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Abstract— Aerial imagery captured through airborne sen-
sors mounted on Unmanned Aerial Vehicles (UAVs), aircrafts,
satellites, etc. in the form of RGB, LiDAR, multispectral or
hyperspectral images provide a unique perspective for a variety
of applications. These sensors capture high-resolution images
that can be used for applications related to mapping, surveying,
and monitoring of crops, infrastructure, and natural resources.
Deep learning based algorithms are often the forerunners in
facilitating practical solutions for such data-centric applications.
Deep learning-based landmark detection is one such application
which involves the use of deep learning algorithms to accurately
identify and locate landmarks of interest in images captured
through UAVs. This study proposes an efficient transfer learning
method for feature extraction using a ResNet50 architecture,
paired with a FasterRCNN object detection for an automated
landmark detection framework. Additionally, a novel technique
for hierarchical image annotation and synthetic sampling is also
introduced to address the issue of class imbalance. Empirical
results prove that our proposed approach outperforms other
state-of-the-art landmark detection methodologies compared.

Index Terms—landmark detection, transfer learning,
ResNet50, FasterRCNN, deep learning, aerial imagery

I. INTRODUCTION

Aerial imagery refers to images that are captured from
a high altitude, often from air or space. These images can
be captured through a variety of sources, including aircrafts,
unmanned aerial vehicles (UAVs) and satellites. UAVs, also

This research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-21-2-0266.
We would also like to express our gratitude to Army DAC for their invaluable
support throughout the completion of this project. The views and conclusions
contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied,
of the Army Research Office or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

known as drones, are small aircraft that can be remotely piloted
or operated autonomously and are equipped with sensors such
as vision (RGB) cameras and LIDAR sensors. Satellites, on the
other hand, are spacecraft that orbit the earth and are equipped
with multi-sensors (vision, hyperspectral, multispectral) and
cameras. Both UAVs and satellites can capture high-resolution
images and data that can be used for a variety of applications,
such as mapping, surveying, and monitoring crops [1], war
zones [2], landscapes [3], infrastructure [4], and natural re-
sources [5]. The use of aerial imagery captured through UAVs
and satellites has become increasingly popular in recent years
due to their ability to provide a unique perspective and access
hard-to-reach areas.

Over the past decade, deep learning has had a significant
impact on land cover surveillance and landmark detection
[6]. Land cover surveillance and landmark detection involves
monitoring, mapping and identifying significant landmarks on
the land surface to assess its use and condition. Deep learning
algorithms can effectively be used to analyze aerial imagery to
automatically classify land cover types [7]–[9] and detect land-
marks of interest present in them. In literature, there are several
deep learning algorithms that can be specifically used for
landmark detection or object detection in general, including,
convolutional neural network (CNN) [10], region-based con-
volutional neural network (R-CNN) [11], Fast-RCNN which
is an extension of R-CNN [12], You Look Only Once (YOLO)
[13], single shot detector (SSD) [14]. In addition to these
object detection algorithms, the feature extraction module at
the backend of the overall architecture plays a significant
role, not only aiding in extracting principal features which are
cardinal to effectively distinguish objects of interest present
in the input data but also affect the computational complexity
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generally measured in terms of overall execution time directly.
In our work, we propose the use of FasterRCNN object

detection architecture for effective landmark detection with a
pre-trained ResNet50 architecture on the backend for feature
extraction of various landmark classes used in the dataset
used for empirical analysis. The ResNet50 architecture on the
backend is pre-trained on COCO17 dataset [15]. Additionally,
as a part of preprocessing, we propose a novel hierarchical
landmark annotation technique for the ‘housing community’
class identified in our dataset. In this hierarchical annota-
tion technique, the first stage involves annotation of all the
identified ’buildings’ as a single class separately, which is
followed by grouping together a cluster of buildings that are
in spatial proximity together as a ‘housing community’ class.
This aids the landmark detection algorithm in hierarchically
learning to map a set of buildings which look alike and are
present in a spatial cluster as a housing community. Finally,
synthetic sampling of entities for four classes identified in our
dataset (‘housing community’, ‘football stadium’, ‘baseball
stadium’ and ‘waterbody’) is also introduced in this work to
alleviate any class imbalance issues and significantly enhance
the performance of our proposed technique.

