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A PheWAS Model of Autism Spectrum Disorder

John Matta, Daniel Dobrino, Swade Howard, Dacosta Yeboah, Jonathan Kopel,
Yasser EL-Manzalawy, and Tayo Obafemi-Ajayi

Abstract— Children with Autism Spectrum Disorder (ASD)
exhibit a wide diversity in type, number, and severity of social
deficits as well as communicative and cognitive difficulties. It
is a challenge to categorize the phenotypes of a particular ASD
patient with their unique genetic variants. There is a need for
a better understanding of the connections between genotype
information and the phenotypes to sort out the heterogeneity
of ASD. In this study, single nucleotide polymorphism (SNP)
and phenotype data obtained from a simplex ASD sample are
combined using a PheWAS-inspired approach to construct
a phenotype-phenotype network. The network is clustered,
yielding groups of etiologically related phenotypes. These
clusters are analyzed to identify relevant genes associated
with each set of phenotypes. The results identified multiple
discriminant SNPs associated with varied phenotype clusters
such as ASD aberrant behavior (self-injury, compulsiveness
and hyperactivity), as well as IQ and language skills. Overall,
these SNPs were linked to 22 significant genes. An extensive
literature search revealed that eight of these are known to
have strong evidence of association with ASD. The others have
been linked to related disorders such as mental conditions,
cognition, and social functioning.

Clinical relevance— This study further informs on connec-
tions between certain groups of ASD phenotypes and their
unique genetic variants. Such insight regarding the heterogene-
ity of ASD would support clinicians to advance more tailored
interventions and improve outcomes for ASD patients.

I. INTRODUCTION

Some specific susceptibility genes have been identified
in association with ASD [1]. However, detection of the
etilogical basis of subgroups [2] that have more clearly
defined characteristics still remains a challenge. In general,
ASD is broken down into social, behavior, and communica-
tion language related deficits. There is need for clinically
relevant subgrouping to stratify ASD patients across the
spectrum based on severity and types of symptoms. These
subgroups could then be linked with genetic variants de-
tected in these patients to provide a meaningful association
between the genotypes and phenotypes observed in ASD
patients. Given the increase in ASD prevalence and the
corresponding increasing associated economic burden, there
is a need for autonomous machine learning models to provide
a better understanding of the connections between genotype
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information and varied phenotypes associated with ASD.
This information would provide clinicians greater insight
into the pathophysiology and potential pharmacological or
social interventions for ASD patients based on genotype and
phenotype correlations. The study used a well-known dataset
to explore subgroups of phenotypes driven by etiological
characteristics.

The phenome-wide association study (PheWAS) has con-
tributed substantially to the effort in discovering etiological
links between genes and diseases. PheWAS studies can
uncover associations between genetic variants, as well as
pleiotropic relationships between one variant and several
phenotypes [3]. Pleiotropy implies a single gene influencing
two or more distinct phenotypic traits. Thus, these studies
can provide a more complete understanding of the complex
relationships among the genetic architecture and functions
of biological systems [4]. PheWAS employs regression tech-
niques on genetic information (specifically, single nucleotide
polymorphisms (SNPs)) of a given sample population of
probands to derive an association between observed pheno-
types and SNPs. The traditional PheWAS output yields a
plot of the statistical significance power of association of
multiple diseases (for each one) to a single SNP. In the
context of ASD, there is only one disorder. However, given
its heterogeneity, it can be viewed as an aggregate disorder
with multiple subgroups within the spectrum. This provides
a basis for deriving a PheWAS model to identify novel ASD
genetic and cross-phenotype associations.

The PheWAS-inspired model employed in this study iden-
tifies genotype (quantified by SNPs) associations among
ASD phenotypes. Constructing a phenotype-phenotype net-
work is done by linking phenotypes that have common asso-
ciated SNPs. The resulting phenotype-phenotype network is a
useful structure that can be clustered to detect commonalities
among traits. Prior studies on ASD have focused on construc-
tion of networks of ASD subgroup patients [5]. A genome-
wide association analysis of the Simons Simplex Collection
(SSC) data found that “reducing phenotypic heterogeneity
has at most a modest impact on genetic homogeneity” [6].
However, a classifier using SNPs was able to predict ASD
among an SSC sample with over 70% accuracy [7].

