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In recent years, the optical Vernier effect has been demon-
strated as an effective tool to improve the sensitivity of
optical fiber interferometer-based sensors, potentially facil-
itating a new generation of highly sensitive fiber sensing
systems. Previous work has mainly focused on the phys-
ical implementation of Vernier-effect-based sensors using
different combinations of interferometers, while the signal
demodulation aspect has been neglected. However, accu-
rate and reliable extraction of useful information from the
sensing signal is critically important and determines the
overall performance of the sensing system. In this Letter,
we, for the first time, propose and demonstrate that machine
learning (ML) can be employed for the demodulation of opti-
cal Vernier-effect-based fiber sensors. ML analysis enables
direct, fast, and reliable readout of the measurand from the
optical spectrum, avoiding the complicated and cumbersome
data processing required in the conventional demodulation
approach. This work opens new avenues for the development
of Vernier-effect-based high-sensitivity optical fiber sensing
systems. © 2023 Optica Publishing Group

https://doi.org/10.1364/OL.489471

Sensors with high sensitivity and resolution are always desired
in scientific and engineering applications. In the field of optical
fiber sensing, the Vernier effect has been demonstrated as an
effective tool to improve the sensitivity of interferometric sen-
sors in recent years [1–3]. Inspired by the Vernier caliper, the
implementation of the optical Vernier effect requires the integra-
tion of two interferometers in a single system. The superposition
of the signals of the two interferometers generates a Vernier
envelope (typical amplitude modulation) at the output spectrum
of the system. Instead of tracking the spectral fringe shifts of the
individual interferometers, the Vernier envelope—whose shift is
significantly magnified in response to external perturbations—is
employed as the reference.

Recent efforts have mostly focused on the development of
Vernier-effect-based optical fiber sensors based on different
combinations of interferometers in parallel or in line. Exam-
ples include two Fabry–Perot interferometers (FPIs) [4–8], two
Mach–Zehnder interferometers [9–11], and two Sagnac inter-
ferometers [12,13]. Hybrid systems with two different interfer-
ometers have also been reported [14,15]. Sensitivity-enhanced

sensing of a variety of physical and chemical parameters, such
as temperature [16,17], strain [18,19], refractive index [20,21],
biomarkers [22,23], etc., has been successfully realized based
on the Vernier effect. The interrogation of a Vernier-effect sen-
sor requires a broadband light source (e.g., a superluminescent
diode, SLD) and an optical spectrum analyzer (OSA) to mea-
sure the spectral response over a broad range of wavelengths.
Cumbersome and additional signal processing is required to
extract the Vernier envelope, which is then correlated to the
parameter of interest. The signal processing typically involves
locating the fringe dips in the superimposed spectrum and apply-
ing a nonlinear curve fit to the discrete dip points to obtain
the Vernier envelope, as detailed in Ref. [24]. This multi-step
processes could introduce additional errors and thus ultimately
deteriorate the performance of the sensor system. Indeed, rich
information is contained in the superimposed spectrum, but the
conventional analysis method only takes advantage of a few data
points, thus compromising the capability of the sensor. On the
other hand, machine learning has been employed in the field of
optical sensing very recently [25–27]. By using the global fea-
tures (i.e., the full spectrum) in combination with ML analysis, a
higher measurement accuracy and expanded functionality were
demonstrated for simple optical fiber sensors, which would have
been challenging to achieve based on the conventional single
fringe-dip tracking approach.

In this Letter, we propose and demonstrate an ML-based
demodulation method for optical-Vernier-effect-based optical
fiber sensors. The ML-based analysis directly uses the full infor-
mation contained in the measured raw spectra and achieves
one-to-one mapping between the measurand and the spectrum.
A side-by-side comparison between the conventional approach
and the ML-based method is given in Fig. 1. As a proof of
concept, a Vernier-effect system based on two FPIs is employed
and strain measurements are performed. Figure 2(a) gives the
schematic of the experimental setup.

