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Particulate Matter Detection in Mines Using 3D
Light Detection and Ranging Technology

Zachary Osterwisch1, Alexander Mauntel1, Nathanael Nisbett1, Dibbya Barua1, Ahmad Alsharoa1
1Missouri University of Science and Technology, Rolla, MO, USA

Abstract—This paper proposes a novel portable prototype and
self-contained Air Quality (AQ) monitoring device that utilizes
Light Detection and Ranging (LiDAR) technology to take its
measurements. The novel device aims to improve mining safety
by collecting and analyzing the AQ inside mines and displaying
the real-time conditions to personnel. The intent is to create a
3D map of the environment and display potentially hazardous
Atmospheric Particulate Matter (APM). To achieve this goal,
we prototype a portable, compact, and easy-to-operate system
that utilizes LiDAR to detect APM. Then, we propose how the
collected data can be used to calculate real-time AQ conditions.
Finally, we illustrate selected results to show the importance and
feasibility of our novel prototype.

Index Terms—Light Detection and Ranging (LiDAR), Atmo-
spheric Particulate Matter (APM), Real-time 3D Map.

I. INTRODUCTION

Air quality (AQ) monitoring is a crucial aspect of the mining
industry and defines the amount of pollutants in the air. AQ
is typically measured in units of mass of the pollutant per
volume of air [1]. Dust is typically released into the air of a
mine during the extraction, transportation, and processing of
minerals. This dust, or Atmospheric Particulate Matter (APM),
can be classified into two categories of concern based on size:
float dust with diameter sizes ≤ 70µm, and respirable dust
with diameter sizes < 10µm [2], [3].

Float dust is a concern because it poses an explosion threat
in underground mines, while respirable dust is a direct danger
to the miners’ health because it can lead to diseases [2]. Inhal-
ing float coal dust can lead to Coal workers’ Pneumoconiosis
(CWP), commonly known as black lung disease [3]. CWP
is a disabling and potentially fatal lung disease, and it has a
tremendous human and financial toll on the US coal mining
industry. Float silica is another potential danger that can lead
to silicosis, also a disabling lung disease. The most severe form
of these diseases, Progressive Massive Fibrosis (PMF), is also
fatal [4]. Data from The National Institute for Occupational
Safety and Health suggests that both the prevalence of CWP
and PMF have increased since 2000 [4].

One of the best ways to reduce APM exposure is to better
monitor the AQ inside mines. Light Detection and Ranging
(LiDAR) technology has the potential to help monitor AQ.
This technology operates by utilizing laser technology to
cast multiple laser beams across a Field-of-View (FoV) area,
measuring the time it takes for the return signal, and then
calculating the distance between the sensor aperture and the
object the laser beams hit [5]. This data can be used to
generate precise and real-time 3D maps that can be used
for several applications such as surveying, wildfire detection,
autonomous vehicles, human detection, etc [5], [6]. Although

cameras can take high-resolution pictures, they are not able
to provide accurate spatial information unlike LiDAR sensors,
which can measure object dimensions and distances between
objects. Furthermore, LiDAR can work under different lighting
situations while cameras do not perform well in low-light
situations, such as those in mines [7].

An important part of AQ monitoring in mines is to measure
how APM moves through the air and spatially locate the
APM inside the mines. This area of concern has resulted in
numerous solutions to assist with the problem, but each of
them has its own set of disadvantages. The biggest downfall
for AQ solutions in the industry is that they are single-point
sensors [8]. These sensors only provide the AQ at the location
of the sensor and cannot visualize the spatial movement of
APM. Further, some AQ monitoring technology is designed to
measure only one APM size, such as PM2.5 or PM10 (PM10
= APM diameter 10µm) [12]. Lastly, a lot of these sensors
are not portable, and therefore, a large number of sensors are
required inside the mine to track and monitor APM.

Real-time monitoring is an important aspect of AQ moni-
toring because the APM is harmful and potentially lethal for
mine workers. To mitigate risk and protect workers, the on-site
personnel should be alerted in real-time if APM levels were
too high. However, some traditional compliance monitoring
in the mining industry can be slow. The process involves
sampling, collection, and then sending the collected sample
off for analysis [9]. This process can take hours, days, or
sometimes weeks to get results back. Although devices like
Aeroqual Dust Sentry [10] do not require their samples to be
sent off, the given results are a 24-hour average. These sensors
also require added maintenance, and thus added cost, because
their filters need to be changed daily or weekly.