Clustering has been used successfully with phenotype in-
formation [8]–[11] and also genetic information [12]. Specif-
ically, clustering analysis allows for groupings of similar ob-
jects, such as phenotypic information, to provide insight into
potential correlations or associations between two groups. In
[13], the clustering is focused on linking genotype combi-
nations to ASD phenotype subgroups. In contrast to prior
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Fig. 1. Overall framework for deriving etiological-based phenotype subgroups.

clustering analysis, this current work explores identifying
subgroups of phenotypes driven by etilogical characteristics.
The hypothesis is that effective unsupervised learning modal-
ities applied to ASD phenotype and genotype data will yield
clinically relevant groupings of ASD phenotypes which could
potentially improve diagnoses and assist with prognosis and
tailored intervention methods.

II. METHODS

A. Data

The phenotype and genetic data are obtained from the SSC
simplex collection [14], supported by the Simons Foundation
for Autism Research Initiative. Simplex implies only one
member of the immediate family has ASD. (This research
has been conducted under the guidelines and approval of
the Institutional Review Boards at both Southern Illinois
University Edwardsville and Missouri State University.) We
utilize a subset of 51 phenotypes that spanned ASD specific
core-symptom measures, cognitive and adaptive functioning,
behavioral problems, and neurological indicators. This in-
cluded component scores from Autism Diagnostic Interview
- Revised (ADI-R), Autism Diagnostic Observation Schedule
(ADOS), Repetitive Behavior Scale (RBS), Social Respon-
siveness Scale (SRS), Aberrant Behavior Checklist (ABC),
Child Behavior Checklist (CBCL), IQ, Vineland adaptive
measures, dysmorphology examination, and Broader Autism
Phenotype Questionnaire (BAPQ) for the parents. Similar to
the work done in [13], the selected phenotype subset includes
the dsymorphology measure used to distinguish complex
autism (dysmorphic and/or microcephalic) [15] from essen-
tial autism (non-dysmorphic and not microcephalic). Not all
the SSC sites conducted dsymorphology exams, hence this
study sample is limited to 560 probands, out of a total of
2759 SSC probands.

The corresponding SSC genotype data are quantified by
SNPs. The DNA specimens were genotyped using 3 different
Illumina SNP genotyping chip arrays: mv1 (2.44 million),
mv3 (18.05 billion) and omni2.5 (12.86 billion). Spencer et
al. [16] conducted a genome-wide SNP prioritization analysis
which carried out a preliminary GWAS analysis on the entire
SNP database by ranking SNPs based on the strength of their
primary association (as indicated by increasing values of p-
values, the smaller the value, the stronger the association)
with ASD as a whole. Using this ranking, the top most sig-
nificant SNPs were selected based on a parameter threshold
for the p-value. In addition, all SNPs that had the same allele
representation across all probands were filtered out, as these

SNPs contain no discriminant information. Using a p-value
threshold of < 0.1 yielded a set of 14,564 SNPs which we
will utilize for subsequent analysis.

B. Construction of the Phenotype-Phenotype Network

The overall framework for transforming the data into
etilogical-based phenotype subgroups is shown in Fig. 1.
The genotype data is encoded into a high dimensional SNP
matrix, where entries identify the nature of the variant
representing the proband’s risk allele to the reference allele.
Likewise, the phenotype information for each proband is
encoded in an additional matrix. The SNP matrix is size
m × n where m represents the number of probands and
n represents the number of SNPs, while the phenotype
matrix is size m × p where p represents the number of
phenotypes. A multi-trait mixed regression model (LIMIX
[17]) is applied to both SNP and phenotype matrices to
emulate the PheWAS model. This yields a matrix of scores
quantifying the association between phenotypes and SNPs,
as well as a corresponding matrix of p-values, representing
the strength of the associations. The matrix of p-values are
subsequently filtered based on a given threshold. We utilized
the threshold value (< 1 × 10−3) that yielded a sparse but
connected network.