The FPI device is fabricated by a three-step process. A section
of a capillary is first fusion spliced to a lead-in fiber, followed
by high-precision cleaving under a microscope. Finally, the free
end of the capillary with the lead-in fiber is spliced with a lead-
out fiber. Figure 2(b) shows the measured interference signals of
the individual FPIs. Modulation envelopes are observed in the
measured raw spectra of the two FPIs, due to the co-existence of
the antiresonance (AR) guidance that occurred in the capillary
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Fig. 1. Side-by-side comparison between the conventional
method and the proposed ML method for the demodulation of a
Vernier-effect sensor.

Fig. 2. System characterization. (a) Schematic of system imple-
mentation. (b) Measured spectra of the individual interferometers
and the system output.

[28]. The cavity lengths of the sensing FPI and reference FPI
are found to be 414.70 µm and 404.08 µm, respectively. The
sensitivity magnification factor can be calculated based on [1]

M =
OPDsen

OPDsen − OPDref
, (1)

where OPDsen and OPDref denote the optical path differences of
the sensing FPI and the reference FPI, respectively. Based on
Eq. (1), the expected sensitivity magnification is 39.

The output spectrum of the system is included in Fig. 2(b).
A Vernier envelope modulation signal is obtained, as expected.
Slight distortions are observed due to the AR-induced irregular
envelopes in the individual spectra from the two FPIs. In par-
ticular, the envelope dip at ∼1510 nm exhibits irregular shapes,
which could introduce additional errors into the process of locat-
ing the envelope dip wavelength. The free spectral range (FSR)
is found to be approximately 110 nm, ∼39 times larger than
the FSR of the sensing FPI. By tracking the spectral shift of
the Vernier envelope, sensitivity-enhanced strain sensing can be
realized.

Fig. 3. Strain responses of the sensor based on the conventional
demodulation method. (a) Exemplary spectral responses for differ-
ent settings of the strain. (b) Vernier envelope dip wavelength as a
function of strain, demonstrating sensitivity-enhanced sensing with
a magnification factor of ∼37.

Tensile strains were applied to the sensing FPI by elongating
the FPI fiber section using a motorized translation stage with
a step resolution of 1 µm, corresponding to an applied strain
accuracy of 5 µε considering that the two fixed points are 20 cm
away during the strain experiment. Strains were incrementally
applied in steps of 50 µε to a maximum of 1000 µε. The reference
FPI was secured in a box to avoid external perturbations. Fifty
measurements were performed at each setting of strain, i.e., 50
spectra were recorded. A total of 1050 spectra were obtained,
with each spectrum including 4001 points that linearly span the
range of 1450–1610 nm.

The strain responses of the system were first characterized
using the conventional method to verify the sensitivity-enhanced
sensing performance. A few exemplary output spectra are shown
in Fig. 3(a). The Vernier envelope shifted to the long-wavelength
regime with increasing strain. The determined Vernier envelope
dip wavelength as a function of the tensile strain is plotted in
Fig. 3(b). The measured responses of the sensing FPI without
the Vernier effect are also included. The measurement sensitiv-
ities with and without the Vernier effect are determined to be
0.07216 nm/µε and 0.001952nm/µε, respectively, by means of
linear curve fits, revealing a magnification factor of ∼37. Thus,
the functionality of the Vernier effect is demonstrated.

To further evaluate the performance of the conventional-
method-based signal analysis, the strains are inversely derived
from the determined Vernier envelope dip wavelengths based on
the curve-fitting result shown in Fig. 3(b). Figure 4(a) shows the
differences between the calculated strains and the applied strains.
Relatively large deviations of up to 10 µε from the ground truth

Fig. 4. Performance evaluation of the conventional curve-fitting
method. (a) The difference between the derived strain and ground
truth. The inset shows the normalized difference (normalized to the
average value of 50 measurements for each strain setting). (b) The
determined Vernier envelope dip wavelength with respect to the
number of points used in the nonlinear curve fit.
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Fig. 5. Topological structure of the NN model for the Vernier
sensor.

are observed. The inset shows the normalized difference. Mean-
while, while extracting the Vernier envelopes, we found that the
number of points (discrete fringe dips in the output spectrum)
that are used to fit the envelope signal is critically important and
could cause ambiguity. Let’s take the measured 50 spectra at
a strain setting of 400 µε as an example. A Gaussian curve fit
was applied to find the Vernier envelope. The determined dip
wavelengths are plotted against the number of points used in the
curve fit in Fig. 4(b). The dip wavelength varied by up to 0.8 nm
when different numbers of points were used, corresponding to
a strain variation of 11 µε. Thus, more reliable and consistent
signal analysis approaches need to be explored to improve the
performance of the Vernier sensor. Here, ML is applied.