The rest of the paper is structured as follows. Section II
gives a detailed description of the feature extraction and
landmark detection architecture proposed in our work. This is
followed by a brief description of all the other methodologies
used in our work for direct comparison with the proposed
architecture for effectiveness in Section III. Section IV out-
lines the details of the dataset used for our experimentation
and summarizes the effectiveness of our proposed landmark
detection framework. Finally, Section V presents a synopses
of our work and discusses future research directions.

II. PROPOSED SYSTEM ARCHITECTURE
(FASTERRCNN-RESNET50)

A. Image Annotation

The raw input tiles were pre-processed and broken down to
image slices of size (500× 500× 3) because training a neural
network for landmark detection offers advantages such as auto-
mated faster training, reduced memory requirements, improved
generalization, and produces superior results for generic target
detection applications. The preprocessing of the raw image
tiles is outlined in section IV-A. In this work, we are interested
in 5 types of landmarks (classes) present in the captured data
annotated as ‘building’, ‘football stadium’, ‘baseball stadium’,
‘waterbody’, and ‘housing community’. The data annotation of
the first 4 classes was straight forward. However, annotation of
landmarks identified as housing community was complex due
to its close association with the ’building’ class. To combat
this, we propose a hierarchical annotation methodology where
the identified houses in a community are first included in the
‘building’ class. In the next step, all such buildings which are
similar structurally and are in proximity to one another are
amalgamated and annotated as a single ‘housing community’
entity. Hence, this form of hierarchical annotation can alleviate
any ambiguity in landmark detection, especially in cases of

buildings that are occluded or partially visible. It can also
handle cases where multiple landmarks are closely linked or
overlapping. The entire process of annotation was achieved
through a software called LabelImg [16].

B. Synthetic Sampling

After the raw input image tiles were pre-processed and
annotated for respective landmarks of interest, it was noticed
that the ratio of the number of samples present in the ‘building’
class to the number of samples present in all the other four
classes of interest was greater than 10 : 1. This orchestrates the
classical machine learning challenge of class imbalance issue
which can lead to a bias in the model prediction towards the
more prevalent classes. This form of biased data in turn leads
to biased data learning which can lead to poor generalization
of the AI/ML model and cause over-fitting. To mitigate this
problem, 30 synthetic samples along with their vertical flipping
and horizontal rotation based augmentations for each of the
classes, ‘building’, ‘football stadium’, ‘baseball stadium’ and
‘housing community’ were introduced during the training to
boost the generalization capability of the landmark detection
framework used in our work. Examples of synthetic samples
that were introduced for all the four classes are as shown in
Fig. 2.

C. Feature Extraction and Landmark Detection

Here, the input annotated images are resized to a spatial
resolution of (640 × 640) with a spectral dimension of 3
and are produced to a ResNet50 architecture pre-trained on
COCO17 dataset for effective feature extraction. ResNet50 is
a convolutions based architecture and has 50 layers, which
allows it to learn complex and hierarchical features from
the input images. This is important for object detection, as
it allows the network to capture the details and nuances of
the objects in the image. The resultant feature map that is
generated as a result of feature extraction is produced as an
input to the Region Proposal Network (RPN).

The RPN takes the generated feature map as the input and
generates a set of region proposals, or potential landmark
locations, in the input image. The RPN works by using a
sliding window approach to scan the input image and generate
a set of region proposals at each window position. The region
proposals are then passed through a convolutional neural
network (CNN) that classifies each proposal as either an
object or background and also predicts the boundaries of the
object within the proposal. The RPN uses a set of predefined
anchor boxes or reference boxes to process objects of different
sizes and shapes. These anchor boxes are chosen to cover a
range of aspect ratios and scales, and the RPN uses them to
generate region proposals that are adapted to the objects in the
image. The region proposal ri is defined by its coordinates
(xi, yi, wi, hi), where (xi, yi) is the center of the proposal,
wi is the width, and hi is the height. The probability that
the region contains an object is given by pi, and the bounding
box regression targets are given by ti = (txi

, tyi
, twi

, thi
). The

probability pi is calculated as the product of the probability
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Fig. 1. The proposed pre-trained ResNet50 based feature extraction and FasterRCNN based landmark detection framework (FasterRCNN-ResNet50).

