日LI．ST．LII）．AND．0ELTAL．LE．C．O）DELTAL $=-3.4 *$ DELTAL
0320		IFIDLI．LT．L（1）．AND．DELTAL．GE．0．0）DELTAL $=-0.4 *$ DELTAL
3321		L（1）$=111)+$ deltal
2327		Gio TO 600
3523	703	
2236		OLT＝OLTERM＊＊1．5
232		ult＝2LT＊Lwolil
3320		
7327		
932\％		
\％30		$1.11)=L(1)+$－L．TAL
3：		$3{ }^{3} \times 4$
	5	Vabore 501 l

```

```

Frateat IV Si	2cLEa ${ }^{\text {c }}$	2.0 Cata cate $=7+125$	1415273	PGSE OM\%
2301		$\operatorname{VAPCN}=1.0$		
0382	804	TRVVT $=V(1)+V(2)+V(3)$		
0383		if (ARS(tryvt - Vtot).it. .ocl) ge ro 799		
0344	305	Cuntrnje		
3395		90 404 I $=1$, M		
0386		Vofil)=v(I) / An(I)		
1337				
239\%	404	HT(I) $=$ UED(I) + HC(I)		
	c			
	c	OOnveomer fillivg calctulations		
	c			
358.	1.35	2) $1251=1,4$		
	E			
	c	ASSume no ligul graneent across tray		
	c			
0303		GQAD $=0.0$		
0391		HO(I) = (HT(I) + +UD(I) $)$ + HIII) + G2AD		
039 ?	10.6	covtinue		
2393		กo $3 \mathrm{I}=1, \mathrm{M}$		
0394		PCTHCII) $=\left(\right.$ HO(11/TS) ${ }^{\text {a }}$ (0)		
0395		VLII) $=$ V(I) * SQRTIORHOV)		
0396		VL(I) $=$ V(T) * SQRT(ORHTVV)		
3307		VLAJII) $=$ VLII) / 4 B (I)		
0393		S(I) $=$ VLII) /(LII)/448.8)		
0399		GPHFTM(I) $=(\mathrm{L}(1) * 60.1 /(\mathrm{LWO}$ (I)/12.)		
3400	3	COMTINUE		
	c			
	c	ADOITIONAL CALCULATIONS		
	c			
	$\begin{aligned} & c \\ & C \end{aligned}$			
	$\begin{aligned} & c \\ & c \end{aligned}$	JET FLDOD: A typical equation		
0401		HFACTI = SQRT(TS/24.)		
0402		D) $203 \mathrm{I}=1,4$		
0403		VSJETII $=$ HFACTI * $0.55-0.035 * 1$ GPHFTW(II/1000.)		
0404	203	DCTjET(I)=(VLAB(I)/VAJET(I)) * 100.		
3405		0) $2041=1, M$		
0496		CFSLI 1) $=1$ (1)/448.8		
0407	204	OCVELI $=$ CFSL(I)/ADCI (1)		
	$\begin{aligned} & c \\ & c \end{aligned}$			
	c	TRAY EFFICIENCy		
	c	.	-	
0408		FLJIS = L./VISC		
2409		IFIFLUIT.GT.14. \| FLUI $=14$.		
0410		EFECY = STLU(FLUID, TABLE4)		
	c	ORINTING RESULTS		
	c			
3411		$3911=1,4$		
3412		+11) = Al PHA(1)		
3113				
9414		- (!) =aldall)		
3415			$\because \cdot$.
