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log-Sigmoid Activation-based Long Short-Term
Memory for Time Series Data Classification

Priyesh Ranjan, Pritam Khan, Sudhir Kumar, Senior Member, IEEE and Sajal K. Das, Fellow, IEEE

Abstract—With the enhanced usage of Artificial Intelligence
(AI) driven applications, the researchers often face challenges
in improving the accuracy of the data classification models,
while trading off the complexity. In this paper, we address the
classification of time series data using the Long Short-Term Mem-
ory (LSTM) network while focusing on the activation functions.
While the existing activation functions such as sigmoid and tanh
are used as LSTM internal activations, the customizability of
these activations stays limited. This motivates us to propose a
new family of activation functions, called log-sigmoid, inside the
LSTM cell for time series data classification, and analyze its
properties. We also present the use of a linear transformation
(e.g., log tanh) of the proposed log-sigmoid activation as a re-
placement of the traditional tanh function in the LSTM cell. Both
the cell activation as well as recurrent activation functions inside
the LSTM cell are modified with log-sigmoid activation family
while tuning the log bases. Further, we report a comparative
performance analysis of the LSTM model using the proposed
and the state-of-the-art activation functions on multiple public
time-series databases.

Impact Statement—The proposed activation functions intro-
duce additional hyperparameters in the LSTM-based deep learn-
ing model through the use of log-base values. Adding customiz-
ability to the activation functions enables the deep learning
researchers to better tune their models. The flexibility of the
proposed activations unlike the traditional activation functions
can play a role in enhancing the performance of LSTM models
on time-series datasets.

Index Terms—Activation, classification, LSTM, sigmoid

NOMENCLATURE

LSTM Long Short-Term Memory
RNN Recurrent Neural Network
ECG Electrocardiogram
PTB Physikalisch-Technische Bundesanstalt
UCI-HAR University of California Irvine - Human Ac-

tivity Recognition
tanh Hyberbolic tangent function
∇x Partial Derivative with respect to x
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logi Logarithm with base i
◦ Hadamard Product
FLOP Floating point Operation

I. INTRODUCTION

T IME-series datasets are used in a wide variety of areas
such as healthcare signal processing, motion recognition,

natural language processing, weather forecasting etc. [1], [2].
The datasets are analyzed to extract features for a classifi-
cation or regression task. Incorrect classification of data can
lead to unprecedented outcomes, especially where mankind
relies on artificial intelligence for a serious decision making.
Therefore, with the increased usage of machine learning and
deep learning applications, appropriate measures need to be
taken for maximizing the classification accuracy of the models.
The classification of time series data leveraging Recurrent
Neural Networks (RNNs) is quite common in the deep learning
domain. A notable variant of RNNs is Long Short-Term Mem-
ory (LSTM), which is robust against the vanishing gradient
problem [3]. The performance of neural networks is guided
by the activation functions that are applied to the neurons of
a layer to facilitate the working of the LSTM model. The
LSTM cells make use of the sigmoid and tanh functions as
the recurrent and cell activations for data propagation [1], [4].
However, these logistic traditional activation functions have a
rigid threshold. Tuning the activation functions inside a deep
learning model as a hyperparameter enhances the performance
of the model on multiple datasets.

A. Motivation

Scaling or translating an activation function will result in
a linear transformation instead of introducing non-linearity.
This is because linear transformations can be translated by
adding or subtracting bias units to yield the same activation.
Furthermore, the usage of non-linear transformations for the
sigmoid activation remains limited like the logarithm of the
sigmoid activation and the signum activation owing to their
different range. With this motivation, we propose a new acti-
vation function that introduces a hyperparameter which can be
tuned as per the requirement of the dataset, thereby inducing
non-linearity in the sigmoid activation having a similar range.
In this work, we introduce a modifiable variant of the sigmoid
activation in the LSTM model. The new variant uses exponents
and logarithms with different bases modifying the traditional
sigmoid activation function; and achieves better classification
results on different time-series datasets owing to its tuning
flexibility.
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B. Contributions

In our proposed method, we replace the internal activations
of the LSTM cell with the corresponding log-activations, thus
making them more tunable. This enhances the classification
accuracy irrespective of the time series dataset. Additionally,
the output from the sequential model is passed through a
fully connected layer, the activation of which is replaced
with a tunable activation function to increase the model’s
classification accuracy. Results are derived for different log-
bases and an improvement in the classification accuracy
over the normal sigmoid results is observed. We compare
the classification results collected for different members of
the log-sigmoid activation family and analyze the log-base
values yielding higher accuracies. In this work, we validate
our proposed model on different time-series datasets that are
publicly available.

A corresponding improvement in the classification perfor-
mance is observed due to the proposed log-sigmoid activation
that adds a degree of flexibility to the normal sigmoid activa-
tion. This activation can be further utilized in deep learning
models at different hidden layers. In summary, the proposed
work makes the following contributions.

1) The log-sigmoid activation function is customized inside
the LSTM cell to enhance the time series data classi-
fication accuracy of the model unlike normal sigmoid
activation.

2) The log-base is introduced as a hyperparameter to in-
crease the flexibility of the activation functions of the
model. Also, the activations become customizable based
on the datasets used.

3) The log tanh (a linear transformation of the proposed log-
sigmoid activation) is used as the LSTM cell’s activation
to enhance its performance on the time series datasets.
The log-sigmoid activation family is also leveraged in
the dense layer after the LSTM layer.

The paper is organized as follows. Section II describes the
proposed activation function and its mathematical properties
including the gradient. Section III presents experimental anal-
ysis of the activation and its variants along with the accuracy
results and computational complexities based on different
datasets. Section IV summarizes the related works. Finally,
Section V concludes the work.

