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RANK-BASED INFERENCE FOR SURVEY
SAMPLING DATA

AKIM ADEKPEDJOU*
HUYBRECHTS F. BINDELE

For regression models where data are obtained from sampling surveies,
the statistical analysis is often based on approaches that are either non-
robust or inefficient. The handling of survey data requires more appropri-
ate techniques, as the classical methods usually result in biased and inef-
ficient estimates of the underlying model parameters. This article is con-
cerned with the development of a new approach of obtaining robust and
efficient estimates of regression model parameters when dealing with
survey sampling data. Asymptotic properties of such estimators are
established under mild regularity conditions. To demonstrate the perfor-
mance of the proposed method, Monte Carlo simulation experiments are
carried out and show that the estimators obtained from the proposed
methodology are robust and more efficient than many of those obtained
from existing approaches, mainly if the survey data tend to result in
residuals with heavy-tailed or skewed distributions and/or when there
are few gross outliers. Finally, the proposed approach is illustrated with
a real data example.

KEYWORDS: Rank estimator; Sampling; Weighting in survey.

1. INTRODUCTION

Data collected from surveys are often used to make inference about super pop-
ulation models, from which finite populations are assumed to be generated.
Complex sample designs constructed from survey data require different statis-
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tical methods to be analyzed than those developed classically under random
sampling assumptions. An overview on this topic can be found in Chambers
and Skinner (2003), Korn and Graubard (2011), and Steven, Heeringa, and
West (2017). Regression analysis is a statistical tool that is key to describing
the structural relationship that exists between survey variables. In sampling
surveies, when sampling is related to the response variable of a regression anal-
ysis conditional on covariates, such sampling is called informative sampling
and may lead to biased estimates in ordinary least squares estimation. To over-
come this issue, weights are often introduced to obtain consistent estimators of
the model parameters. Considering the sample inclusion indicator, such
weights are often proportional to the reciprocal of the probability of including
a unit in the sample. Parameter estimators are then obtained by minimizing the
weighted least squares (LS) objective function or maximizing the quasi-
likelihood objective function. Under similar framework, Kim and Skinner
(2013) investigated two ways of defining such weights to improve the effi-
ciency of their proposed estimators. They also explored two optimal ways of
constructing weights by fitting of auxiliary weighted models. Furthermore,
their approaches were extended to the pseudo maximum likelihood method for
generalized linear models. It is worth pointing out that although weighting has
a bias-correction advantage, it brings the disadvantage of often leading to a
loss of efficiency relative to an unweighted approach. Moreover, weights also
have the disadvantage of inflating the variance of the estimates. To address the
variance inflation issue to further improve efficiency, Skinner and Mason
(2012) modified surveys weights using Pfeffermann and Sverchkov (1999)
ideas. Other weights were derived in Pfeffermann (1993) and Pfeffermann and
Sverchkov (1999). Weights derived in Pfeffermann and Sverchkov (1999)
were initially employed in linear regression and gained popularity in general
regression. Beaumont (2008) and Magee (1998) proposed smoothing survey
weights by considering a function that depends on the survey variables to ad-
dress variance inflation issue. They also discussed how such a function may be
chosen to achieve their goal. Several other authors have considered how the
survey weights may be modified to improve efficiency of model parameters
estimators under informative sampling. Magee (1998) showed how a weight
function can be chosen to obtain a consistent estimator of the model parameter.
Kim and Skinner (2013) proposed to estimate the regression parameter of the
linear model using both the LS and the pseudo-likelihood approaches. It is
worth pointing out that while many of the papers cited above used the LS ap-
proach, such an approach is known to result in non-robust and inefficient esti-
mators when dealing with contaminated, heavy-tailed, and skewed model error
distributions, and/or when data contain gross outliers. Alternative approaches
include quantile regression, the likelihood-based methods, and other methods
of moments. While quantile regression is robust, it comes with the drawback
of selecting the correct quantile scale. As an example, when the quantile scale
is set at s ¼ 0:5, we have the least absolute deviation (LAD), which is known
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to be robust, but very often, results in inefficient estimators. On the other hand,
likelihood-based methods are known to be vulnerable to model mis-
specification. For inference about regression parameters in the presence of in-
formative sampling using likelihood-based methods, many contributions exist
in the literature, which include Chambers (2003), Pfeffermann and Sverchkov
(2009), Pfeffermann (2011), and Scott and Wild (2011) to cite a few. To over-
come issues in LS and other methods of moments, in this article, we propose a
rank-based approach that is robust and results in efficient estimators.
Furthermore, the proposed approach has a simple geometric interpretation and
does not require the specification of the model error distribution
(Hettmansperger and McKean 2011).

Consider a finite population V of size N, where the units are labeled
i ¼ 1; . . . ;N and let the row vector ðyi; xiÞ denote the associated values of a
pair of response y and explanatory variables x via some function gð�; �Þ in a re-
gression analysis settings. That is,

yi ¼ gðxi; b0Þ þ ei; i ¼ 1; . . . ;N; (1)

where gð�; �Þ is a continuous regression function that can be linear or nonlinear,
b0 2 B with B compact, xi 2 R

p, and ei are independent and identically dis-
tributed continuous random errors that have a zero mean and a positive vari-
ance bounded away from zero. The interest in this article is placed in a robust
and efficient estimation of the true regression parameter b0 when data are
obtained from a complex survey.

To this end, the remainder of the paper is organized as follows. Section 2
introduces our estimation approach. Asymptotic properties of the proposed
estimator are discussed in section 3. The performance of our method is
demonstrated from an extensive Monte Carlo simulation study and a real data
example that are presented in section 4. The paper concludes with a short
discussion. Technical details of the results stated in the paper are given in the
appendix.