9414		Cryflist		

```

\begin{tabular}{|c|c|c|}
\hline & & 1'----------1, \\
\hline 3463 & & !F1P.E0.4) 90 T0 2122 \\
\hline 34, \({ }^{3}\) & &  \\
\hline 3453 & &  \\
\hline 0460 & & () T \% 2124 \\
\hline 3467 & 2122 & PRINT 2022,w(1),w(5),W*3, WN \\
\hline 3407 & 2322 &  \\
\hline 0409 & & DRINT \(2023, \mathrm{~W}(6)\), W(10), WW3, Ww 3 \\
\hline 0473 & 2223 &  \\
\hline 0471 & 2124 & Privt 2024,(LFP(I), \(1=1,4\) ) \\
\hline 347? & 2)24 &  \\
\hline 0473 & & PKINT \(2025,(\mathrm{LWO}(1), \mathrm{I}=1,4)\) \\
\hline 3474 & 2)25 &  \\
\hline 0475 & & DQIVt 2J26,(100(1), \(1=1,4\) ) \\
\hline 0476 & 2026 & FJRMAT(1X, 'CHORD LENGTH AT BTM OF DC', 7x, 'IN', \(5 \times, 4(F 10.3,10 \mathrm{X})\) ) \\
\hline 0477 & & PशIMT 2027, (ADCI(I), \(1=1,4\) ) \\
\hline 0478 & 2027 &  \\
\hline 0479 & & PRINT 2028, (ADCO(I), \(1=1,4\) ) \\
\hline 3480 & 2028 &  \\
\hline 0481 & & PRINT 2029,(HWO(1), \(1=1,4\) ) \\
\hline 3482 & 2029 & FJRMATIIX, 'QUTLET WEIR HEIGHT', 14X, 'IN', 5X,4(F10.3,10XI) \\
\hline 9483 & & PRINT 2030, \({ }^{\text {(HWI (I), } 1=1,4)}\) \\
\hline 0484 & 2030 & Formatilx,'InLET WEIR HEIGHt on tray below in', 5x,4ifio.3,10xit \\
\hline 0485 & & PRINT 2031,(CII), \(1=1,4)\) \\
\hline 3486 & 2031 &  \\
\hline 0497 & & PRINT 2032,(A(1), \(1=1,4)\) \\
\hline 0483 & 2032 & FORMAT(1X, 'SHAPED LIP (YES OR NO)',22x,4(A3,17x) \\
\hline 0489 & & PRINT 2033, (8, \(11, I=1,4)\) \\
\hline 0490 & 2033 &  \\
\hline 0491 & & PRIMT 2034, (AR(I), I \(=1,4\) ) \\
\hline 0492 & 2034 &  \\
\hline 0493 & & PRIUT 2035, (AF (1), \(1=1,4\) ) \\
\hline 0494 & 2035 &  \\
\hline 0495 & & PRINT 2036,(AO(1), \(1=1,4\) ) \\
\hline 0495 & 2036 & FORMAT(1X, 'YOLE AREA', 23 X, 'SQ FT', \(2 \mathrm{X}, 4(\mathrm{~F} 10,3,10 \mathrm{C})\) ) \\
\hline 0497 & & PRINT 2037,(AOAR(I), \(1=1,4\) ) \\
\hline 0498 & 2037 & FORMATIIX,'HOLE/BUBBLE AREA',16X, PCT',4X,4(F10.3,10X),//) \\
\hline 0499 & & PRINT 2038 \\
\hline 0503 & 2338 & FORMATIIX, \({ }^{\text {+ }}\) HALF WIOTH FOR PASSES \(\mathrm{B}, \mathrm{C}, \mathrm{D}, 1\) \\
\hline 0501 & & PRINT 2135 \\
\hline 0502 & 2135 & FigMatilhl,90X, PAGE 2, \\
\hline 0503 & & IFIVAPCON.ST. O.0IGO TO 3001 \\
\hline 0504 & & PKINT 2136 \\
\hline 0505 & 2136 &  \\
\hline 0536 & & gitn 3002 \\
\hline 0507 & 3301 & PQINT 2137 \\
\hline J508 & \[
2137
\] & FOPMATI NOTE: VAPOR SPLIT OID NOT CONVERGE IA: 50 TEIALS - VAPOR SP Lit ar sott tral is U3.in, 1 \\
\hline 0539 & \(3) 02\) &  \\
\hline 0510 & &  \\
\hline 0511 & & Э) Tr 3002 \\
\hline 3512 & 323 - & Privt ? 138 \\
\hline > 313 & 2139 &  \\
\hline & & SPEIT OF 4St TRIAL IS Jjtu', 1 \\
\hline
\end{tabular}



\section*{REFERENCES}
1. Ballast Tray Design Manual. Dallas: Fritz W. Glitsch and Sons, Inc., 1967.
2. Becker, P.W., Personal communications with representatives of tray vendors, 1972-1974.
3. Holland, F.A., Watson, F.A., Wilkinson, J.K., "How to Estimate Capital Costs," Chemical Engineering, Vol. 81, no. 7, April 1, 1974, pp. 71-76.
4. Jamison, R.H., "Internal Design Techniques," Chemical Engineering Progress, Vol. 65, no. 3, March, 1969, pp. 46-51
5. King, C.J., Separation Processes, New York: McGraw-Hill Book Co., 1971, pp. 544-608.
6. Koch Flexitray Design Manual. Wichita: Koch Engineering Company, 196
7. Koch Flexitrays, Bulletin Rt-5, Wichita: Koch Engineering Company, 1968, pp. 1-8.
8. Maxwell, J.B., Data Book on Hydrocarbons - Application to Process Engineering. Princeton, New Jersey: D. Van Nostrand Company, Inc., 1950, P. 245.
9. Smith,B.D., Design of Equilibrium Stages Processes, New York: McGraw-Hill Book Co., 1963, Pp. 539-569 (Chapter by J.R. Fair).