II. FAMILY OF log-SIGMOID ACTIVATION FUNCTION

Artificial neural networks depend on the activation functions
that play a key role in determining the performance of a model.
In this work, we propose a variant of sigmoid function, called
log-sigmoid, inside the LSTM cell. It can be manipulated to
have higher or lower slopes than the sigmoid function. This
enables us to create a family of activation functions that can
be employed based on the dataset. We analyze the model
mathematically for the combinations of sigmoid activation
function along with logarithms having different bases.

For a normal sigmoid activation function σ(x) = ex

1+ex ,
the range is bounded in (0, 1) where x is the input to the
function. For a large value of x, the value of σ(x) converges
to 1 whereas for a very small value of x, the value converges
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Fig. 1: (a) Variations of log-sigmoid Activation; (b) Derivatives
of log-sigmoid Activation

to 0. On introducing logarithm with the sigmoid, we obtain
the activation function log(σ(x)) in the range (−∞, 0). This
becomes unbounded for large negative values of x which limits
its use due to the difference in the output range as compared
to the sigmoid activation.

However, a family of log-sigmoid activation functions can
be achieved by changing the base of the logarithm and
multiplying the σ(x) function with that base value having 1
subtracted from it. Therefore, we obtain a family of activations
of the form:

σlog(x) = logi((i− 1)× σ(x) + 1) (1)

for i ∈ (0,∞) - {1} where i is a positive real number
except 1. The value of the log-base i can be changed as a
hyperparameter. The logarithmic function is used here over
other functions because of its property of diminishing the
gradient of the input. This ensures that a curve smoother than
that of the sigmoid activation is obtained. A smoother curve
implies that a small variation in the input shall not lead to a
large change in the output. This makes the model beneficial
for applications where less sensitivity is desirable. Providing
sigmoid as an input and adding an offset inversely proportional
to the base ensures that the output remains confined between
0 and 1. The existing log-sigmoid activation (log(σ(x))) has
a fixed log-base thereby depriving it of the customizabilty of
the proposed log-sigmoid activation. Schematic graphs can be
observed from Figure 1a representing the family of activations
achieved. For values of i ∈ (1,∞), it is observed that the log-
sigmoid activation lies above the normal sigmoid curve while
for values of i ∈ (0, 1), it is below the normal sigmoid curve,
thereby illustrating the flexibility achieved for different log-
base i. This is further explained by an analysis of the gradients
of the log-sigmoid activation family as observed from Figure
1b. The gradient curves correspond to the function curves of
Figure 1a.

A. Propositions for log-Sigmoid Activation Family

Proposition 1. The log-sigmoid activation approximates to
the sigmoid activation when the value of i→ 1.

Proof: The log-sigmoid activation approximates to sig-
moid activation as i → 1. This can be illustrated by using the
expansion of the logarithm in the log-sigmoid activation. For
the limiting case at i→ 1, we have:

lim
i→1

σlog(x) = lim
i→1

logi((i− 1)× σ(x) + 1) (2)
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Equation (2) can be rewritten as:

lim
i→1

σlog(x) = lim
i→1

log((i− 1)× σ(x) + 1)

log(i)
(3)

Solving Equation (3) using the logarithmic expansion yields:

lim
i→1

σlog(x) =

lim
i→1

σ(x)− (1/2)σ(x)2 × (i− 1) + (1/3)σ(x)3 × (i− 1)2...

1− (1/2)× (i− 1) + (1/3)× (i− 1)2...
(4)

which further yields:

lim
i→1

σlog(x) =
σ(x)− 0 + 0...

1− 0 + 0...
= σ(x) (5)

Hence, we observe that the log-sigmoid activation approxi-
mates to the sigmoid activation as i→ 1.

This property helps us to acknowledge that the normal sig-
moid activation is a special case of the log-sigmoid activation
and the latter can be extended to resemble the normal sigmoid
activation for limiting case.

Proposition 2. The derivative of log-sigmoid activation at-
tains its maxima before sigmoid activation for i > 1 and vice-
versa.

Proof: We analyze the gradients of the log-sigmoid and
the sigmoid activation functions in order to understand the
rate of increase of the log-sigmoid activation as compared to
the normal sigmoid activation for different values of i. The
gradient of the sigmoid activation attains its highest value at
x = 0 which is 0.25. On the other hand, the log-sigmoid
activation has a gradient varying with the value of i. It is
known that the gradient for σ(x) is σ(x) × (1 − σ(x)). The
log-sigmoid activation’s gradient family can be achieved by
differentiating the general term with respect to x. This yields:

σ′log(x) = (logi((i− 1)× σ(x)) + 1)
′

=
1

log(i)
× (log((i− 1)× σ(x)) + 1)

′ (6)

which can be written as:

σ′log(x) =
1

log(i)
× 1

((i− 1)× σ(x) + 1)
× (i− 1)× σ′(x)

(7)
From Equation (7), we obtain:

σ′log(x) =
1

log(i)
× 1

(σ(x) + 1
(i−1) )

× σ′(x) (8)

From Equation (8), it is easy to ascertain that σ′log(x) will
have a maximum value less than that of σ′(x) as σ′(x)
attains its highest value at x = 0 which is 0.25. Figure 1b
shows the plots of the gradients of sigmoid and log-sigmoid
activations. The log-sigmoid gradient value at x = 0 is given
as 1

log(i) ×
1

(0.5+ 1
(i−1)

)
× 0.25 which attains its highest value

of 0.25 at i → 1, thereby showing that the limiting case of
log-sigmoid’s derivative at i→ 1 converges with the sigmoid
activation’s gradient. Further analysis on the gradient shows
the slope changing with respect to the value of i chosen by

us. Considering the derivative of the gradient, we have:

σ′′log(x) =
(σ′(x)− (σ2(x))′)× (σ(x) + 1

(i−1) )

log(i)× (σ(x) + 1
i−1 )

2
−

(σ(x)− σ2(x))× (σ(x))′

log(i)× (σ(x) + 1
i−1 )

2

(9)

At the maxima of the gradient, Equation (9) becomes 0.
Therefore, solving this equation for maxima, we get:

σ′(x)× [1− 2σ(x)]×
(
σ(x) +

1

(i− 1)

)
−

σ(x)× (1− σ(x))× σ′(x) = 0

(10)

Upon simplification and cancellation of common terms we get:

σ(x)2 =
1

(i− 1)
− 2

(i− 1)
× σ(x) (11)

which gives us a family of quadratic equations to be solved
for σ(x). Notably, when i→∞, we obtain σ(x)→ 0 which
implies x → −∞. On the other hand, when i → 0, we
obtain σ(x) → 1 which implies x → ∞. For i → 1, we
obtain the value of corresponding maxima at σ(x) → 0.5
that corresponds to x → 0 as in the case of normal sigmoid.
Solving the quadratic equation, we obtain the values for σ as:

σ(x) =
−1±

√
i

i− 1
(12)

which upon simplification yields :

x = − log

(
i− 1

−1±
√
i
− 1

)
(13)

However, the equation:

x = − log

(
i− 1

−1−
√
i
− 1

)
(14)

needs to be ignored as it yields − log(−
√
i) upon simplifica-

tion, which is undefined. Hence, only the positive part of the
Equation (13) is considered. The final value of the expression

σ(x) =
−1 +

√
i

i− 1
(15)

yields:

x = − log

(
i− 1

−1 +
√
i
− 1

)
(16)

Equation (16) gives us a curve that shows the value of x
for which we get the maximum value of the gradient of the
log-sigmoid activation. This can be observed from Figure 2a,
where the curve increases rapidly as the value of i approaches
0 and decreases unboundedly as the value of i approaches
infinity. Therefore, from the derivatives of the log-sigmoid
activation function in Figure 1b, we find that for smaller values
of i, the increase in the gradient is greater after x = 0 whereas
for larger values of i, the increase in the gradient is greater
before x = 0. Also, this gets depicted from Figure 1a where
the curve for log-sigmoid always remains above the curve
of sigmoid for values of i ∈ (1,∞) and the curve remains
below sigmoid for values of i ∈ (0, 1). This is because, the
gradient for i > 1 achieves maxima before x = 0 whereas, the
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Fig. 2: (a) Position of Maxima for Gradient; (b) Maxima for
Gradient

gradient for i < 1 achieves maxima after x = 0. However, for
x → ∞ or x → −∞, the value of the curve converges with
the sigmoid curve. Therefore, the curve trajectory is flexible
while maintaining the same range as the sigmoid activation.

Proposition 3. Maxima of the derivative of the log-sigmoid
activation is lower than the corresponding maxima of the
sigmoid activation.

Proof: We observe from Proposition 2 that the derivative
of the log-sigmoid activation has a value of maxima less than
that of the corresponding value of the maxima of the sigmoid
activation. We know that the sigmoid activation’s derivative
has a maximum value of 0.25 which is obtained at x = 0
from the derivative of σ(x). From Equation (16), referring to
the value of x corresponding to the maxima in the expression
for σlog(x), we get:

σ′log(x)max =
1

log(i)
× 1

(σ(x)max +
1

(i−1) )
× σ′(x)max

(17)
Equation (17) can be further written as:

σ′log(x)max =
1

log(i)
× 1

(−1+
√
i

i−1 + 1
(i−1) )

× −1 +
√
i

i− 1
× (1− −1 +

√
i

i− 1
)

(18)

Simplifying further we obtain:

σ′log(x)max =
1

log(i)
×
√
i− 1√
i+ 1

(19)

This gives us the value of maxima of the log-sigmoid ac-
tivation depending on the value of i. Plotting this function
in Figure 2b, we observe that the this equation reaches its
maximum value of 0.25 at i → 1. The value of the curve
decreases as we move away from i = 1. This shows that the
maxima for log-sigmoid activation’s gradient is smaller than
the corresponding normal sigmoid activation’s gradient. This is
also visible in Figure 1b where the derivatives have decreasing
values of maxima for the extreme values of i. This improves
the classification performance where a smoother gradient of
the activation function is required.
Proposition 4. The overall cost function of the log-sigmoid
activation varies depending on the ratio of the positive and
negative labels in the dataset.
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Proof: We can analyze the values of x providing higher
accuracy for log-sigmoid in comparison to sigmoid activation.
We analyze the cost function of the log-sigmoid activation
while comparing it with the sigmoid activation.

The binary cross-entropy loss function for a bi-class clas-
sification in a neural network without regularization is given
as:

J(θ) = − 1

m
×

m∑
i=1

(y(i) × log(hθ(x
(i)))

+ (1− y(i))× log(1− hθ(x(i))))
(20)

where m is the number of samples in training and hθ is the
activation function used in forward propagation. Equation (20)
gives us the cost function expression for a given activation
function with m data points x(1), x(2), x(3)..., x(m). We as-
sume that the activation function is applied to a single data
point in the dataset. For a total of m samples in the dataset,
we suppose that the number of training samples with positive
labels (y = 1) is n and the number of samples with negative
labels (y = 0) is (m− n). Hence, the probability of a sample
having label y = 1 will be n

m and that having label y = 0 will
be (1− n

m ). Assuming the fraction n
m as k where 0 ≤ k ≤ 1,

we obtain the expression for the cost function of a single data
point as:

J(θ) = −(k × log(hθ(x)) + (1− k)× log(1− hθ(x)))
(21)

For the normal sigmoid activation, the corresponding loss
function is given as:

J(θ) = −(k × log(σ(x)) + (1− k)× log(1− σ(x))) (22)

Similarly, for log-sigmoid activation, the loss function is:

J(θ) = −(k × log(σlog(x)) + (1− k)× log(1− σlog(x)))
(23)

For the log-sigmoid activation to have a lower cost function
than the normal sigmoid activation, we have the inequality:

− (k × log(σ(x)) + (1− k)× log(1− σ(x))) >
− (k × log(σlog(x)) + (1− k)× log(1− σlog(x)))

(24)

Referring to Equation (24), we can write: σ(x) > σlog(x)
for k = 0, and σ(x) < σlog(x) for k = 1.