(a) Football Stadium (b) Baseball Stadium

(c) Housing Community (d) Waterbody
Fig. 2. Examples of synthetic samples for all the four classes introduced
during training.

that the region contains an object, Pobj, and the intersection
over union (IOU) between the ground truth bounding box gi
and the region proposal ri as follows:

pi = Pobj · IOU(gi, ri) (1)

The bounding box regression targets ti are calculated as
the difference between the ground truth bounding box gi and
the region proposal ri, normalized by the size of the region
proposal as:

ti =
gi − ri

ri
(2)

The RPN uses a CNN to classify each region proposal as
either an object or background, and to predict the bounding
box regression targets. The CNN is trained to minimize the
following loss function:

L =
1

N

∑
i

Lcls(pi, p
∗
i ) + λLreg(ti, t

∗
i ) (3)

where Lcls is the classification loss, Lreg is the bounding
box regression loss, p∗i is the ground truth label for the region
proposal, and t∗i is the ground truth bounding box regression
targets. The classification loss Lcls is typically the log loss,
given by:

Lcls(pi, p
∗
i ) = −(p∗i log(pi) + (1− p∗i ) log(1− pi)) (4)

The bounding box regression loss Lreg is typically the
smooth L1 loss, given by:
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Lreg(ti, t
∗
i ) =

{
0.5(tij − t∗ij)

2 if |tij − t∗ij | < 1

|tij − t∗ij | − 0.5 otherwise
(5)

where j indexes the components of the bounding box
regression targets, tij is the predicted value, and t∗ij is the
ground truth value. The hyperparameter λ controls the rel-
ative importance of the classification loss and the bounding
box regression loss. The mathematical representation of the
working of a RPN is clearly explained from Eq. 1- 5.

After the RPN produces the region proposals, the output of
the RPN, i.e., the region proposals are now together input to
a Region Of Interest (ROI) pooling layer. ROI pooling works
by dividing the region proposals into a set of fixed-size bins
and then max pooling the activations within each bin. This
has the effect of making the output of the CNN invariant
to the size of the region proposals and allows the CNN to
process region proposals of different sizes in a uniform way.
To perform ROI pooling, the Faster-RCNN framework first
takes the output of the ResNet50 feature extractor and applies a
spatial transform to map it to the coordinate space of the region
proposals. The transformed feature maps are then divided into
a set of fixed-size bins and max pooled within each bin. The
resulting pooled features are then fed into the detector, which
processes them further to finally classify the objects and refine
the boundary estimates using a fully connected neural network.
The overall system architecture of the FasterRCNN-ResNet50
based feature extraction and landmark detection framework is
as depicted in the Fig. 1.

III. METHODOLOGIES FOR COMPARISON

This section briefly discusses the two state-of-the-art land-
mark detection methodologies that are used for comparison in
this work.

A. SSD-MobileNet

A single shot detector (SSD) is a light weighted object
detection module that uses a single convolutions based net-
work to predict both the bounding boxes and the respective
class probabilities in an input image [14]. SSD strives towards
making predictions with the aid of feature maps at multiple
scales which results in successful identification of objects of
various sizes in the given input. On the backend, SSD has
the option of using multiple convolutional neural network
based feature extractors. However, in our experimentation,
to ensure the overall landmark detection module stays light-
weight for UAVs, a MobileNet based feature extraction module
is included [17]. It uses depthwise separable convolutions,
which split the convolution operation into two separate stages:
a depthwise convolution and a pointwise convolution. This
reduces the number of trainable parameters by a great extent.
It also ensures that the overall feature extraction module
computationally efficient.

In our experimentation, the SSD model with MobileNet on
the back end works by first resizing the input image to a spatial

dimension of (320×320) and passing it through the MobileNet
convolutional neural network to generate feature maps. These
feature maps are then fed into several layers of convolutional
and predictor layers, which predict the bounding boxes and
class probabilities for the landmarks in the image. The bound-
ing boxes are then filtered and refined using non-maximum
suppression in the later stage to remove overlapping bounding
boxes and ensure that each landmark is only detected once.
Finally, the resulting bounding boxes and class probabilities
for all the 5 classes in our dataset are used to identify and
classify the landmarks in the image.