There have been few works in literature about LiDAR-
based detection methods for APM in the mining industry. The
work in [13], proposed to use stationary micro-pulse LiDAR
at above-ground mines to track large plumes of dust for up
to 6 kilometers. However, this would only be applicable for
above-ground mines and for large plumes of APM which is
not of concern in this paper. The contract in [14] discusses the
goal of dust detection in mines using LiDAR technology, and
it lists the potential benefits that LiDAR could provide, but it
is only a proposal for the idea. Both these sources propose
the idea and potential benefits LiDAR could provide for dust
detection, but they both did not define a method for detection
or design a prototype to test the technology. The work in [15]
utilizes LiDAR’s mapping ability to track and estimate mining
subsidence, not AQ monitoring.

To the best of our knowledge, current LiDAR solutions
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Current Solutions Functionality Drawbacks

Aerodynamic Particle
Sizer (ex. TSI 3321) [8]

High-resolution real-time aerodynamic measurements of
particles from 0.5µm to 20µm

- Very Large
- Needs flowing air

- Provides data only from a single collection point

High Volume Air Sampler
(ex.Partisol 2000i-D) [9]

Measures the AQ of a large area, typically >1500 m3 of air
over a period of 24 hours. Dust filter must be changed daily

and sent to the lab to be analyzed

- Does not indicate time of contamination
- Laboratory analysis required
- Analysis could take weeks

Real-Time Dust
Monitoring (Ex. Dust Sentry

PM2.5 Monitor) [9] [10]

Monitors dust in the air minute by minute and can send updates
to the selected people that alert them when dust levels go

beyond a certain level

- Typically large and not easily movable
- Very expensive (∼$10,000)

- Only measures AQ at a single point
Hand-Held Particle Monitoring
Devices (Ex. Fluke 985 Particle

Counter) [11]

Monitors dust particles in the air from a single point. Extremely
portable and accurate measurements of particle concentrations

- Expensive (∼$5000)
- Only measures AQ at a single point

TABLE I: Current AQ solutions and advantages of LiDAR technology.

inside mines are not used for AQ monitoring. In this paper, we
propose for the first time a portable, self-contained AQ mon-
itoring device that utilizes LiDAR technology and will focus
on prototype development to demonstrate proof of concept. In
Table 1, we compare the discussed current solutions with our
proposed solution.

II. SYSTEM MODEL

This section outlines the general hardware required for our
proposed portable AQ monitoring device and then explicitly
states the hardware used in our prototype.

A. Hardware and Operation

The operation of this device relies on two main components:
a LiDAR sensor and a mini-computer. LiDAR is used to
scan the environment and collect data, and the computer is
responsible for data processing, storage, and running the AQ
algorithms. Other important components of this design include
peripherals to interact with the computer, such as a monitor
and keyboard, and a power supply large enough to power the
unit for several hours. Lastly, all these components will need
to be mounted on a portable object that can be moved with
ease. This paper focuses on the physical prototype and the
intended future operation procedure.

The portable AQ LiDAR device will be moved to an area
of interest during normal atmospheric conditions, that is to
say, without an abundance of APM. The calibration process
involves the LiDAR scanning the environment to establish a
baseline and the operator choosing the APM they would expect
the LiDAR to measure. Choosing the APM is an important step
because AQ requires the mass of the pollutant, and different
pollutants have different masses associated with them. Once
the device is properly calibrated, it will continuously monitor
the AQ in real-time. The monitor will show the 3D point cloud
of the environment and will box any APM. The box colors will
be green, yellow, and red depending on the concentration of
APM. Safe levels of APM are boxed in green, warning levels
are boxed in yellow, and unsafe levels are boxed in red.

B. Prototype

Fig. 1 shows the designed prototype with labeled com-
ponents. At the top is a Livox LiDAR sensor which sits
in a 3D-printed mount. Two LiDAR sensors were used in
testing, Livox Mid-40 and Livox Tele-15, and both sensors
utilize a wavelength of 0.905µm [16]. This wavelength should

Fig. 1: Prototype of portable AQ LiDAR device.

theoretically allow the sensor to confidently detect APM which
is of concern in the mining industry. Fig. 2 shows the type
of scattering based on the size parameter x, which is a ratio
based on the size of the measured particle and the wavelength.
The two LiDARs use a wavelength that should produce Mie
Scattering when interacting with APM diameter size < 10µm.
This type of scattering is the same type produced by current
AQ sensors during the calculation of their single-point AQ
measurements [8], [10].