2. ESTIMATION

Consider the residuals ziðbÞ ¼ yi � gðxi; bÞ and let di ¼ 1, if unit i is in the
sample, and di ¼ 0, otherwise. We assume a probability sampling design in a
sample s of size n ¼

PN
i¼1 di with inclusion probability

pi � pðxi; yiÞ ¼ Pðdijxi; yiÞ. Define the rank-based objective function as

DNðbÞ ¼
1
N

XN

i¼1

didiwðxiÞu
RðziðbÞÞ
N þ 1

� �
ziðbÞ; (2)

where di is a survey weight, wðxÞ is a positive weight function introduced to
take care of unusual observations (outliers, leverage points) in case they exist,
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u : ð0; 1Þ ! R is a continuous, nondecreasing and bounded score function

and RðtÞ ¼
PN

j¼1ðdj=pjÞIfzjðbÞ � tg. Note that for a sample s of size n se-
lected from a finite population V of size N, as discussed in Arnab (2017), let-
ting FbðtÞ ¼ 1

N

PN
i¼1 IðziðbÞ � tÞ, an unbiased of FbðtÞ is given by

bFbðtÞ ¼
1
N

X
i2s

1
pi

I ziðbÞ � tf g ¼ 1
N

XN

i¼1

di

pi
I ziðbÞ � tf g ¼ RðtÞ

N
:

The good choice for wðxÞ is the one that makes the influence function resulting
from DNðbÞ, bounded. The rank-based estimator, say bbN , is a minimizer of
DNðbÞ. In (2), di is usually introduced to correct the estimator’s bias that is due
to the inclusion probability pi. Let Em and Es be expectations with respect to
the model and the sampling scheme, respectively. As in Skinner and Mason
(2012), DNðbÞ results in unbiased estimating equation if

Em Es didiwðxiÞu
RðziðbÞÞ
N þ 1

� �
rbgðxi; bÞ

� �� �
¼ 0; (3)

where rb is the gradient operator. This occurs if, with assumption ðJ1Þ given
below, ei and xi are independent, and the sampling scheme is non-informative,
that is, Ii and yi are independent conditional on xi. This could also arise when
the sample inclusion depends only on a set of design variables. The non-
informative sampling condition translates into Pðdi ¼ 1jxi; yiÞ ¼ Pðdi ¼ 1jxiÞ.
This non-informative sampling condition can be tested as discussed in
DuMouchel and Duncan (1983) and Fuller (2011). It is worth pointing out that
throughout this paper, we do not assume a non-informative sampling design
since assumption ðJ3Þ given below ensures that the resulting estimating equa-
tion is asymptotically unbiased. As we will see later, the Horvitz–Thompson
estimator is just the weighted LS estimator from a simple location model with
di ¼ 1=pi. Depending on the scenarios, the sampling probability pðx; yÞ may
be unknown, which in this case needs to be estimated. Some authors have con-
sidered estimating pðx; yÞ using the logistic linear regression model, which
requires the specification of the functional form of pðx; yÞ. This approach is of-
ten vulnerable to model identifiability. To overcome this issue, we propose a
fully nonparametric estimation of pi. To do so, as in Bindele and Adekpedjou
(2018), consider the nonparametric estimator of pðzÞ given bybpðzÞ ¼PN

j¼1 wNjðzÞdj, where wNjðzÞ is defined by

wNjðzÞ ¼
K½jjz� zjjj=bN �PN
j¼1 K½jjz� zjjj=bN �

; (4)

where z ¼ ðx; yÞ, K is a univariate real valued kernel function with bandwidth
bN satisfying bN ! 0 and NbN !1, as n!1. For non-informative
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sampling, z ¼ x. Under mild conditions, it can be shown that as n!1, bpðzÞ
! pðzÞ a:s: (see Einmahl and Mason 2005).

From model (1), under the simple random sampling, if gð�; �Þ is a constant
function, we obtain a location model, from which the LS estimation approach
will produce the Horvitz–Thompson estimator. That is, considering the model
yi ¼ lþ ei; i ¼ 1; . . . ;N, the Horvitz–Thompson estimator of l is given by

blHT ¼ argmin
l

1
N

XN

i¼1

didie
2
i ðlÞ; where eiðlÞ ¼ yi � l:

A simple algebra manipulation gives blHT ¼ 1
N

PN
i¼1 didiyi. Now, considering

the objective function (2) with wðxÞ � 1 and uðtÞ ¼
ffiffiffiffiffi
12
p
ðt � 1=2Þ, we obtain

DNðlÞ ¼
ffiffiffiffiffi
12
p

N

XN

i¼1

didi
RðeiðlÞÞ
N þ 1

� 1
2

� �
eiðlÞ:

For the linear model, DNðlÞ is location equivariant (Jaeckel 1972;
Hettmansperger and McKean 2011). Thus, the rank-based estimator is obtained
as blR ¼ Medðu1; . . . ; uNÞ, the median of u1; . . . ; uN , where ui ¼ Iidiyi.

Remark 1. For stratified sampling, the model defined in (1), would be

yij ¼ gðxij; bÞ þ eij; i ¼ 1; . . . ;Nj; j ¼ 1; . . . ;m;

where Nj is the population size of stratum j. From this, the objective
function in (2) needs to be modified. To be more precise, suppose X is
the sample space of size n that can be partitioned into m sample strata,
that is, X ¼ [m

j¼1Xj and Xi \ Xj ¼1, for i 6¼ j. Let dij ¼ 1, if unit i 2 Xj,
and dij ¼ 0, if i 62 Xj. Then, pij ¼ pðxij; yijÞ ¼ Pðdijjxij; yijÞ and dij ¼ 1=pij.
From this, setting N ¼

Pm
j¼1 Nj, the objective function given in (2) can be

redefined as

DNðbÞ ¼
Xm

j¼1

1
Nj

XNj

i¼1

dijdijwðxijÞu
RðzijðbÞÞ
Nj þ 1

� �
zijðbÞ;

where zij ¼ yij � gðxij; bÞ.

Now, throughout this paper, we consider the following assumptions:

ðJ1Þ uð�Þ is twice continuously differentiable with bounded derivatives.
Moreover, uð�Þ can be standardized as

Ð 1
0 uðuÞdu ¼ 0 andÐ 1

0 u2ðuÞdu ¼ 1.

ðJ2Þ gð�; �Þ is a three times continuously differentiable bounded function
of b, and there exists an arbitrary function HðxÞ satisfying
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jjrr
bgðx; bÞjj � HðxÞ;

r ¼ 0; 1; 2; 3 and E½H‘ðXÞ� < 1 with 1 � ‘ � 4:

ðJ3Þ For every fixed N, b0N ¼ argminb2BE½DNðbÞ� is the unique minimizer
such that limN!1 b0N ¼ b0. Moreover, there exist c1 and c2 such that
0 < c1 � piNn�1 < c2, for all i. Also, n ¼ OðNaÞ; a 2 ð0; 1Þ.