The hyperparameters for SSD-MobileNet were set as fol-
lows. The anchor box scales were defined to be 1.0 and 4.0
with aspect ratios of 0.5, 1.0 and 2.0. L2 regularization was
used to reduce over-fitting and increase the generalization
capability of the overall framework. The threshold for Inter-
section over Union (IOU) was set to 0.5 allowing a maximum
of 100 predictions per input in this framework. The batch size
was set to 4 and the entire network was trained for 35000
steps with a base learning rate of 0.8.

B. CenterNet-ResNet101

CenterNet is a single-stage object detection model that uses
a convolution neural network to predict bounding boxes and
class probabilities for landmarks identified in an image [18].
It is based on the idea of predicting the center point of an
object, rather than predicting the bounding box directly. In
our experiments, CenterNet model with a ResNet-101 backend
works by first resizing the input image to a spatial dimension
of (512 × 512) and then passing it through the ResNet-101
convolution neural network to generate feature maps. These
feature maps are then fed into several layers of convolutional
and predictor layers, which predict the center points and sizes
of the bounding boxes for the landmarks detected in the
image. The bounding boxes are then generated from the center
points using a decoder network, which also predicts the class
probabilities for each bounding box. The resulting bounding
boxes and class probabilities are used to identify and classify
the landmarks found in the image.

The hyperparameters for CenterNet-ResNet101 were set as
follows. No explicit definition of anchor box scales and aspect
ratios were made here and the pre-defined defaults were used.
No regularization has been included in the experimentation
related to this approach. The threshold for Intersection over
Union (IOU) was set to 0.5 allowing a maximum of 100
predictions per input in this framework. The batch size was
set to 4 and the entire network was trained for 25000 steps
with a base learning rate of 0.001.

IV. EXPERIMENTAL RESULTS

A. Data Description

A Light Detection and Ranging (LIDAR) sensor was
mounted onto a drone and flown over the city of Tallahassee
in Florida (USA). The raw input data is in the form of image
tiles and the raw input data is in the shape of (M ×N ×D),
where (M ×N) denote the spatial resolution of the captured
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(a) Ground Truth (b) FasterRCNN-ResNet50 (c) SSD-MobileNet (d) CenterNet-ResNet101

(e) Ground Truth (f) FasterRCNN-ResNet50 (g) SSD-MobileNet (h) CenterNet-ResNet101

(i) Ground Truth (j) FasterRCNN-ResNet50 (k) SSD-MobileNet (l) CenterNet-ResNet101
Fig. 3. Test images demonstrating the results of all the landmark detection frameworks along with their ground truths with annotation, where ground truth
(a) covers Buildings, (e) Football stadium and buildings, and (i) shows Housing community and buildings classes.

image tiles, and D denotes the number of spectral bands. In
our case, the spatial resolution of the captured image tiles were
(5000× 5000) with a spectral dimension of 4. The additional
fourth band present in the captured image tiles represents the
LIDAR band which encodes the depth information present in
the image captured. However, since the focus of this work is to
perform landmark detection on aerial imagery which are three
channeled (RGB), the LIDAR band was eliminated from the
raw image tiles. Thus, each of the raw input image tiles were
now in the shape of (5000× 5000× 3).

In the next step, 9 tiles out of all the the raw data collected
indicated the presence of urban landscape were handpicked
for further processing. Each of these 9 high resolution image
tiles were now split and saved as 100 images each of size
(500× 500× 3). We then eliminated any areas in our dataset
that did not cover our targets-of-interest or landmarks we
were looking for, which includes, 5 classes, namely, ‘build-
ing’, ‘football stadium’, ‘baseball stadium’, ‘waterbody’, and
‘housing community’. The remaining dataset consisted of 393

images of shape (500 × 500 × 3) was used for training
our proposed landmark detection framework. For testing, 30
randomly selected images with urban landscape from the same
region were chosen and each of those images were of shape
(1000 × 1000 × 3). Finally, both training and testing images
created in our work were annotated with 5 classes, namely,
‘building’, ‘football stadium’, ‘baseball stadium’, ‘waterbody’,
and ‘housing community’ using LabelImg [16].