The use of different LiDAR sensors will be discussed in
Section III. Under the LiDAR is the user station which in-
cludes the 2k 12” monitor, a wireless keyboard and touchpad,
and a 6-gang switch panel. The monitor and keyboard are used
for operator interaction with the mini-PC and LiDAR. The
switch panel is wired so that the LiDAR, mini-PC, and monitor
are on isolated circuits and can be controlled separately. Sitting
on the bottom of the cart is a UDOO Bolt V3 mini-PC and an
external Samsung 1TB SSD as its storage unit. The choice of
UDOO is due to its Linux operating system, CPU architecture,
dedicated Radeon GPU, and DDR4 RAM. These components
would allow the PC to quickly calculate the AQ algorithms. An
ethernet cable from the mini-PC and a power cable plugs into
the Livox Converter. The Converter combines these signals
and feeds them to the LiDAR sensor. A 42,000 mAh portable
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power supply is responsible for powering all the devices for
approximately 6-8 hours before needing a recharge. Lastly,
all the components are mounted on a portable gardening cart
that was retrofitted for these specific parts. The prototype,
including both LiDAR sensors, costs approximately $2,600.

Fig. 2: Scattering regimes depending on wavelength,
x ≡ 2πr

λ [17].

III. EXPERIMENTATION

In this section, we describe three major experiments our
prototype underwent, explain the purpose of each test, and
discuss the test results. The visual representation of LiDAR
data is called a point cloud. Every data points represent a
physical location in 3D space, and a collection of points
can be used to identify objects. All LiDAR data also has
a reflectivity value associated with its spatial attribute. The
reflectance value represents how much power from the initial
laser pulse was received by the LiDAR upon its return, and
this value is typically represented within a range of colors.
A low reflectance means a laser pulse returned to the sensor
with much less power than it started with. For this paper, Fig. 3
shows how LiDAR point cloud data will be displayed, and the
reflectivity gauge is the same color scale that will be used for
all LiDAR data. Data points in a point cloud that have colors
closer to red are more reflective, while colors closer to blue
are less reflective. The Reflectivity gauge numbers 0 to 150
correspond to the reflectivity within the range of 0 to 100%
in the Lambertian reflectance model. Values of 151 to 250
correspond to objects with retroflection properties [16].

A. Whiteboard Reflectivity Experiment - Proof of Concept

1) Description: The first test performed was a reflectivity
experiment using a whiteboard. This test aimed to discover
if APM was detectable by a LiDAR sensor. We had three
theories about how the APM would appear in LiDAR’s point
cloud data. Theory one: the APM is large enough to reflect all
of the light from a single laser pulse. Theory two: the APM
is small enough to reflect part of a laser pulse while the rest
would continue to a surface beyond the APM before reflecting
back to the sensor. Theory three: the APM is too small for the

Fig. 3: Whiteboard Reflectivity baseline point cloud data.

LiDAR’s laser beam to interact with. Theories one and two
would produce reflectivity values drastically lower than the
reflectivity values of the whiteboard and prove that APM was
detectable by LiDAR. Theory three would mean the test was
unsuccessful and LiDAR could not be used to detect APM.

The APM chosen for this initial test was talcum powder, and
it had a median diameter of 26.57 µm [18]. Based on Fig. 2,
theory one or two are the expected results. The sensor used
for this test was a Livox Mid-40 LiDAR sensor and has the
specifications of 100,000 points per second with a circular FoV
of 38.4◦. The test was conducted by first aiming the LiDAR
sensor at a blank whiteboard and recording data without any
APM. After baseline data was collected, talcum powder was
introduced into the environment. Three separate deposits of
talcum powder were added to the environment throughout the
test.

2) Results: Fig. 3 shows the baseline point cloud data of the
whiteboard without APM in the environment. The reflectivity
values of whiteboard data points were in the range of 80
and above and appeared greener. Talcum powder was then
introduced into the environment in three separate deposits. The
reflectivity values were charted from the start of the experi-
ment until after the last talcum deposit. Reflectivity values
were averaged in intervals of 25ms. While the whiteboard had
a lot of green data points in the baseline and represents values
above 80, the average reflectance was calculated using the
entire FoV.