Remark 2. Assumption ðJ1Þ is a regular condition in the framework of
rank-based estimation (see Hettmansperger and McKean 2011).

Assumption ðJ2Þ is necessary to ensure the consistency of bbN in the next
theorem. Assumption ðJ3Þ is the identifiability condition that is assumed
in most regression problems. Under this same assumption, the resulting
estimating equation is asymptotically unbiased. In addition, ðJ3Þ is also
necessary in ensuring the

ffiffiffi
n
p

-asymptotic normality distribution of the pro-
posed estimator.

3. ASYMPTOTIC PROPERTIES

In this section, we discuss the asymptotic properties (consistency and asymp-
totic normality) of the proposed estimator. Recall that a random sample of size
n is drawn from a finite population of size N and the asymptotic results are be-
ing derived for n!1. Note that since N � n, as n!1; N !1.

Theorem 1 (Consistency). Under a probability sampling design in a ran-
dom sample of size n and under assumption ðJ1Þ � ðJ2Þ; fDNðbÞgN�1 is
stochastically equicontinuous and limN!1½DNðbÞ � EðDNðbÞÞ� ¼ 0 a:s:

Moreover, adding ðJ3Þ to the two previous assumptions, as N !1; bbN
! b0 a:s:
Proof: See the appendix.
Let SNðbÞ ¼ �rbDNðbÞ. That is,

SNðbÞ ¼
1
N

XN

i¼1

didiwðxiÞu
RðziðbÞÞ
N þ 1

� �
rbgðxi; bÞ:

Since bbN ¼ argminb2B DNðbÞ, then SNðbbNÞ ¼ 0. Define TNðbÞ by

TNðbÞ ¼
1
N

XN

i¼1

didiwðxiÞuðFibðziðbÞÞÞrbgðxi; bÞ;

where FibðtÞ ¼ PðziðbÞ � tÞ. The following theorem pertains to the as-
ymptotic equivalence of SNðbÞ and TNðbÞ.
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Theorem 2. Under a probability sampling design in a random sample of
size n and under ðJ1Þ and ðJ2Þ; limn!1 supb2B jjTNðbÞ � SNðbÞjj ¼ 0; a:s:

Thus, SNðbÞ ¼ TNðbÞ þ opð1=nÞ. On the other hand, it can be shown in a
straightforward manner (Bindele, Abebe, and Meyer 2018) that for any � > 0,

lim
n!1

P
� ffiffiffi

n
p
jjSNðb0Þ � TNðb0Þjj > �

�
¼ 0;

which implies that
ffiffiffi
n
p

SNðb0Þ and
ffiffiffi
n
p

TNðb0Þ have the same asymptotic distri-
bution. Now, applying a Taylor expansion to TNðbÞ around b0, we have

TNðbÞ ¼ TNðb0Þ þ ðb� b0Þ0rbTNðb0Þ þ
1
2
ðb� b0Þ0r2

bTNðb�Þðb� b0Þ;

where b� lies on the line segment joining b0 and b, and r2
b being the

Laplacian operator. Then,

SNðbÞ ¼ TNðb0Þ þ ðb� b0Þ0rbTNðb0Þ þ
1
2
ðb� b0Þ0r2

bTNðb�Þðb� b0Þ
þ opð1=nÞ; (5)

From this, we have the following theorem.

Theorem 3. Under a probability sampling design in a random sample of
size n and under assumptions ðJ1Þ � ðJ3Þ, we have that as n!1,

(i) EðTNðb0ÞÞ ! 0,
(ii) rbTNðb0Þ ! Cðb0Þ a:s:, where Cðb0Þ is a p 	 p matrix defined as

Cðb0Þ :¼ �EfcðXÞ½rbgðX; b0Þ�½rbgðX; b0Þ�0f ðeÞu0ðFðeÞÞg

þEfcðXÞ½r2
bgðX; b0Þ�uðFðeÞÞg;

with cðxiÞ ¼ didiwðxiÞ. Furthermore, r2
bTNðb�Þ is bounded in probabil-

ity, and
(iii)

ffiffiffi
n
p

TNðb0Þ ! N pð0;Rb0
Þ, where Rb0

¼ limn!1Var
� ffiffiffi

n
p

TNðb0Þ
�

.

The next theorem provides the asymptotic normality property of the proposed
estimator. In addition to the previous assumptions, consider the following as-
sumption, which is necessary to ensure the invertibility of Cðb0Þ.
ðJ4Þ Cðb0Þ is positive definite.

This assumption could be relaxed by considering its generalized inverse.

Theorem 4. Under a probability sampling design in a rample sample of
size n and under assumptions ðJ1Þ � ðJ4Þ, as n!1, we have
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ffiffiffi
n
p
ðbbN � b0Þ ! N pð0;C�1ðb0ÞRb0

C�1ðb0ÞÞ:

Remark 3. For stratified sampling, these asymptotic properties with slight
modification of asymptotic expressions will be valid under the additional
assumption that the strata are pairwise independent. For further statistical
inference about b0, the estimation of the covariance matrix C�1ðb0ÞRb0

C�1ðb0Þ is necessary. From the complex form of this covariance matrix,
its estimation can be done by considering sandwitch type estimators
(Brunner and Denker 1994; Bindele 2015). This can be done as
follows: for a given random sample of size n, settingbein ¼ ziðbbNÞ; ki ¼ cðxiÞrbgðxi; b0Þ and bki ¼ cðxiÞrbgðxi; bbNÞ, define

bAn ¼
1
n

Xn

i¼1

bkiu
0 RðbeinÞ

nþ 1

� �
RðbeinÞ and

ANðb0Þ ¼ N
Ð

uðJNðtÞÞbFnðdtÞ þ
Ð

u0ðJNðtÞÞbJ jnðtÞFNðdtÞ;

from which putting FiðtÞ ¼ Pðziðb0Þ � tÞ,

JNðsÞ ¼
1
N

XN

i¼1

FiðsÞ and bJ nðsÞ ¼
1
n

Xn

i¼1

Iðziðb0Þ � sÞ;

FNðsÞ ¼
1
N

XN

i¼1

kiFiðsÞ and bFn ¼
1
n

Xn

i¼1

kiIðziðb0Þ � sÞ:

From this, following theorem 4.1 of Brunner and Denker (1994) and setting

bR ¼ ½bAn � EðANðbÞÞ�½bAn � EðANðbÞÞ�0;

under mild conditions, bR and Rb0
are asymptotically equivalent in L2-norm.