The feedforward neural network (NN) is employed in this
work as it has been demonstrated to be effective for processing
signals from optical fiber sensors [25,29–31]. The NN model
used in this work was configured with six hidden layers, and hid-
den layers 1 to 6 were included with 100, 100, 50, 50, 10, and 10
nodes after empirical validation. The output layer included one
node, corresponding to the tensile strain. The activation func-
tions used for the hidden layers and the output layer were sigmoid
and linear, respectively. The aforementioned 1050 spectra were
randomly split into training, validation, and test datasets with
splitting ratios of 75%, 15%, and 15%. We noticed that a few
data points in the starting wavelength and the end wavelength
were quite noisy due to the low power from the SLD source used
in the experiment. Thus, these data points were removed from
the datasets used for training the NN. The input layer included
3401 nodes, corresponding to the 3401 sampling points in each
of the optical spectra ranging from 1461.96 nm to 1597.96 nm.
A schematic of the topological structure of the constructed NN
is given in Fig. 5.

The mean squared error (MSE) as a function of the training
epoch during the training process is plotted in Fig. 6(a). The
MSE decreased rapidly initially and gradually stabilized after
epoch 130. The predicted strains from the trained model with
respect to the applied strains are shown in the inset of Fig. 6(a).
As can be seen, the data points of the predicted strains are
aligned close to the reference line y= x, indicating that the pre-
dicted values match well with the ground truth. The differences
between the predicted strains and the applied strains are shown
in detail in Fig. 6(b). Compared with the results obtained from
the conventional method shown in Fig. 4(a), the NN-based anal-
ysis realized higher accuracy and more reliable prediction, with
errors smaller than 1.1 µε. Meanwhile, since the raw spectra
are used for input, the cumbersome pre-processing that could
introduce ambiguity is avoided. Thus, the NN-based analysis is
effective and efficient; the well-trained NN can extract the use-
ful information contained in the raw spectra, and it consequently

Fig. 6. Results from NN-based analysis. (a) MSE as a function
of the epoch during the training process of the NN model. The inset
shows the predicted strains with respect to the ground truth. The
line y= x is employed as the reference. (b) The differences between
the predicted strains and the ground truth.

achieves one-to-one mapping directly between a raw spectrum
and the applied strain for the Vernier sensor.

Considering that the NN-based analysis uses the global fea-
tures included in the raw spectrum instead of a single feature
(e.g., the Vernier envelope dip wavelength), we expect that
with the NN as the tool, the spectral interrogation bandwidth
of the Vernier sensor could be further reduced even without
covering the dip wavelength. This is important for developing
new generations of Vernier-effect-based sensor systems, as a
smaller-bandwidth source is lower in cost, and the spectrum
sampling points could be reduced due to the reduced wave-
length range, which could lead to the development of dynamic
Vernier sensors. To this end, we extract the data points in the
1050 collected spectra within the wavelength range of 1528–
1563 nm, corresponding to the wavelength bandwidth of a C-
band light source. The number of sampling points for each
revised spectrum is 876. A few revised spectra are shown in
Fig. 7(a), which show that the Vernier envelope dips are not
covered due to the limited wavelength range. A new NN model
was constructed, similar to the one shown in Fig. 5. The only
difference was that the input layer for the new model included