The average reflectivity values of the LiDAR data decreased
from the baseline after the talcum powder was deposited,
and each of the three deposits caused the average reflectance
to decrease further. These results are plotted in the graph
in Fig. 4. As mentioned, because all the data points were
averaged at intervals of 25ms, the baseline average at the
beginning of the test was around 60. The three talcum deposits
are distinctly identifiable on the figure at the 5, 20, and 40-
second marks. The average reflectance values dramatically
decreased at each deposit, and then the values slowly increased
as the powder dispersed until the next deposit occurred. The
point cloud data of the environment after the three deposits
are shown in Fig. 5.

This test was successful at proving a LiDAR sensor could
detect small APM, such as talcum powder. However, the data
was inconclusive in determining if the APM reflected all of
the light from a single pulse, or if the APM reflected only part
of the light. Also, even though the test was successful, talcum
powder has a diameter larger than respirable dust APM, which
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Fig. 4: Average reflectance during Whiteboard Reflectivity
Experiment.

Fig. 5: Whiteboard Reflectivity point cloud data with talcum
powder.

is of concern in mines. Further experimentation is required to
determine if LiDAR can spatially detect a cloud of APM and
if LiDAR can detect APM as small as those found in mines.

B. Wind Tunnel Experiment - Verify APM Size

1) Description: The next major experiment was conducted
at the Missouri S&T Experimental Mine Wind Tunnel in the
Mining Department. The intent of this experiment was to
discover the limits of the Mid-40 LiDAR’s capabilities in de-
tecting small APM. The Whiteboard Reflectivity Experiment,
described in Section III-A, discovered LiDAR could detect
APM with a diameter of approximately 26.57 µm. However,
in the mining industry, respirable dust APM, with diameter
< 10 µm, are the main hazardous concern for workers [19].
The wind tunnel provided the ability to control the size of the
APM.

The experiment used respirable coal dust APM, which has
an average diameter size of < 10 µm. An overhead view of
the setup is shown in Fig. 6. The coal dust entered one end
of the wind tunnel and was blown through the tunnel toward
the LiDAR sensor. The large distance between the input point
and the sensor gave the coal dust ample opportunity to diffuse
through the air in the tunnel. The test began with no APM in
the environment before introducing the coal dust. Coal dust
was introduced into the wind tunnel in two deposits. The first
deposit had the coal dust enter the wind tunnel with the fans

Fig. 6: Wind Tunnel Experiment setup.

Fig. 7: Wind Tunnel baseline point cloud test data.

on high, and the second deposit of coal entered the tunnel,
and then the fan was turned off.

2) Results: The baseline point cloud data of the environ-
ment before the coal dust was introduced can be seen in
Fig. 7. The higher reflectivity object in the center, the yellow-
green square, was a cardboard box placed in the tunnel. The
walls of the tunnel were clear plexiglass, and the transparent
material caused the LiDAR laser beams to pass directly
through the back of the tunnel. The cardboard box provided a
nontransparent and reflective surface for the LiDAR to reflect
off. The lower reflectivity data, the dark blue data points, are
the walls of the plexiglass tunnel. These data points were
not used in the analysis. Only the data points that fell within
the y and z coordinates of the cardboard box were used for
calculations.

Fig. 8 plots the reflectivity versus time for this experiment.
Similar to the Whiteboard Reflectivity Experiment, the reflec-
tivity was reduced as a result of the LiDAR’s light reflecting
off the APM. The first deposit of coal dust when the fans were
on high saw a sharp decrease in the reflectivity values before
returning to a higher value. This bounce in values happened
because the fan in the tunnel quickly blew the coal dust out
the other end. After the second deposit of coal dust, the fan
was turned off. Turning off the fan allowed the LiDAR to
capture data as the APM was suspended in the tunnel. Fig 9
is the point cloud data when reflectivity was at its minimum.
The LiDAR detected the fine APM as it floated in the tunnel,
and it took more than two minutes for the reflectivity values to
return to ∼70% of their original value. The team hypothesized
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Fig. 8: Wind Tunnel reflectivity vs time with coal dust.

Fig. 9: Wind Tunnel point cloud test data with coal dust.

that the reflectivity values slowly increased because some coal
dust settled on the bottom of the wind tunnel while some
coal dust became homogeneously mixed in the tunnel and thus
decreased concentration in front of the cardboard.