B. Experimental Setup and Hyper-Parameter Tuning

This section covers the hyper-parameters used to train
and validate our proposed FasterRCNN-ResNet50 architecture
based landmark detection framework. Firstly, the original input
data which is of size (500 × 500 × 3) after pre-processing,
is reshaped to size (640 × 640 × 3) before passing it onto
a ResNet50 based feature map generator. Later, within the
region proposal network, the anchor box scales were set to
0.25, 0.5, 1.0 and 2.0 with aspect ratios 0.5, 1.0 and 2.0. L2
regularization has been used in this framework to effectively
amplify the generalization capability of our landmark detec-
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TABLE I
COMPARISON OF AVERAGE PRECISION (AP) AND AVERAGE RECALL (AR) (IN PERCENTAGE %) FOR VARIOUS RANGES OF IOU FOR DIFFERENT

LANDMARK DETECTION METHODOLOGIES

Metric Area Max Detections FasterRCNN- SSD- CenterNet-
(Average Precision/Recall) -ResNet50 -MobileNet -ResNet101
AP @ IOU = 0.50 : 0.95 All 100 44.60 39.40 46.30

AP @ IOU = 0.50 All 100 75.80 47.72 74.20
AP @ IOU = 0.75 All 100 51.30 42.80 49.50

AP @ IOU = 0.50 : 0.95 Medium 100 22.00 6.40 38.20
AP @ IOU = 0.50 : 0.95 Large 100 47.90 41.80 47.50
AR @ IOU = 0.50 : 0.95 All 1 38.50 34.40 36.30
AR @ IOU = 0.50 : 0.95 All 10 55.60 51.50 56.60
AR @ IOU = 0.50 : 0.95 All 100 58.00 59.20 58.50
AR @ IOU = 0.50 : 0.95 Medium 100 28.40 15.70 52.70
AR @ IOU = 0.50 : 0.95 Large 100 61.80 61.80 59.20

TABLE II
COMPARISON OF CLASS-WISE AVERAGE PRECISION @ IOU = 0.50 IN PERCENTAGE (%) FOR ALL THE LANDMARK DETECTION METHODOLOGIES

Class Name Metric : Average Precision @ IOU = 0.5 in percentage (%)
FasterRCNN-ResNet50 SSD-MobileNet CenterNet-ResNet101

Building 9.24 3.41 6.07
Housing Community 50.00 50.78 100.00

Football Stadium 100.00 50.00 100.00
Waterbody 100.00 78.84 61.11

Baseball Stadium 66.67 55.55 79.16

TABLE III
OVERALL TRAINING AND EVALUATION TIME (IN MINUTES) FOR ALL THE LANDMARK DETECTION METHODOLOGIES

Metric FasterRCNN-ResNet50 SSD-MobileNet CenterNet-ResNet101
Overall Training Time 244.86 67.02 306.24

Overall Evaluation Time 0.005 0.0048 0.005

tion framework FasterRCNN-ResNet50. Additionally, the loss
function used to minimize the classifier error is log loss and
the bounding box regression loss used in this framework is
the smooth L1 loss which are denoted by Eq. 4 and Eq. 5
respectively. The IOU threshold used at the end of the land-
mark detection framework to eliminate insignificant detections
was set to 0.5 allowing a maximum of 100 detections per input
image. The FasterRCNN-ResNet50 framework was trained for
40000 steps with a batch size of 4 and a base learning rate
of 0.039 to optimize the landmark detection capabilities of
this framework. The hyper-parameters used to train all the
other landmark detection systems that have been discussed
in our work have been clearly documented in section III. Two
evaluation metrics have been used in our work to quantify and
compare the performance of all the landmark detection tech-
niques discussed. The first is the ‘coco api detection metric’
which produces the average precision and average recall for
various ranges of IOU starting from 0.5 through 0.9, and the
second is the ‘pascal voc detection metric’ which produces
the class-wise average precision at 0.5 IOU for all the classes
present in our dataset. Finally, all the experiments related
to this work were conducted on a workstation with Intel(R)
Core(TM) i7-7700 CPU with 32GB memory and a NVIDIA
GeForce GTX 1060 GPU with 6GB memory.