Moreover, Bindele (2015) showed how ANðb0Þ can be approximated by a
Riemann sum. On the other hand, Cðb0Þ can be approximated by

bCn ¼ �
1
n

Xn

i¼1

cðxiÞ½rbgðxi; bbNÞ�½rbgðxi; bbNÞ�0u0
RðbeinÞ
nþ 1

� �
RðbeinÞ

þ 1
n

Xn

i¼1

cðxiÞ½r2
bgðxi; bbNÞ�u

RðbeinÞ
nþ 1

� �
:

To this end, C�1ðb0ÞRb0
C�1ðb0Þ can be estimated by bC�1

n
bRbC�1

n .
When a nonparametric estimation of pðzÞ as discussed earlier is involved,

the bandwidth needs to be carefully selected. To do so, a leave-one-out cross
validation can be considered. That is, bbN can be chosen as
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bbN ¼ argmin
bN

1
N

XN

i¼1

di
bdiwðxiÞu

Rðz�iðbbNÞÞ
N þ 1

 !
z�iðbbNÞ;

where z�iðbbNÞ is the leave-one-out version of ziðbbNÞ and bdi ¼ 1=bpðxi; yiÞ
with bpðxi; yiÞ defined before (4).

4. SIMULATION AND REAL DATA APPLICATION

4.1 Simulation

To assess the performance of the proposed approach, we performed a simula-
tion study for the basic linear regression model using the same settings as in
Kim and Skinner (2013), for a direct comparison. That is, we repeatedly gener-
ated 2,000 finite populations of size N¼ 5,000 with values
ðxi; yi; zi; piÞ; ði ¼ 1; . . . ;NÞ, where xi ¼ 0:5þ ~xi, with ~xi generated from an
exponential distribution with mean 1, yi ¼ b0 þ b1xi þ ei; ðb0; b1Þ ¼ ð�2; 1Þ
and, ei is generated from four different distributions: ei 
 Nð0; 0:8Þ, ei 
 Nð0;
0:52x2

i Þ as in Kim and Skinner (2013), ei 
 t3, the t-distribution with three de-
gree of freedom and ei 
 CNð0:10; 10Þ ¼ 0:9Nð0; 1Þ þ 0:1Nð0; 102Þ. These
last two cases are included to study the effect of tail thickness and contamina-
tion on the resulting estimators. The inclusion probabilities were generated as
pi ¼ nki=

PN
j¼1 kj, where n¼ 100, ki ¼ f1þ expð2:5� 0:5ziÞg�1 and

zi 
 Nð1þ yi; 0:52Þ. From each of the finite populations generated, indepen-
dent samples were drawn by Poisson sampling, where the sample indicator
Ii followed a BerðpiÞ distribution. From each sample, estimators of ðb0; b1Þ
are obtained under different sampling weights as discussed in Kim and
Skinner (2013). From 2,000 replications, biases and standard errors of the
rank and LS estimators are calculated. Tables 1 and 2 below display the
results of our simulation study. Moreover, to evaluate the performance of
the proposed sandwich variance estimator, under the considered model error
distributions, 95 percent coverage probabilities are computed and results are
displayed in table 3.

From tables 1 and 2, it is observed that the proposed rank-based method out-
performs the LS method when the model error is heteroscedastic, contaminated
or heavy-tailed. Under Nð0; 0:8Þ however, as would be expected, the LS per-
forms better than the proposed method. This is not surprising since the LS is
known to be superior than any other method when e 
 Nð0; 1Þ (see tables 1
and 2). It is worth pointing out that our simulation results corroborate with
those of Kim and Skinner (2013) (see table 1). It is also noted that while all
weights have slightly similar performance, the fully nonparametric sampling
weight has the advantage of not requiring the knowledge of the functional of
the sampling inclusion probability.
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When it comes to the variance estimator, it is observed that the proposed
sandwich variance estimator performs fairly well as the coverage probabilities
under different model error distributions are close to the nominal level
(see table 3).

4.2 Real Data

To illustrate our methodology, we consider the dataset on the population biol-
ogy of Abalone (Dua and Graff, 2017). The interest in this dataset is in predict-
ing the age of Abalone from physical measurements. The age of abalone is

Table 1. Biases 310 (SEs 310) of the Regression Parameter Estimates for
Different Weights Schemes When e 
 Nð0; 0:8Þ and e 
 Nð0; 0:52x2

i Þ

Method Estimates Weights Nð0; 0:8Þ Nð0; 0:52x2
i Þ

LS Design 0.15 (1.84) 0.00 (1.29)
Pfefferman–Sverchkov 0.08 (1.67) �0.13 (1.28)
Unsmoothed optimal 0.14 (1.65) �0.02 (1.26)bb0 Smoothed design 0.20 (1.82) �0.05 (1.25)
Smoothed Pfefferman–Sverchkov 0.17 (1.64) �0.15 (1.24)
Smoothed optimal 0.15 (1.62) �0.06 (1.23)
Nonparametric 0.18 (1.67) �0.10 (1.26)
Design �0.05 (0.78) 0.04 (1.25)
Pfefferman–Sverchkov �0.02 (0.64) 0.15 (1.21)
Unsmoothed optimal �0.02 (0.65) 0.06 (1.20)bb1 Smoothed design �0.08 (0.76) 0.17 (1.20)
Smoothed Pfefferman–Sverchkov �0.05 (0.62) 0.25 (1.19)
Smoothed optimal �0.05 (0.62) 0.17 (1.21)
Nonparametric �0.06 (0.65) 0.20 (1.24)