Figure 3 shows the corresponding cost function obtained by
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Fig. 4: LSTM cell with proposed log-activations

changing the value of k respectively. The datasets used in our
work contain an equal number of samples for y = 0 and y = 1
samples thereby maintaining a k value of 0.5.

It is observed that on substituting k = 0.5 and i = 100, we
have x ≥ −0.9703. Similarly, keeping i = 0.01, we obtain
x ≤ 0.9703. Since the sample values of the databases are
normalized between −1 and 1, therefore, we maintain the
values of i in the range [0.01, 100] for our analysis.

TABLE I: Summary of log-sigmoid activation family

Value of i x at dy
dxmax

dy
dxmax

y at x = 0
i = 0.01 2.3 0.178 0.148
i = 0.1 1.15 0.226 0.26
i→ 1 0 0.25 0.5
i = 2 -0.347 0.2475 0.585
i = 10 -1.15 0.226 0.74
i = 100 -2.3 0.178 0.852

A summary of log-sigmoid activation family is illustrated
in Table I where y denotes the log-sigmoid activation and
dy
dx , the corresponding gradient. It can be observed from Table
I that the derivative dy

dx of the log-sigmoid activation can
be made to achieve its maxima either before or after the
normal sigmoid activation by changing the value of log-base
i. The correponding maxima of the log-sigmoid activation,
dy
dxmax

, is less than that of the normal sigmoid activation and
decreases further as the value of i moves away from 1, thus
improving the performance where a steeper gradient can cause
discontinuity in the output. We also note that the y-intercept
is higher for lower values of log-base i for the log-sigmoid
activation and vice-versa, thereby validating the flexibility of
the log-sigmoid activation.

B. log-sigmoid in Forward Activation Function of LSTM

Figure 4 represents the internal architecture of an LSTM
cell used for time series classification. hlt−1 and Clt−1 denote
the hidden state and the cell state of the previous time step
respectively while hlt and Clt represent the same for the current
time step respectively, and xlt denotes the input to the LSTM
cell. We propose the use of a linear transformation of the
log-sigmoid activation as the forward activation in the LSTM
cell. Typically, we use tanh activation as the default forward
activation in LSTM cells. The tanh activation is a linear
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Fig. 5: (a) Variations of log tanh activation; (b) Derivatives of
log tanh activation

transformation of the sigmoid activation written as:

tanh(x) = 2× σ(2x)− 1 =
1− e−x

1 + e−x
(25)

Similarly, the expression of the log tanh variant proposed by
us can be represented in terms of log-sigmoid as:

tanhlog(x) = 2×σlog(2x)−1 = 2×logi(
i+ e−2x

1 + e−2x
)−1 (26)

Since tanhlog(x) is a transformation of σlog(x), it has a similar
gradient as the latter one. Also for the limiting case of i→ 1,
the activation function becomes:

tanhlog(x) = lim
i→1

(
2× 1 + e−2x

i+ e−2x
× i

1 + e−2x
− 1

)
=

2

1 + e−2x
− 1 = 2× σ(2x)− 1

(27)

Now, the gradient of the tanh activation is given by:

tanh′(x) = (2σ′(2x)− 1) = 4σ′(2x)

= 4× σ(2x)× (1− σ(2x))
(28)

The corresponding gradient of log tanh activation is given by:

tanh′log(x) = (2× σ′log(2x)− 1) = 4× σ′log(2x)

=
4

log(i)
× (i− 1)

(i− 1)× σ(2x) + 1
× σ(2x)(1− σ(2x))

(29)

The plots for the log tanh activation and its gradient cor-
responding to different logarithm base i are shown in Figures
5a and 5b, respectively. We observe that the trends for higher
and lower values of i are alike in log tanh and log-sigmoid.

C. Exponential-sigmoid Activation

The log-sigmoid activation function can be inverted to
obtain the corresponding exp-sigmoid activation function.
Mathematically, we know:

σlog(x) = f(σ(x)) = logi((i− 1)× σ(x) + 1) (30)

The corresponding inverse activation is given as:

σexp(x) = f−1(σ(x)) =
iσ(x) − 1

i− 1
(31)

Figure 6a shows the family of curves of exp-sigmoid that have
the same properties as the log-sigmoid activation function. The
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Fig. 6: (a) exp-sigmoid activation function for different log-
arithm base value i; (b) Derivative of exp-sigmoid activation
function for different values of i

corresponding gradients are shown in Figure 6b and given as:

σ′exp(x) =
iσ(x)

i− 1
× σ′(x)× log(i)

= (σexp(x) +
1

i− 1
)× log(i)× σ′(x)

(32)

We observe that the exp-sigmoid activation function exhibits
an opposite trend as compared to the log-sigmoid activation
for different values of i. For log-sigmoid activation, higher
values of i yield curves with amplitudes higher than that of
the normal sigmoid activation and vice versa. This property
is reversed in the case of exp-sigmoid activation. Such trend
is further illustrated in the derivative of exp-sigmoid which
exhibits a reversal in alignment as compared to the log-sigmoid
activation. It is observed that the exp-sigmoid’s corresponding
gradient is higher than that of the normal sigmoid’s gradient.
This is in contrast to the log-sigmoid activation which shows a
smaller gradient as compared to the normal sigmoid activation.
Therefore, the exp-sigmoid is an analog representation of the
log-sigmoid activation. The maxima for derivative of exp-
sigmoid activation increases for smaller as well as higher val-
ues of i unlike the log-sigmoid activation’s gradient maxima.