Another question of concern was, could the LiDAR spatially
detect the APM? If reflectivity values decreased, but the data
points still lay directly on the surface of the cardboard, that
would mean the APM was only reflecting some of the LiDAR
light and the surface behind the APM was reflecting the rest.
If the reflectivity dropped but the data points were in front of
the cardboard, that would mean light was reflecting off of the
APM. Fig. 10 is a graph of the x distance standard deviation
versus time. The decrease in distance deviation values with
respect to the x direction correlates to reflectivity decreases in
Fig. 8. This correlation between Fig. 8 and 10 would indicate
that LiDAR detected a small spatial change in the data as
reflectivity values decreased due to the APM. The results
of this experiment proved that LiDAR can detect APM with
diameter sizes of < 10 µm and can spatially identify the APM.

C. Outside Wall Experiment - Spatially Detect APM

1) Description: This third and last experiment was needed
because of uncertainty in the previous experiment. Although
LiDAR could return spatial data of the APM, there was a
chance that the light beams were partially reflecting off the
APM, and the rest of the light was reflecting off a surface
beyond the APM. A LiDAR sensor with a double-return
feature could potentially capture this data. A double-return
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Fig. 10: Wind Tunnel distance deviation vs time with coal
dust.

Fig. 11: Tele-15 Outside Wall baseline point cloud data.

data point is when a LiDAR can record two separate returns
from a single light beam. The Livox Mid-40 sensor, used in
previous experiments, did not have the double-return capa-
bilities. Therefore, a more sophisticated sensor was required
for this test. The Livox Tele-15 had the double-return feature
required, and it had the added benefit of providing four times
the amount of data points per second than the Mid-40. The
only drawback was that the Tele-15 had a much smaller FoV.
The smaller FoV required consideration while setting up the
experiment but it did not negatively impact the results.

The test was set up by aiming the Tele-15 LiDAR sensor at
a brick wall outside, and it was set up several meters away due
to the smaller FoV. Since there was wind outside to account
for, the APM was deposited only once and outside the sensor’s
FoV on one side. The wind then carried and dispersed the
APM across the LiDAR’s FoV. Talcum powder was used as
the APM due to its easier access, simpler clean-up, and safer
to use.

2) Results: The baseline for this experiment is shown in
Fig. 11. The brick wall is the lighter reflectivity data on the
right side, and the extra points per second from the Tele-15
provided a higher resolution point cloud. The talcum powder
was deposited after the baseline data was collected.

Fig. 12 shows the point cloud data of the wall with the
APM suspended in front of it. The LiDAR sensor was able
to capture data points of the APM and also data points of
the wall behind the APM. As the talcum powder passed in
front of the wall, the reflectivity values dropped. From these
results, we concluded the LiDAR was receiving double-return
data points. The sensor’s pulses of light partially reflected off
the APM, while the rest of the light continued toward the wall.
The remaining light then reflected off of the wall and returned
to the sensor. However, since the light lost some power when
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Fig. 12: Tele-15 Outside Wall point cloud data with APM.
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Fig. 13: Outside Wall distance deviation vs time with APM.

it first reflected off the APM, the reflected light from the wall
had much less power than it started with. This lesser power is
why the data points on the wall also had low reflectivity while
the APM was in front. Higher reflectivity data points can be
seen in Fig. 12 on the top right section of the wall. These
points had a higher reflectivity because the sensor’s light did
not pass through any APM.

An important figure that was generated from the outside
wall point cloud data can be seen in Fig. 13. Similar to Fig. 10
from Section III-B, this is a graph of the x distance standard
deviation versus time. As APM moved across the FoV of
the sensor, and data points were recorded both at the APM
location and the wall that lay beyond, the standard deviation
increased. As the wind blew the APM out of the FoV, the
distance deviation in the data points decreased and returned to
normal. The importance of this factor will be discussed further
in Section IV. In conclusion of this section, the experiment was
successful with respect to LiDAR being able to detect APM
spatially.

IV. CONCLUSION

This paper designed a portable and self-contained AQ
monitoring prototype that utilizes LiDAR technology to detect
APM. The prototype underwent multiple experiments with
different LiDAR sensors to verify its potential to detect APM.
The Mid-40 LiDAR successfully detected both large and
small APM, and the more powerful Tele-15 LiDAR spatially
detected APM without losing the environment data beyond
the APM. This enhances mining safety by displaying and
analyzing APM in a real-time 3D map. Future extensions to
this work can focus on proposing adequate artificial intelli-

gence AQ algorithms taking into consideration the reflectivity,
distance deviation, and the number of reflected data points.
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