Rank Design 0.17 (1.89) 0.01 (1.11)
Pfefferman–Sverchkov 0.11 (1.72) �0.15 (1.08)
Unsmoothed optimal 0.16 (1.68) �0.03 (1.07)bb0 Smoothed design 0.21 (1.85) �0.07 (1.07)
Smoothed Pfefferman–Sverchkov 0.19 (1.66) �0.17 (1.08)
Smoothed optimal 0.18 (1.65) �0.09 (1.06)
Nonparametric 0.21 (1.70) �0.13 (1.08)
Design �0.07 (0.81) 0.06 (1.08)
Pfefferman–Sverchkov �0.04 (0.67) 0.18 (1.05)
Unsmoothed optimal �0.05 (0.69) 0.07 (1.01)bb1 Smoothed design �0.10 (0.79) 0.19 (1.03)
Smoothed Pfefferman–Sverchkov �0.06 (0.64) 0.27 (1.01)
Smoothed optimal �0.07 (0.65) 0.19 (1.02)
Nonparametric �0.08 (0.67) 0.21 (1.06)
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determined by cutting the shell through the cone, staining it, and counting the
number of rings through a microscope—a boring and time-consuming task.
Other measurements, which are easier to obtain, may also be used to predict
the age. Further information, such as weather patterns and location (hence food
availability) may also be required to solve the problem. For this data N¼ 4,177
and from this population, we draw a simple random sample of size n¼ 500.
The data contain eight predictors that are: x1 ¼ “Sex,” where x1 ¼ 1, if male
and x1 ¼ 0, otherwise, x2 ¼ “Length,” x3 ¼ “Diameter,” x4 ¼ “Height,” x5 ¼
“Whole weight,” x6 ¼ “Shucked weight,” x7 ¼ “Viscera weight,” and x8 ¼
“Shell weight.” The outcome of interest is y ¼ “the number of rings that gives

Table 2. Biases 310 (SEs 310) of the Regression Parameter Estimates for
Different Weight Schemes under t3 and CNð0:10; 10Þ

Method Estimates Weights t3 CNð0:10; 10Þ

LS Design 0.97 (2.95) 0.94 (2.36)
Pfefferman–Sverchkov 0.86 (2.69) �0.93 (2.24)
Unsmoothed optimal 0.92 (2.35) �0.89 (2.17)bb0 Smoothed design 0.99 (2.67) �0.97 (2.31)
Smoothed Pfefferman–Sverchkov 0.94 (2.21) �0.93 (2.27)
Smoothed optimal 0.88 (2.41) �0.91 (2.26)
Nonparametric 0.95 (2.48) �0.93 (2.36)
Design �0.78 (1.77) 0.76 (2.14)
Pfefferman–Sverchkov �0.71 (1.72) 0.87 (2.24)
Unsmoothed optimal �0.68 (1.75) 0.76 (2.18)bb1 Smoothed design �0.79 (1.83) 0.81 (2.19)
Smoothed Pfefferman–Sverchkov �0.73 (1.66) 0.89 (2.16)
Smoothed optimal �0.72 (1.64) 0.87 (2.20)
Nonparametric �0.75 (1.73) 0.90 (2.27)

Rank Design 0.13 (1.77) 0.00 (1.28)
Pfefferman–Sverchkov 0.08 (1.67) �0.11 (1.26)
Unsmoothed optimal 0.12 (1.49) �0.01 (1.23)bb0 Smoothed design 0.18 (1.78) �0.03 (1.21)
Smoothed Pfefferman–Sverchkov 0.15 (1.53) �0.13 (1.19)
Smoothed optimal 0.12 (1.56) �0.04 (1.17)
Nonparametric 0.15 (1.59) �0.07 (1.21)
Design �0.03 (0.69) 0.02 (1.19)
Pfefferman–Sverchkov �0.01 (0.58) 0.11 (1.16)
Unsmoothed optimal �0.01 (0.55) 0.04 (1.14)bb1 Smoothed design �0.05 (0.67) 0.14 (1.16)
Smoothed Pfefferman–Sverchkov �0.02 (0.53) 0.19 (1.12)
Smoothed optimal �0.02 (0.54) 0.14 (1.18)
Nonparametric �0.03 (0.58) 0.16 (1.19)

422 Adekpedjou and Bindele

D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/article/11/2/412/6347039 by guest on 06 June 2023



the age of the Abalone.” The sampling inclusion probabilities are obtained in
two ways:

• Setup 1: First, as in our simulation study by setting pi ¼ nki=
PN

i¼1 ki, k is
estimated using a linear logistic regression model, with the outcome being ei-
ther the unit is included in the sample or not. That is,

k ¼ PðI ¼ 1jx; yÞ ¼ exp fa0 þ xsaþ cyg
1þ exp fa0 þ xsaþ cyg;

where x ¼ ðx1; . . . ; x8Þ0; a ¼ ða1; . . . ; a8Þ0 and, I¼ 1, if the unit is included
in the sample and, I¼ 0, if not. From the linear logistic regression analysis,
the sampling weight is estimated as bdi ¼ 1=bpi, where bpi ¼ nbki=

PN
i¼1
bki,

with

bki ¼
exp fba0 þ xs

iba þbcyig
1þ exp fba0 þ xs

iba þbcyig
;

ba0 ¼ �0:82; ba ¼ ð0:14; 1:98;�3:90;�2:30;�0:72; 0:31; 2:49; 1:30Þ0 andbc ¼ 0:02.
• Setup 2: Second, we consider a fully nonparametric estimation of the inclu-

sion probability, as discussed earlier by setting KðzÞ ¼ 1ffiffiffiffi
2p
p exp � 1

2 z2
	 


.

The regression analysis results are displayed in table 4.
From figure 1, it is clearly observed that the response is right skewed with

multiple outliers, which suggest that the LS may not be suitable for this data.
On the other hand the LAD, which is equivalent to the quantile regression with
quantile scale s ¼ 0:5, may be an alternative choice but is known to result in
inefficient estimators. From table 4, we observe that the three different
approaches give different estimates. But the proposed method is more efficient
as it gives estimates with smaller SEs. Our method appears most trustworthy,
as it does not require the knowledge of the model error distribution. As ob-
served from our simulation study, we see that when the sampling weights are
estimated using the linear logistic regression model, all approaches give better
estimates than those obtained when considering a fully nonparametric estima-
tion of the sampling weights. However, the fully nonparametric sampling
weights under the proposed method still outperform the LS and LAD.