D. Using log-sigmoid in LSTM Cells

We use the log-sigmoid activation in place of the traditional
hard-sigmoid activation in LSTM. Hard-sigmoid activation is
used in the LSTM cell’s forget, input, and output gates. The
activation is preferred over normal sigmoid for its simplicity
in gradient computation. However, in places where the classifi-
cation accuracy is preferred over training speed, it is possible
to replace the hard-sigmoid activation function with normal
sigmoid and log-sigmoid activation.

The hard-sigmoid activation function is given by:

σhard(x) = max(0,min(1, (x+ 1)/2)) (33)

It reaches 1 as x → ∞ and 0 as x → −∞. It has a gradient
value of σ′hard(x) = 0.5 for x ∈ (−1, 1) and σ′hard(x) = 0 for
x ∈ (−∞,−1) ∪ (1,∞). The gradient is discontinuous at
x = −1 and x = 1.

The input gate, forget gate, and output gate of traditional
LSTM are hard-sigmoid activated and are represented as: it
= σhard(Wi × xt + Ui × ht−1 + bi), ft = σhard(Wf × xt +
Uf × ht−1 + bf ), and ot = σhard(Wo × xt +Uo × ht−1 + bo),

respectively. The equations for cell state and hidden state are
Ct = ft ◦Ct−1 + it ◦ tanh(Wc× xt+Uc× ht−1 + bc) and ht
= ot ◦ tanh(Ct) respectively. Here, W and U are the weights
for input sample xt and hidden state ht−1 respectively with b
being the bias. The operator ◦ here represents the Hadamard
product. Referring to the analysis of log-sigmoid activation,
we replace the hard-sigmoid activation of LSTM with the
log-sigmoid activation thereby bringing a flexibility in the
activation, and obtain better classification results by tuning
the activation function as a hyperparameter. We also replace
the tanh activation with the log tanh activation as discussed.

E. Parameter Sensitivity of LSTM

We perform the experiment using an LSTM network with
an input LSTM layer containing 64 cells and an output dense
layer having 1 output neuron. While the model hyperparameter
i introduced in this work is tuned in the experiments to
enhance the model performance, the number of parameters
remains unchanged across all our experiments, and therefore,
the parameter sensitivity of the model remains the same
throughout. The parameter sensitivity is of the order of 10−6

for more than 32 cells in the LSTM layer. For less than 32
cells, the change in accuracy is abrupt with the variation in the
number of parameters. In order to achieve the highest accuracy,
the number of cells is tuned to 64 in the LSTM layer with the
corresponding number of trainable parameters for the LSTM
model being 64,577 in our experiment.

III. CLASSIFICATION USING LSTM AND log-SIGMOID

The log-sigmoid activation function enables us to provide a
certain degree of flexibility to the normal sigmoid activation
function. While a normal sigmoid curve passes through the
value of 0.5 when x = 0, the log-sigmoid activation can
be modified to pass through values higher or lower than 0.5
at x = 0. This allows us to select different thresholds for
logistic regression. With log-sigmoid activation, it is possible
to improve the classification accuracy by changing the value
of logarithm base i corresponding to the activation.

A comparative smoother gradient of log-sigmoid activation
as compared with normal sigmoid activation for values of i
close to 0 or ∞ is another advantage of the former over the
latter. Also, hard-sigmoid has a sharp and fixed gradient. Using
of log-sigmoid mitigates this issue. The problem for a sharp
gradient is that any change in the input will result in a linearly
proportional output other than 0 or 1 value, owing to the fixed
gradient. However, the log-sigmoid shape allows relaxation
from having a fixed proportional output.

A. Datasets

We illustrate the use of log-sigmoid activation family in an
LSTM network for classification of time-series data leveraging
four publicly available time-series datasets. We use the PTB
(Physikalisch-Technische Bundesanstalt) diagnostic database
[5], the Gun-Point database [6], the Coffee database [6],
and the UCI-HAR (University of California Irvine- Human
Activity Recognition) database [7] for classifying their data
samples into two categories while validating the proposed
activation functions.
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1) PTB Diagnostic Data: The PTB dataset has a total of
14552 samples comprising 4046 normal and 10506 abnormal
samples giving us an abnormal to normal ratio of 2.6:1. The
data acquired from the second lead of ECG is considered and
resampled to a common sampling rate of 125Hz while the
sampling frequency for the original dataset is 1000Hz. The
dataset is normalized, cropped, and padded to 187 time-steps
per sample during pre-processing.

2) Gun-Point Data: The Gun-Point dataset has a total of
150 train samples divided into equal number of normal and
abnormal samples. The x co-ordinate values of the arm of
the shooter are taken for each of the 150 train samples and
normalized. The test data contains 50 samples equally divided
into positive and negative classes and normalized.

3) Coffee Data: The Coffee dataset consists of train and
test samples divided into equal number of positive and negative
classes for bi-class classification. The dataset contains the Mid-
Infrared Spectra of the Arabica and the Robusta coffee beans
with each of the samples truncated to 286 time-steps.

4) UCI-HAR Data: The UCI-HAR dataset consists of
six classes namely ‘WALKING’, ‘WALKING UPSTAIRS’,
‘WALKING DOWNSTAIRS’, ‘SITTING’, ‘STANDING’,
and ‘LAYING’ acquired using accelerometer and gyroscope
embedded in a smartphone. In our experiment, we keep the
first three categories into active class and the latter three into
sedentary class. The training data consists of 5817 samples
equally distributed for each class. We perform a bi-class
classification of the data into sedentary and active body
states. Similarly, the test data is also modified for bi-class
classification.

We train the model on the datasets and obtain the classifica-
tion results for multiple experiments and compare the average
accuracy results obtained using the proposed activation func-
tions. The datasets are chosen for their time series nature and
the presence of temporal features that can be extracted using
the LSTM models. Further, the flexibility introduced by our
proposed activation helps in customizing the threshold for the
bi-class classification done on the datasets.