\section*{VITA}

Paul Becker was born in New York City in 1948. He attended public schools and the Bronx High School of Science. In 1970, he obtained a Bachelor of Science in Chemical Engineering from Columbia University School of Engineering and Applied Science in New York. At Columbia, Paul was student chapter president of the American Institute of Chemical Engineers, Editor of the Columbia Engineering Quarterly, an officer of Tau Beta Pi (national engineering honor society), and a member of Phi Upsilon Lambda (national chemistry honor society). As an undergraduate he was the recipient of the AICHE Scholarship award and the George Vincent Wendell medal for scholarship, character, and service.

Since 1970 Paul has been employed by Esso Research and Engineering Company in Florham Park, New Jersey. Until 1974 he worked in the Technology Department conducting \(R \& D\) projects in the area of fractionation, and served as tower design consultant for engineers in the company. He is currently working in the Special Projects Design Division as a process design engineer.

Paul entered Newark College of Engineering in the Fall of 1971 as a part-time evening student and began working on this thesis in the Spring of 1973. The computer program presented in this thesis was developed through the use of the IBM 370 computer facilities of the Exxon Corporation Mathematics Computing and Systems Department in Florham Park.
\begin{tabular}{|c|c|}
\hline \(\mathrm{A}_{B}\) & Bubbling area, square feet. Perforated area in which vapor and liquid contact each other. \\
\hline Allvel & Allowable downcomer inlet velocity, feet per second. \\
\hline \(A_{0}\) & Open area or hole area, square feet. \\
\hline Aud & Area under downcomer, square inches. \\
\hline c & Downcomer clearance, inches. \\
\hline \(\mathrm{CFS}_{V}\) & Vapor rate, cubic feet per second at conditions. \\
\hline \(\mathrm{C}_{\text {Vo }}\) & Dry tray pressure drop coefficient, dimensionless. \\
\hline \(\mathrm{D}_{0}\) & Hole diameter, inches. \\
\hline \(\mathrm{F}_{\mathrm{W}}\) & Weir factor used in clear liquid height equation, dimensionless. \\
\hline GPHFTWEIR & Liquid weir loading, gallons per hour per foot of weir length. \\
\hline GPM & Liquid rate, gallons per minute. \\
\hline H & Tray spacing, inches. \\
\hline HDA & Head loss under the downcomer, inches of liquid at conditions. \\
\hline HDC \(=\mathrm{HD}\) & Downcomer static backup, inches of liquid at conditions. \\
\hline HFACT1 & Tray spacing capacity factor used in jet flood equation, dimensionless. \\
\hline HFACT2 & Tray spacing capacity factor used in allowable downcomer inlet velocity equation, dimensionless. \\
\hline HH & Dry tray pressure drop, inches of liquid at conditions. \\
\hline HI & Inlet head, inches of liquid at conditions. \\
\hline HL & Clear liquid height, inches of liquid at conditions. \\
\hline HOW & Head of crest over weir, inches of liquid at conditions. \\
\hline HT & Total tray pressure drop, inches of liquid at conditions. \\
\hline HWI & Inlet weir height, inches. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline HWO & Outlet weir height, inches. \\
\hline L & Liquid rate, gallons per minute \\
\hline \(L_{\text {UD }}\) & Length of chord at bottom of downcomer, inches. \\
\hline LWI & Length of inlet weir, inches \\
\hline LWO & Length of outlet weir, inches. \\
\hline P & Pressure level in chamber above pass, any pressure dimension. \\
\hline \(\mathrm{P}^{\prime}\) & Pressure level in chamber below pass, any pressure dimension. \\
\hline RHOFAC & Density difference capacity factor used in calculating allowable downcomer inlet velocity. A function of ( \(\rho_{\mathrm{L}}-\rho \mathrm{V}\) ), dimensionless. \\
\hline TT & Tray thickness, inches \\
\hline v & Vapor rate, cubic feet per second. \\
\hline \(\mathrm{V}_{\mathrm{L}}\) & Vapor load \(=\operatorname{CFSV} \sqrt{\rho_{\mathrm{V}} / \rho_{\mathrm{L}}-\rho_{\mathrm{V}}}\), cubic feet per second. \\
\hline \(\mathrm{v}_{0}\) & Vapor velocity through the perforations \(=C F S v / A_{0}\), feet per second. \\
\hline \(\beta\) & Aeration faction used in clear liquid height equation, dimensionless. \\
\hline \(\rho_{\mathrm{V}}\) & Vapor density at conditions, pounds per cubic foot. \\
\hline \(\rho_{L}\) & Liquid density at conditions, pounds per cubic foot. \\
\hline
\end{tabular}

Subscripts
\begin{tabular}{ll}
\(A, B, C, D\) & Identify variable with one of the tray passes. \\
total & Identifies variable as total value for all passes.
\end{tabular}```


[^0]:    ** HALF WIOTH F"R pASSES 3,C,0