Table 3. 95 Percent Coverage Probabilities (CP) of the Sandwich Variance
Estimator, as Discussed in Remark 3 for Different Model Error (e) Distributions

E Nð0; 0:8Þ Nð0; 0:52x2
i Þ t3 CNð0:10; 10Þ

CP 0.939 0.935 0.941 0.938

Rank-Based Sampling 423

D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/article/11/2/412/6347039 by guest on 06 June 2023



Table 4. Estimates (Est.) and Standard Errors (SEs) of the LS, LAD, and Rank
Estimators

LS LAD Rank

Weight Variables Est. SE Est. SE Est. SE

Setup 1 x1 0.72 0.21 0.47 0.19 0.68 0.08
x2 �3.42 4.02 �2.43 3.56 1.45 1.42
x3 12.46 5.00 6.03 4.62 8.06 1.75
x4 25.70 4.61 22.41 4.43 14.21 1.21
x5 13.66 1.61 11.53 1.90 7.86 0.57
x6 �24.36 1.85 �19.98 1.92 �17.28 0.64
x7 �15.89 2.70 �15.40 2.71 �9.60 1.02
x8 1.34 2.33 2.03 2.37 7.45 0.88

Setup 2 x1 0.81 0.31 0.59 0.25 0.73 0.11
x2 �3.63 4.81 �2.65 3.89 1.51 1.63
x3 12.71 5.76 6.37 4.95 8.12 1.88
x4 25.92 5.09 22.67 4.92 14.27 1.32
x5 13.88 2.57 11.74 2.15 7.49 0.71
x6 �24.59 2.38 �20.09 2.22 �17.36 0.78
x7 �16.10 3.07 �15.63 2.98 �9.73 1.14
x8 1.47 2.85 2.17 2.68 7.54 0.96

Figure 1. Histogram and Boxplot of the Number of Rings.
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5. DISCUSSION

This article is concerned with a robust and efficient estimation of the regression
parameters when data are collected from complex survey. Asymptotic proper-
ties of the proposed estimator are established under mild regularity conditions.
A simulation study has demonstrated that under heteroscedastic, contaminated,
or heavy-tailed model error distribution, the proposed approach outperforms
the LS in terms of robustness and efficiency. It is also seen that while several
weights exist to correct the bias introduced by the sampling scheme, most of
them usually require the specification of the functional form of the sampling
probability. Moreover, the fully nonparametric estimator of the sampling
weight proposed in this article performs well and has the advantage of not re-
quiring any functional form specification.
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APPENDIX

This appendix contains technical details of the theoretical results stated
through this paper.

PROOFS

Proof of theorem 1. Recall that FibðzÞ ¼ PðziðbÞ � zÞ. Note that if b 6¼ b0;
ziðbÞ are independent but not necessarily identically distributed. Recall
that for b ¼ b0; ziðb0Þ � ei and Fib0

ð�Þ � Fð�Þ. Set aiNðbÞ ¼ RðziðbÞÞ=
ðN þ 1Þ. For any b1; b2 2 B,

jDNðb1Þ � DNðb2Þj � j
1
N

XN

i¼1

didiwðxiÞ½uðaiNðb1ÞÞ � uðFib1
ðziðb1ÞÞÞ�j

þj 1
N

XN

i¼1

didiwðxiÞ½uðFib1
ðziðb1ÞÞÞ � uðFib2

ðziðb2ÞÞÞ�j

þj 1
N

XN

i¼1

didiwðxiÞ½uðaiNðb2ÞÞ � uðFib2
ðziðb2ÞÞÞ�j

¼ I1N þ I2N þ I3N :

Considering I1N and applying the Cauchy–Schwarz inequality, we have
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I1N �
1
N

XN

i¼1

didiwðxiÞjuðaiNðb1ÞÞÞ � uðFib1
ðziðb1ÞÞÞj

� 1
N

XN

i¼1

did
2
i w2ðxiÞ

" #1=2

½max1� i�N juðaiNðb1ÞÞ � uðFib1
ðziðb1ÞÞÞj2�1=2:

Note that Ui ¼ FibðziðbÞÞ are independent and uniformly distributed in (0, 1).
Following H�ajek, �Sid�ak, and Sen (1999), it is obtained that as
N !1; aiNðbÞ � Ui ! 0 a:s:, for all i and for all b 2 B. From the continuity
of uð�Þ, applying the generalized continuous mapping theorem (Whitt 2002),
we have uðaiNðbÞÞ � uðUiÞ ¼ oð1=NÞ a:s:, for all i and for all b 2 B.
Moreover, with fyi; xi; IigN

i¼1 being a random sample, did2
i w2ðxiÞ; i ¼ 1; . . . ;

N are independent. So, from the Strong Law of Large Numbers (SLLN), we
have that as N !1,

1
N

XN

i¼1

½did
2
i w2ðxiÞ � Eðdid

2
i w2ðXiÞÞ� ! 0 a:s: and Eðdid

2
i w2ðXiÞÞ < 1

byðJ2Þ � ðJ3Þ:

Thus, as N !1; I1N ! 0 a:s: and I3N ! 0 a:s: Note that FibðzÞ is continu-
ous and almost surely differentiable. Applying the mean value theorem to
uðFibðziðbÞÞ, there exists b� lying on the line segment joining b1 and b2 such
that

u
�

Fb1
ðziðb1ÞÞ

�
� u

�
Fb2
ðziðb2ÞÞ

�
¼ rbgðxi; b

�Þu0ðFib� ðziðb�ÞÞÞfib� ðziðb�ÞÞðb1 � b2Þ;

where fibð�Þ is the Radon–Nykodim derivative of Fibð�Þ. Since fibð�Þ is a proba-
bility density function, it is almost surely bounded. From the fact that u0ðxÞ is
bounded, so is u0ðFðxÞÞ. Therefore, there exists a positive constant c such that
u0ðFib� ðziðb�ÞÞÞfib� ðziðb�ÞÞ � c a:s: Thus, with probability 1, by (J2) and the
Cauchy–Schwarz inequality, we have

I2N ¼ j
1
N

XN

i¼1

didiwðxiÞ½rbgðxi; b
�Þu0ðFib� ðziðb�ÞÞÞfib� ðziðb�ÞÞ�ðb1 � b2Þj

� c

N

XN

i¼1

diwðxiÞjjrbgðxi; bÞjj
" #

jjb1 � b2jj

� c
1
N

XN

i¼1

d2
i w2ðxiÞ

 !1=2
1
N

XN

i¼1

H2ðxiÞ
 !1=2

jjb1 � b2jj:
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A direct application of the SLLN gives