B. Methodology used for Classification

In this work, we propose the LSTM model leveraging
the log-sigmoid and log tanh activation functions. The steps
involved are as follows:

1) Replace the LSTM cell’s forward and backward activa-
tions with log tanh and log-sigmoid functions, respec-
tively. The logarithm base values of i are changed as
i = {100, 10, 2, 1, 0.1, 0.01} for both log-sigmoid and
log-tanh activations. The highest value of accuracy as
well as the values of i for both log-sigmoid and log tanh
activations obtained in this step are taken.

2) Replace the activation at the output dense layer from
normal sigmoid to log-sigmoid activation. The values
of i for the forward and backward activations of the
LSTM cells are kept as those from Step 1. However, the
value of i for the final layer of the LSTM activation is
again obtained for i = {100, 10, 2, 1, 0.1, 0.01}. The i
value corresponding to the highest accuracy obtained is
considered as the best tuning for the set of activations.

C. Hyperparameter Tuning

We tune the number of hidden units and find that the LSTM
model performs the best with 64 units. A regularization rate
of 0.1 is chosen to improve the fitting of data. A dropout
value of 0.1 as well as a recurrent dropout value of 0.1
are also chosen to obtain a balance between overfitting and
underfitting. Additionally, PSO (Particle Swarm Optimization)
[8], GA (Genetic Algorithm) [9] and Adam [10] are commonly
incorporated as optimization algorithms for LSTM networks
[11]. While PSO and GA algorithms provide better optimiza-
tion for achieving the global optimal solution on time series
prediction [12]–[15], the high computational complexity limits
their usage in real world applications [16]. Hence, we employ
stochastic optimization algorithm namely Adam [17] for our
experimental analysis. The learning rate for the optimizer is
chosen as 0.001 and the model is compiled with binary cross-
entropy loss function for binary classification of data. The
LSTM model with the proposed activations is trained for 100
epochs. The output is returned at the final time step of the
LSTM layer.

D. Performance Metrics

The average performance metrics obtained after multiple
experiments at the end of Step 1 of classification methodology
are shown in Figures 7, 8, 9, and 10 for PTB diagnostic
data, Gun-Point data, Coffee data, and UCI-HAR data re-
spectively. We consider the training accuracy, test accuracy,
precision, recall, and F1-score for evaluating the performance
on each dataset. In the Figures, we show the cell activa-
tions corresponding to recurrent activations with log-base
i = {10, 2, 1, 0.1}. For i → 1, we have σlog(x) ≈ σ(x) and
tanhlog(x) ≈ tanh(x) which we show, earlier in Section II.
From Figure 7, we observe that the test accuracy value is the
highest at i = 10 for log tanh cell activation and i = 10 for
log-sigmoid recurrent activation of LSTM on the PTB dataset.
This is in line with the observation made in Proposition 4
which says that a dataset having higher number of negative
samples than positive samples yields better performance with
a higher value of the log-base i. Again for the Gun-Point
dataset, it can be observed from Figure 8 that the highest
test accuracy is achieved at i = 2 for both log tanh cell
activation and log-sigmoid recurrent activation. From Figure
9 representing the performance metrics of Coffee dataset, the
highest test accuracy is observed at i → 1 for log tanh cell
activation and log-sigmoid recurrent activation. This means
that the best performance in this case is achieved using normal
sigmoid and tanh activations of LSTM. Also, highest training
accuracy is achieved with this configuration. However, we find
that the highest test accuracy is also obtained with a log-
sigmoid recurrent activation of base i = 0.1 and i → 1
corresponding to log tanh cell activation with base i = 2.
For the UCI-HAR data, we obtain the highest test accuracy
at i = 2 corresponding to each activation as observed from
Figure 10.

We obtain the values of i for the forward and recurrent
activations using normal sigmoid activation at the dense layer.
In order to further enhance the performance, we replace the
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Fig. 7: Performance of PTB dataset with log-sigmoid recurrent activation and log tanh cell activation of LSTM

Gun-Point Data
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Fig. 8: Performance of Gun-point dataset with log-sigmoid recurrent activation and log tanh cell activation of LSTM

Coffee Data
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Fig. 9: Performance of Coffee dataset with log-sigmoid recurrent activation and log tanh cell activation of LSTM

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3265641

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on May 03,2023 at 13:00:06 UTC from IEEE Xplore.  Restrictions apply. 



PRIYESH RANJAN et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 9

UCI-HAR Data
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Fig. 10: Performance of UCI-HAR dataset with log-sigmoid recurrent activation and log tanh cell activation of LSTM

TABLE II: Performance metrics for different values of i at
dense layer activation for PTB data

Activation log-base i Train Acc. Test Acc. Precision Recall F1 Score
σ i→ 1 96.51 % 94.09 % 0.9393 0.9392 0.9390

σlog

i = 0.01 95.90 % 93.66 % 0.9379 0.9368 0.9363
i = 0.1 96.07 % 93.94 % 0.9384 0.9375 0.9373
i = 2 96.90 % 94.38 % 0.9453 0.9440 0.9438
i = 10 97.12 % 94.85 % 0.9491 0.9486 0.9484
i = 100 96.74 % 94.28 % 0.9442 0.9410 0.9405

TABLE III: Performance metrics for different values of i at
dense layer activation for Gun-Point data

Activation log-base i Train Acc. Test Acc. Precision Recall F1 Score
σ i→ 1 97.26 % 96.58 % 0.9663 0.9656 0.9658

σlog

i = 0.01 96.49 % 95.91 % 0.9599 0.9589 0.9591
i = 0.1 96.91 % 96.38 % 0.9635 0.9646 0.9633
i = 2 97.53 % 96.81 % 0.9688 0.9679 0.9682
i = 10 96.97 % 96.58 % 0.9656 0.9666 0.9661
i = 100 96.47 % 95.94 % 0.9600 0.9592 0.9593

normal sigmoid activation in the dense layer with the log-
sigmoid activation. Also, we vary the value of log-base i in
the final dense layer for improving the performance of the
model on the datasets. We note that the test accuracy is the
highest for the value of i = 10 for the PTB Dataset in Table
II. The value of i = 2 yields the highest accuracy for the
Gun-Point dataset in Table III. We get the highest accuracy
for i = 0.1 in case of Coffee dataset and UCI-HAR dataset
as observed from Tables IV and V respectively. Therefore, it
can be observed that by varying the value of log-base i for the
proposed activation functions, an increase in performance over
the normal sigmoid activation is achieved for all the datasets.