Fig. 7. Results from NN-based analysis when the wavelength
range of the spectra is reduced to 1528 nm to 1563 nm. (a) Exem-
plary spectra for different settings of the strain. (b) MSE during the
training process. (c) Comparison between the predicted strains and
the applied strains. (d) Difference between the predicted strains and
the applied strains.
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876 nodes, corresponding to the 876 sampling points for each
revised spectrum. Figure 7(b) gives the obtained MSE as a func-
tion of the epoch during the training process of the new NN
model, showing that the model converged rapidly. A compar-
ison between the predicted strains and the applied strains is
shown in Fig. 7(c). A detailed view of the differences between
the predicted and applied strains is given in Fig. 7(d). Com-
pared with the results shown in Fig. 6, we can conclude that the
performance of the NN analysis does not deteriorate when the
sampling points for each spectrum are significantly decreased.
Note that for the case where the dip for the Vernier modulation
envelope is not included in the measured spectrum, it would
have been challenging, if not impossible, to extract useful infor-
mation if the conventional method were employed. Thus, it is
possible to employ a coarsely resolved highspeed spectrometer
and a light source with limited wavelength bandwidth to develop
a faster, cheaper, and simpler interrogator for Vernier sensors.
A performance comparison between the conventional dip track-
ing method and the ML approach can be found in Table 1 in
Supplement 1.

To conclude, we have proposed and demonstrated a new
method for demodulating signals of Vernier-effect-based optical
fiber sensors based on ML. As a proof of concept, a Vernier sen-
sor system based on two FPIs was employed in the experiment.
It was shown that the NN model can be trained to predict the
strains applied on the sensing FPI directly based on the measured
raw spectrum with high consistency and reliability, remark-
ably outperforming the conventional dip tracking method. More
importantly, the prediction accuracy does not degrade when the
wavelength range of the measured raw spectrum is decreased
significantly; even when it does not cover the dominant feature,
i.e., the envelope dip. This work represents a novel attempt to
advance Vernier sensors and opens up a new direction in the
development of high-sensitivity Vernier sensor systems.

Funding. Researchers Supporting Project number (RSPD2023R654),
King Saud University, Riyadh, Saudi Arabia; Research Initiation Project
of Zhejiang Lab (2022ME0PI01).

Acknowledgments. Research Initiation Project of Zhejiang Lab
(2022ME0PI01) and Researchers Supporting Project number (RSPD2023R654),
King Saud University, Riyadh, Saudi Arabia.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are
not publicly available at this time but may be obtained from the authors upon
reasonable request.

Supplemental document. See Supplement 1 for supporting content.

REFERENCES
1. A. D. Gomes, H. Bartelt, and O. Frazão, Laser Photonics Rev. 15,

2000588 (2021).
2. Y. Liu, X. Li, Y.-n. Zhang, and Y. Zhao, Measurement 167, 108451

(2021).
3. Y. Chen, L. Zhao, S. Hao, and J. Tang, Sensors 22, 2694 (2022).
4. Y. Zhao, P. Wang, R. Lv, and X. Liu, J. Lightwave Technol. 34, 5351

(2016).
5. L. G. Abbas, IEEE Sens. J. 20, 12384 (2020).
6. J. Tian, Z. Li, Y. Sun, and Y. Yao, J. Lightwave Technol. 37, 5609

(2019).
7. T. Paixão, F. Araújo, and P. Antunes, Opt. Lett. 44, 4833 (2019).
8. C. Zhu and J. Huang, Opt. Express 29, 16820 (2021).
9. M. Xie, H. Gong, J. Zhang, C.-L. Zhao, and X. Dong, Appl. Opt. 58,

6204 (2019).
10. Y. Zhao, H. Lin, C. Zhou, H. Deng, A. Zhou, and L. Yuan, IEEE

Photonics Technol. Lett. 31, 591 (2019).
11. H. Lin, F. Liu, Y. Dai, and A. Zhou, IEEE Sens. J. 19, 2581 (2019).
12. L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, Opt.

Commun. 336, 73 (2015).
13. S. Liu, G. Lu, D. Lv, M. Chen, and Z. Zhang, Opt. Fiber Technol. 66,

102654 (2021).
14. L. Liu, T. Ning, J. Zheng, L. Pei, J. Li, J. Cao, X. Gao, and C. Zhang,

Opt. Laser Technol. 119, 105591 (2019).
15. X. Jia, X. Zhou, M. Bi, G. Yang, M. Hu, and T. Wang, Opt. Fiber

Technol. 65, 102625 (2021).
16. F. Wang, Y. Liu, Y. Lu, L. Zhang, J. Ma, L. Wang, and W. Sun, Opt.