AN :¼ c
1
N

XN

i¼1

d2
i w2ðxiÞ

 !1=2
1
N

XN

i¼1

H2ðxiÞ
 !1=2

! c
�

Eðd2w2ðXÞÞ
�1=2�

EðH2ðXÞÞ
�1=2

a:s:;

by ðJ1Þ � ðJ2Þ, with c
�

Eðd2w2ðXÞÞ
�1=2�

EðH2ðXÞÞ
�1=2

< 1. This ensures

that AN is almost surely bounded. Thus, with probability 1,

jDNðb1Þ � DNðb2Þj � AN jjb1 � b2jj:

Hence, fDNðbÞgN�1 is stochastically equicontinuous.
Under assumptions ðJ1Þ and ðJ2Þ, it is obtained that EðDNðbÞÞ < 1. Also,

uð�Þ and gð�Þ being continuous functions of b, so is EðDNðbÞÞ. Thus, since B
is compact, under ðJ3Þ; b0 exists. Set
�Fbð�Þ ¼ 1

N

PN
i¼1 Fibð�Þ; ViðtÞ ¼ I ziðbÞ � tf g, cðxiÞ ¼ didiwðxiÞ, and let

xi 
 Gð�Þ. We have,

EðDNðb ÞÞ ¼ E
1
N

XN

i¼1

didiwðxiÞu
�

aiNðbÞ
�

ziðbÞ
" #

¼ 1
N

XN

i¼1

E½cðxiÞu
�

aiNðbÞ
�

ziðbÞ�

¼ 1
N

XN

i¼1

E cðxiÞu
NFN;bðziðbÞÞ

N þ 1

� �
ziðbÞ

� �
�
ð ð1

0
cðxÞuNðuÞdFN;bðuÞdudGðxÞ;

where uNðuÞ ¼
PN

i¼1 uði=ðN þ 1ÞÞIðði�1Þ=N;i=N�ðuÞ and

FN;bðuÞ ¼ 1
N

PN
i¼1 ViðuÞ. From the boundedness of uð�Þ, we have, as N !1;

uNðuÞ � uðuÞ ! 0 a:s: Also, since ziðbÞ; i ¼ 1; . . . ;N are independent,
fVNgN�1 is a sequence of independent random variables satisfyingP1

N¼1 varðVNÞ=N2 < 1. Thus, by the SLLN, we have, as
N !1; FN;bðuÞ � �FbðuÞ ! 0 a:s:, for any b 2 B. A direct application of
the Dominated Convergence Theorem gives, as N !1,

1
N

XN

i¼1

E½cðXiÞu
�

aiNðbÞ
�

ziðbÞ� �
ð ð1

0
cðxÞuðuÞd�FbðuÞdudGðxÞ ! 0:

Now, applying the SLLN of functions of order statistics (Helmers 1977; Wellner

1977; Van Zwet 1980), we have DNðbÞ �
Ð Ð 1

0 cðxÞuðuÞd�FbðuÞdGðxÞ ! 0 a:s:
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and thus, DNðbÞ � EðDNðbÞÞ ! 0 a:s. Moreover, by theorem 1 of Bindele

(2017), we have bbN ! b0 a:s:. h

Proof of theorem 2. From their definitions and the Cauchy–Schwartz inequal-
ity, we have

jjSNðb Þ � TNðbÞjj �
1
N

XN

i¼1

cðxiÞjjrbgðxi; bÞjjju
�

aiNðbÞ
�
� uðFibðziðbÞÞÞj

� 1
N

XN

i¼1

c2ðxiÞH2ðxiÞ
" #1=2

½sup
b2B

max
1� i�N

ju
�

aiNðbÞ
�
� uðFibðziðbÞÞÞj2�1=2:

As in the proof of the previous theorem, the SLLN gives that as N !1,

1
N

XN

i¼1

c2ðxiÞH2ðxiÞ ! E½c2ðXÞH2ðXÞ� a:s:;

with E½c2ðXÞH2ðXÞ� <1 and sup
b2B

max
1� i�N

ju
�

aiNðbÞ
�
� uðFibðziðbÞÞÞj2 ! 0 a:s:

Thus,

sup
b2B
jjSNðbÞ � TNðbÞjj ! 0 a:s:

h

Proof of theorem 3. (i) Assuming we can interchange differentiation and inte-
gral, observe that EðSNðbÞÞ ¼ E½rbDNðbÞ� ¼ rbE½DNðbÞ�, by ðJ1Þ and ðJ2Þ.
Now, by ðJ3Þ, we have EðSNðb0ÞÞ ¼ rbE½DNðb0Þ� ¼ 0. From the fact that
SNðb0Þ ¼ TNðb0Þ þ opðn�1=2Þ, we have E½TNðb0Þ� ! 0, as n!1.

(ii) A direct differentiation of TNðbÞ with respect to b gives

rbTNðbÞ ¼ �
1
N

XN

i¼1

cðxiÞ½rbgðxi; bÞ�½rbgðxi; bÞ�0fibðziðbÞÞu0ðFibðziðbÞÞÞ

þ 1
N

XN

i¼1

cðxiÞ½r2
bgðxi; bÞ�uðFibðziðbÞÞÞ:

The previous display evaluated at b0 gives

rbTNðb0Þ ¼ �
1
N

XN

i¼1

cðxiÞ½rbgðxi; b0Þ�½rbgðxi; b0Þ�0f ðeiÞu0ðFðeiÞÞ

þ 1
N

XN

i¼1

cðxiÞ½r2
bgðxi; b0Þ�uðFðeiÞÞ:
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By ðJ1Þ and ðJ2Þ; E
�
cðXÞ½rbgðX; b0Þ�½rbgðX; b0Þ�0f ðeÞu0ðFðeÞÞ

�
< 1 and

also, E½cðXÞ½r2
bgðX; b0Þ�uðFðeÞÞ� < 1. From the fact that xi ¼ ðxi; eiÞ; i

¼ 1; . . . ;N are independent and identically distributed, we have by the SLLN,
rbTNðb0Þ ¼ Cðb0Þ þ oð1=nÞ a:s:, where