TABLE IV: Performance metrics for different values of i at
dense layer activation for Coffee data

Activation log-base i Train acc. Test acc. Precision Recall F1 Score
σ i→ 1 98.33% 96.67% 0.9661 0.9669 0.9661

σlog

i = 0.01 98.12% 96.92% 0.9689 0.9678 0.9678
i = 0.1 98.79% 97.3% 0.9720 0.9720 0.9711
i = 2 97.79% 96.28% 0.9613 0.9622 0.9619
i = 10 97.23% 95.99% 0.9595 0.9599 0.9598
i = 100 96.87% 95.61% 0.9556 0.9567 0.9560

TABLE V: Performance metrics for different values of i at
dense layer activation for UCI-HAR data

Activation log-base i Train acc. Test acc. Precision Recall F1 Score
σ i→ 1 95.13% 93.79% 0.9446 0.9357 0.9324

σlog

i = 0.01 95.00% 93.41% 0.9418 0.9319 0.9291
i = 0.1 95.48% 94.03% 0.9467 0.9341 0.9330
i = 2 94.97% 93.49% 0.9422 0.9334 0.9302
i = 10 94.56% 93.25% 0.9389 0.9302 0.9286
i = 100 94.21% 92.94% 0.9365 0.9277 0.9269

The precision, recall, and F1 score values corresponding to
different values of i further substantiate our observation. The
LSTM models are trained for 100 epochs. All the models
with the proposed activations achieve convergence in training
accuracy at the same number of epochs as that with the normal
activations. Figures 11a, 11b, 11c, 11d illustrate the loss plots
of the LSTM models for training with the output dense layer
having different log-base values. Although the final loss values
differ, the similarity in the nature of the plots on each dataset
can be observed. Such similar nature of variation of errors for
different values of log-base i on each dataset advocates for
confidence in the proposed framework.

We summarize the log-base i values yielding the highest
performance metrics from Figures 7, 8, 9, and 10 in Table
VI. It can be noted that the i-values of the cell and recurrent
activations are consistent for most of the performance metrics
corresponding to each database. This can also be matched from
Tables II, III, IV, and V, where i → 1 at the dense layer
activation. For the UCI-HAR database, the i values of cell and
recurrent activations yielding the highest precision, recall, and
F1 Score show slight difference from the i values resulting in
highest training and testing accuracies, unlike the PTB, Gun-
Point, and Coffee databases where all i-values are consistent.

E. Computational Complexity

For a normal sigmoid activation, the mathematical oper-
ations include one addition, one division, one multiplica-
tion, and one exponential operation. However, the operations
required for calculating the log-sigmoid activation are the
number of operations required for a normal sigmoid along
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TABLE VI: Maximum value of the performance metrics and corresponding log-base i for different databases

Datasets Activations i value Training Acc.(%) Testing Acc.(%) i value Precision(%) Recall(%) F1 Score(%)

PTB Dataset Cell Activation 10 96.51 94.09 10 93.93 93.92 93.90Recurrent Activation 10 10

Gun Point Dataset Cell Activation 2 97.26 96.58 2 96.63 96.56 96.58Recurrent Activation 2 2

Coffee Dataset Cell Activation 0.1 98.33 96.67 0.1 96.64 96.69 96.61Recurrent Activation 2 2

UCI HAR Dataset Cell Activation 2 95.13 93.79 1 94.74 94.15 93.89Recurrent Activation 2 10

TABLE VII: Test accuracy values of LSTM with different activations (proposed ones shown in bold) on different databases
Cell

Activation
Recurrent
Activation

PTB Data
Acc.(%)

PTB Data
Prec.(%)

PTB Data
Recall(%)

Gun-point
Acc.(%)

Gun-point
Prec.(%)

Gun-point
Recall(%)

Coffee
Acc.(%)

Coffee
Prec.(%)

Coffee
Recall(%)

UCI-HAR
Acc.(%)

UCI-HAR
Prec.(%)

UCI-HAR
Recall(%)

tanh(x) [3] sigmoid(x) [3] 93.36 93.25 93.38 96.05 95.93 96.03 96.67 96.59 96.67 93.45 94.35 93.35
tanh(x) [3] log-sigmoid(x) 93.93 93.42 93.43 96.45 96.53 96.43 96.67 96.60 96.64 93.77 94.74 94.15
log-tanh(x) sigmoid(x) [3] 93.74 93.26 94.06 96.14 96.08 95.93 96.67 96.59 96.67 93.80 94.45 93.70
log-tanh(x) log-sigmoid(x) 94.09 93.93 93.92 96.58 96.63 96.56 96.67 96.61 96.69 93.79 94.74 94.15
tanh(x) [3] softplus(x) [18] 93.98 93.56 93.45 95.00 95.03 94.79 95.45 95.45 95.61 83.37 83.19 83.17

softsign(x) [18] sigmoid(x) [3] 94.09 93.86 94.07 91.52 91.34 91.12 95.45 94.98 95.51 88.25 87.80 87.97
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Fig. 11: Loss plots of LSTM with base i = 0.1, 1, 10 of log-
sigmoid activation on different datasets (a) PTB Diagnostic
Data; (b) Gun-point Data; (c) Coffee Data; (b) UCI-HAR Data

with one subtraction, one addition, one multiplication, one
logarithm, and one division operation. Therefore, although the
order of complexity remains the same for both, the number of
FLOPs (floating point operations) are more for log-sigmoid as
compared to normal sigmoid.