C. Discussion

In this work, we validate the effectiveness of our pro-
posed feature extraction and landmark detection technique
FasterRCNN-ResNet50, with respect to two other well-known
landmark detection methodologies, namely, SSD-MobileNet
and CenterNet-ResNet101. It can be clearly noted from Table I
that FasterRCNN-ResNet50 approach performed exceptionally
well when compared to the other landmark detection frame-
works discussed in our work. The FasterRCNN-ResNet50
approach produced an average precision of 75.80% when
the IOU parameter was set to 0.5, and produced an average
recall of 58.00% for an IOU range of 0.5 through 0.95
(0.5 : 0.95), irrespective of the size of various landmarks
present in the input data. Additionally, the landmark detection
performance of FasterRCNN-ResNet50 can be qualitatively
(visually) confirmed from Fig. 3 where the images in the left-
most column show the ground truth annotations on few of
the images used for validation and the other images denote
the actual landmarks identified by the proposed FasterRCNN-
ResNet50 architecture during validation along with other state-
of-the art techniques discussed in our work. It can be verified
from these images that the proposed FasterRCNN-ResNet50
based landmark detection system performs exceedingly well
in identification of various landmarks of interest in our work

849
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on June 06,2023 at 16:11:48 UTC from IEEE Xplore.  Restrictions apply. 



when compared. Table II shows the class-wise average preci-
sion when IOU was set to 0.5 for all the classes present in our
dataset. It can be observed that the results produced by our
proposed approach overshadows the performance of all other
techniques in comparison.

It is also worthwhile mentioning that the CenterNet-
ResNet101, which is used as a methodology of comparison
with FasterRCNN-ResNet50 performs extremely well in many
of the above mentioned cases. However, the overall train-
ing time necessary to optimize the performance CenterNet-
ResNet101 architecture, as observed in Table III, is much
higher when compared to all the other methodologies dis-
cussed in our work, which makes it computationally very ex-
pensive. With the goal of having a good trade-off between per-
formance and overall computational complexity, FasterRCNN-
ResNet50 turns out to be the ideal approach in our case.

Additionally, it can also be observed from Table II and
Figs. 3b, 3c, and 3d that all landmark detection method-
ologies faced difficulties in identifying landmarks under the
‘building’ category in our dataset, due to their varying small
spatial sizes. Small landmarks may be difficult to be detected
if the resolution of the input images is too low. In which
case, these landmarks may appear as just a few pixels in
the image, which may not contain enough information for
the model to make an accurate prediction. Another possibility
is occlusion. Small landmarks of interest may be difficult to
detect if they are occluded by other objects or due to shadow
effects in the image. This is because the model may not be
able to see the entire object, which can make them difficult to
identify. Albeit all the methodologies discussed in our work
may not identify small buildings as expected, our proposed
system FasterRCNN-ResNet50 did perform much better in this
scenario comparatively.

V. CONCLUSION

In this work, a novel transfer learning framework using
FasterRCNN with a ResNet50 architecture based feature ex-
tractor technique for landmark detection was introduced for
UAV-based aerial imagery of urban landscapes. ResNet50
on the backend acts as an efficient feature extractor that is
capable of extracting unique landmark features for landmark
detection tasks, which often requires to learn and recog-
nize a wide variety of different landmark classes and their
variations. FasterRCNN on the other hand is fine-tuned in
our work to be efficient in terms of both computation and
memory. This allows the combination of FasterRCNN with
ResNet50 to achieve an excellent trade-off between computa-
tional complexity and performance. When compared to other
two-staged landmark detection methodologies discussed in
our work, namely, SSD-MobileNet and CenterNet-ResNet101,
our approach produced exceptional landmark detection results
while being robust in limited training sample scenarios, thus
paving path for new research direction in landmark detection
for sensor-based aerial imagery.
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