Cðb0Þ :¼ �EfcðXÞ½rbgðX; b0Þ�½rbgðX; b0Þ�0f ðeÞu0ðFðeÞÞg

þEfcðXÞ½r2
bgðX; b0Þ�uðFðeÞÞg:

In addition, if e is independent of x, we have

E
�
cðXÞ½rbgðX; b0Þ�½rbgðX; b0Þ�0f ðeÞu0ðFðeÞÞ

�
¼ �c�1

f E
�
cðXÞ½rbgðX; b0Þ�½rbgðX; b0Þ�0

�
;

where f�1
u ¼ E½f ðeÞu0ðFðeÞÞ� ¼

Ð 1
0 uðuÞuf ðuÞdu with

uf ðuÞ ¼ f 0ðF�1ðuÞÞ=f ðF�1ðuÞÞ. Also,

E
�
cðXÞ½r2

bgðX; b0Þ�uðFðeÞÞ
�
¼ E

�
cðXÞ½r2

bgðX; b0Þ�
�

E½uðFðeÞÞ� ¼ 0;

since E½uðFðeÞÞ� ¼ 0, by ðJ1Þ. Thus, Cðb0Þ reduces to

Cðb0Þ :¼ c�1
f E

�
cðXÞ½rbgðX; b0Þ�½rbgðX; b0Þ�0

�
:

(iii) Let QNðb0Þ ¼ SNðb0Þ � E½SNðb0Þ�. Consider the following lemma,
whose proof can be constructed along the lines as that of corollary 3.8 of
Brunner and Denker (1994).

Lemma 1. Using definitions in remark 3, let 1N be the minimum eigen-
value of WN ¼ VarðUnÞ with Un given by

Un ¼
ð

uðJNðsÞÞðbFn � FNÞðdsÞ þ
ð

u0ðJNðsÞÞðbJ nðsÞ � JNðsÞÞFNðdsÞ :

Suppose that 1N � CNa for some constants C; a 2 R and m(n) is such that
M0Nc � mðnÞ � M1Nc for some constants 0 < M0 � M1 < 1 and
0 < c < ðaþ 1Þ=2. Then mðnÞW�1=2

N QNðb0Þ is asymptotically standard
multivariate normal, provided u is twice continuously differentiable with
bounded second derivative.

From its definition,

SNðb0Þ ¼
1
N

XN

i¼1

cðxiÞu
Rðziðb0ÞÞ

N þ 1

� �
¼
ð

u
n

N þ 1
bJ nÞdFN

�
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Now defining Bn by

Bn ¼ �
ð
ðbFn � FNÞduðJNÞ þ

ð
ðbJ n � JNÞ

dFN

dJN
duðJNÞ;

following Brunner and Denker (1994), it can be shown that
WN ¼ N2VarðBnÞ. From the fact that b0 ¼ argminb2B EðDNðbÞÞ, it can be
seen that E½SNðb0Þ� ¼ 0. This implies that E½QNðb0Þ� ¼ 0 and
QNðb0Þ ¼ SNðb0Þ. Now, under assumptions ðJ2Þ and ðJ3Þ, for theorem 3(iii)
to hold, it suffices to show that the conditions of lemma 1 are satisfied. To that
end, since VarðeijxiÞ > 0, there exists f > 0 such that the minimum eigen-
value of VarðBnÞ, say lN satisfies lN > fNb, for 0 < b < 1=2. This is
obtained under the assumption that 1N=N !1 putting lN !1 as N !1,
see Brunner and Denker (1994) for more discussion. Once again by Brunner
and Denker (1994), putting Un ¼ NBn, we have VarðUnÞ ¼ N2VarðBnÞ. Thus,
1N ¼ N2lN � fN2þb. From the fact that pi is a probability, pi � 1, for all i.
By ðJ3Þ; c1Nn�1 � piNn�1 < c2, from which n > c1

c2
N. Then,ffiffiffi

n
p

>
ffiffiffi
c1
c2

q
Na=2, with a < 1. Moreover, by ðJ3Þ again,

ffiffiffi
n
p
� ffiffiffiffiffi

c2
p

Na=2.

Thus,
ffiffiffi
c1
c2

q
Na=2 <

ffiffiffi
n
p
� ffiffiffiffiffi

c2
p

Na=2. Hence, putting a ¼ 2þ b; c ¼ a=2; M0

¼
ffiffiffi
c1
c2

q
; M1 ¼

ffiffiffiffiffi
c2
p

; C ¼ f and mðnÞ ¼
ffiffiffi
n
p

, conditions of lemma 1 are satis-

fied. This shows that W�1=2
N

ffiffiffi
n
p

QNðb0Þ is asymptotically multivariate standard
normal. Therefore,

ffiffiffi
n
p

SNðb0Þ is asymptotically multivariate normal with
mean 0 and covariance matrix WN , with WN ¼ Varð

ffiffiffi
n
p

SNðb0ÞÞ ! Rb0
, as

n!1. h

Proof of theorem 4. From the fact that SNðbÞ ¼ TNðbÞ þ opðn�1Þ, using (5),
we have

0 ¼ TNðb0Þ þ ðbbN � b0Þ0rbTNðb0Þ

þ 1
2
ðbbN � b0Þ0r2

bTNðb�NÞðbbN � b0Þ þ opð1=nÞ;

where b�N lies on the segment joining b0 and bbN . Under assumptions
ðJ1Þ � ðJ3Þ, it can be shown in a straight forward manner that r2

bTNðb�NÞ is

bounded in probability and so, from the consistency of bbN , we have that ðbbN

�b0Þ0r2
bTNðb�NÞ ! 0 a:s: Thus, usingrbTNðb0Þ ! Cðb0Þ a:s:, we have

0 ¼ TNðb0Þ þ ðbbN � b0Þ0Cðb0Þ þ opð1=nÞ:
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This implies that
ffiffiffi
n
p
ðbbN � b0Þ ¼ �C�1ðb0Þ

ffiffiffi
n
p

TNðb0Þ þ opð1=
ffiffiffi
n
p
Þ, from

which applying theorem 3(iii) yieldsffiffiffi
n
p
ðbbN � b0Þ ! N pð0;C�1ðb0ÞRb0

C�1ðb0ÞÞ. h
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