F. Comparison with the State-of-the-art Activations in LSTM

We compare the proposed activation functions with the
state-of-the-art activations that can be used in an LSTM model.
The performance of the activations in an LSTM on the four
test databases is shown in Table VII. We observe from the
Table that the proposed log-sigmoid and log-tanh activations
outperform the other activations of LSTM as recurrent and cell
activations respectively for most of the datasets. It can be noted
that the Gun-Point and UCI-HAR databases show significant
improvement in performance for the log-sigmoid recurrent
activation and the log− tanh cell activation as compared to
the softsign and softplus activations while the Coffee Dataset
continues to achieve the highest accuracy like the traditional
sigmoid recurrent activation and tanh cell activation combina-
tion. Although the proposed activations perform better with the

PTB database as compared to the original LSTM activations,
however, the improvement is negligible over softsign and
softplus activations. In summary, for most of the test databases,
it is observed that the proposed activations outperform the
existing activations as discussed in literature. Additionally, the
state-of-the-art activations have fixed thresholds which cannot
be tuned unlike the log-base of the proposed activations.
Therefore, the existing activation functions lack the flexibility
which is introduced in the proposed activations through log-
base value as hyperparameter.

IV. RELATED WORK

We discuss the use of LSTM and its variants for time-series
data classification and the activations in neural networks.
A. Deep Learning-based Time Series Data Classification

The work in [3] presents the benefits of using LSTM for
storing information over extended time intervals by truncating
the gradients. The use of LSTM in continuous ECG monitor-
ing is discussed in [25]. The authors in [26] advocate the appli-
cation of LSTM over Gated Recurrent Units (GRU) and other
RNNs for ECG data classification. The Sigmoid activation is
also used in conjunction with deep neural networks for logistic
regression [27]. In [28], various forms of activation functions
used along with LSTM neural networks are discussed; the use
of a combination of sigmoid activation over other activations
is also described for classification problems. The authors
in [29] discussed the performance improvement with LSTM
neural networks in language modeling tasks over standard
RNN language model to address the issue of exploding and
vanishing gradients. [30] discusses a modification of GRUs for
speech recognition tasks. However, the modification requires
changing the internal architecture of the GRU model which
our proposed method manages to avoid. It is known that other
models using much deeper neural network architecture also
improve the classification performance. Bi-LSTM is used in
[22] for time-series data classification; however, Bi-LSTM
has a higher complexity than normal LSTM. In [23] and
[24], the improvement in accuracy is presented by using very
deep neural networks. However, these models use more than
10 hidden layers, increasing the computational complexity.
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TABLE VIII: Overview of the activation functions and the models leveraging them
Activation/Model Remarks

Anti-sym function activated model [19] Not customizable, rigidity in classification
Signum function activated model [20] Discontinuous activation, large error in logistic regression

Unbounded Activation activated model [21] Not useful for shallow networks, may cause exploding gradients
Sigmoid activated Bi-LSTM [22] Uses Bi-LSTM having much higher complexity than LSTM

ReLU activated Very Deep NN [23] 31 hidden layers resulting in high complexity
Sigmoid activated Deep NN [24] 7 layers with 10-50 neurons in each, higher complexity in total

Single LSTM layer with 64 neurons,
log-sigmoid activated LSTM [THIS PAPER] low complexity, more customizable

A method to use a combination of CNN and LSTM for
classification is devised in [31]. The high complexity of CNN
with a large number of layers makes this method less attractive.

B. Modification of Activation Functions in Neural Networks

Only a few of the existing works discuss the prospects of
customizable activation functions for enhancing the perfor-
mance of the neural networks. Table VIII presents state-of-
the-art methodologies involving various activation functions.
For example, the use of sigmoid activation in multi-layer
perceptrons is proposed in [32]. The benefit of using an
unbounded activation function in place of sigmoid with the
sequential models is presented in [21]. However, this is effi-
cient only when the number of hidden layers is large in order
to solve the vanishing gradient problem. A new activation is
proposed in [19] that does not saturate for large and small
values of samples unlike the sigmoid activation, thus avoiding
saturation. But it does not deal with the problem of varying
threshold levels for different types of data. In [20] is mentioned
the use of signum function instead of sigmoid, highlighting
the simplicity of calculating the gradient of the former over
the latter. However, the discontinuous nature of the signum
function discourages its use in general cases. The authors in
[33] discussed the performance of various activation functions
commonly used in neural networks. They also proposed the
use of common mathematical functions as the LSTM cell’s
forward and backward activations. The activation functions
discussed are solely dependent on the single input variable,
and have a fixed output thereby losing customizability. An
alternative to the LSTM model, called the generalized-LSTM,
is proposed in [34], which uses peephole connections to back-
propagate error from the output gates across these connections
with a goal to improve the classification performance.

We observe that the state-of-the-art methodologies suffer
from the lack of customizability and higher computational
complexity as compared to the log-sigmoid activated LSTM
model which has a similar order of time complexity as normal
sigmoid activated LSTM model. Hence, the proposed method
showcases its superiority over the existing methods in terms
of flexibility and computational complexity.

V. CONCLUSION

In this work we classify the time series data via LSTM
model that leverages the proposed log-sigmoid activation
and improves the model’s flexibility on different datasets.
Our proposed activation exhibits enhanced accuracy in com-
parison to the normal sigmoid activation. We observe that

the logarithm base value i, obtained corresponding to the
highest accuracy, varies with dataset. In this work, we in-
troduce i as a hyperparameter in addition to the existing
hyperparameters in an LSTM model. The hyperparameter i
showcases the superiority of the proposed activation function
over the state-of-the-art sigmoid activation. We validate our
proposition against four standard time-series databases namely,
PTB diagnostics dataset, Gun-Point dataset, Coffee dataset,
and UCI-HAR dataset. Further work may include designing
customizatble activation functions for various existing deep
learning architectures and aim to attain better performance on
multiple datasets.
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