Lett. 43, 5355 (2018).
17. A. D. Gomes, M. Becker, J. Dellith, M. I. Zibaii, H. Latifi, M. Rothhardt,

H. Bartelt, and O. Frazão, Sensors 19, 453 (2019).
18. J. Deng and D. Wang, J. Lightwave Technol. 37, 4935 (2019).
19. P. M. R. Robalinho, A. D. Gomes, and O. Frazao, IEEE Photonics

Technol. Lett. 32, 1139 (2020).
20. Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang,

Opt. Express 23, 6662 (2015).
21. Z. Xu, Y. Luo, D. Liu, P. P. Shum, and Q. Sun, Sci. Rep. 7, 1 (2017).
22. L. Chen, J. Li, F. Xie, J. Tian, and Y. Yao, J. Lightwave Technol.

(2023).
23. K. Li, N. Zhang, N. M. Y. Zhang, W. Zhou, T. Zhang, M. Chen, and L.

Wei, Sens. Actuators, B 275, 16 (2018).
24. Y. Li, Y. Li, Y. Liu, Y. Li, and S. Qu, Opt. Express 30, 35734 (2022).
25. L. V. Nguyen, C. C. Nguyen, G. Carneiro, H. Ebendorff-Heidepriem,

and S. C. Warren-Smith, Photonics Res. 9, B109 (2021).
26. B. Duan, H. Zou, J.-H. Chen, C. H. Ma, X. Zhao, X. Zheng, C. Wang,

L. Liu, and D. Yang, Photonics Res. 10, 2343 (2022).
27. C. Zhu and J. Huang, Opt. Express 30, 24553 (2022).
28. X. Zhang, H. Pan, H. Bai, M. Yan, J. Wang, C. Deng, and T. Wang,

Opt. Lett. 43, 2268 (2018).
29. L. Avellar, A. Frizera, H. Rocha, M. Silveira, C. Díaz, W. Blanc, C.

Marques, and A. Leal-Junior, Photonics Res. 11, 364 (2023).
30. C. Zhu, Y. Zhuang, and J. Huang, J. Lightwave Technol. 40, 5762

(2022).
31. C. Zhu, H. Deng, Z. Ding, J. Huang, and Z. Zhang, Opt. Lett. 46, 5838

(2021).

https://doi.org/10.6084/m9.figshare.22633774
https://doi.org/10.6084/m9.figshare.22633774
https://doi.org/10.1002/lpor.202000588
https://doi.org/10.1016/j.measurement.2020.108451
https://doi.org/10.3390/s22072694
https://doi.org/10.1109/JLT.2016.2615054
https://doi.org/10.1109/JSEN.2020.3000394
https://doi.org/10.1109/JLT.2019.2936174
https://doi.org/10.1364/OL.44.004833
https://doi.org/10.1364/OE.426966
https://doi.org/10.1364/AO.58.006204
https://doi.org/10.1109/LPT.2019.2902383
https://doi.org/10.1109/LPT.2019.2902383
https://doi.org/10.1109/JSEN.2018.2889063
https://doi.org/10.1016/j.optcom.2014.09.075
https://doi.org/10.1016/j.optcom.2014.09.075
https://doi.org/10.1016/j.yofte.2021.102654
https://doi.org/10.1016/j.optlastec.2019.105591
https://doi.org/10.1016/j.yofte.2021.102625
https://doi.org/10.1016/j.yofte.2021.102625
https://doi.org/10.1364/OL.43.005355
https://doi.org/10.1364/OL.43.005355
https://doi.org/10.3390/s19030453
https://doi.org/10.1109/JLT.2019.2926066
https://doi.org/10.1109/LPT.2020.3014695
https://doi.org/10.1109/LPT.2020.3014695
https://doi.org/10.1364/OE.23.006662
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1016/j.snb.2018.08.027
https://doi.org/10.1364/OE.469791
https://doi.org/10.1364/PRJ.415902
https://doi.org/10.1364/PRJ.464133
https://doi.org/10.1364/OE.463179
https://doi.org/10.1364/OL.43.002268
https://doi.org/10.1364/PRJ.471301
https://doi.org/10.1109/JLT.2022.3179436
https://doi.org/10.1364/OL.445787

	Machine Learning For A Vernier-effect-based Optical Fiber Sensor
	Recommended Citation

	Machine learning for a Vernier-effect-based optical fiber sensor