A phenotype-phenotype graph was constructed using the
shared SNP associations identified by the PheWAS-inspired
analysis. The graph was clustered using the Louvain method
[18] which has been shown to be successful in clustering
phenotype-phenotype networks [3]. Louvain is a widely used
clustering method that uses modularity, a well-known metric
for assessing the relative goodness of a set of clusters based
on network properties. It consists of two repeated phases. In
the first phase, nodes are evaluated and merged into clusters
with neighboring nodes, based on which merging results in
the largest gain in modularity. The first phase ends when no
node can be moved to increase modularity. In the second
phase, a new graph is created in which the communities
found during the first phase are converted to nodes. The
phases are repeated on the new graph until no further increase
in modularity is possible.

III. RESULTS AND DISCUSSION

The network analysis and clustering yielded 6 phenotype-
based clusters. The phenotypes for each cluster are enumer-
ated in Table I. To characterize the clusters, the underlying
SNPs were compared to understand the shared properties of
their phenotype members and the relevance of the important
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Fig. 2. Cluster 2. Genes link phenotypes concerning aberrant behavior.

genes represented. If a cluster contained more than 3 nodes
with the same associated SNP, that SNP is noted in the SNPs
column of Table I. The exact number of occurrences of the
SNP is shown in parenthesis. For each SNP, gene information
was obtained and is listed in Table I as Important Genes.

Cluster 1 yielded phenotypes focused on communication
and socialization, such as ADI-R Nonverbal Communication
and ADOS Social Affect. There are 4 key genes associated
with this cluster, two of which are known to have a strong
association with ASD: XCL1 [19] and SEMA3E [20]. Ev-
idence weakly linking LRBA to autism is shown in [21].
CACNG4, which has been linked to sociability in mice [22]
and rats, is also relevant to this socialization-focused cluster.

Cluster 2 is visualized in Fig. 2. It is dominated by
behavioral phenotypes, mainly relating to aberrant behavior
such as irritability, inappropriate speech, compulsiveness
and self-injury. It is interesting to note how different the
behavioral associations of genes in this cluster are from the
previous cluster. As shown in Fig. 2, the DCC gene links the
RBS behavior attributes, while the ABC component scores
of irritability, hyperactivity and total score are linked by
FAM155A. SPATA13 is a bridge in the graph that connects
the RBS to ABC scores. DCC has strong evidence for ASD
association [23] as well as risky behaviors [24]. SPATA13
also presents strong evidence for ASD association [25] while
FAM155A is a candidate gene for impulsive behavior [26],
schizophrenia and ADHD [27]. DIAPH1 has strong evidence
of association with ASD [28]. ST3GAL3 is linked with ASD,
intellectual disability, and ADHD [29].

Cluster 3 consists of the SRS parent components scores,
BAPQ average score for father, the ABC stereotype and ADI-
R repeated behavior score. The OBSCN gene is related to
this cluster. It is known to be linked with ASD [30] and
bipolar disorder [31]. KRT26 also shows weak evidence
of ASD association [32]. Cluster 4 consists mainly of the
SRS teacher components scores along with ADOS repeti-
tive and stereotype behavior. The corresponding genes are
SGCD (linked with ASD [33]) and EPHB2 (presents strong
evidence of association with ASD [34] and anxiety disorders
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Fig. 3. Cluster 6. SNPs link phenotypes concerning language and IQ.

[35]). Cluster 5 is made up of mainly vineland adaptive skill
phenotypes. Of its genes, LOC105369506 is associated with
childhood antisocial behavior [36], while ZDHHC7 is linked
with ASD [37] and schizophrenia [38].

Cluster 6 is visualized in Fig. 3. This is a tightly con-
structed cluster with a 4-node clique in which 4 of 6 edges
represent at least 3 common important genes. The nonverbal
IQ and overall IQ phenotypes have 16 SNPs and 5 important
genes in common, making this the heaviest weight edge in
the entire network. This cluster also consists of phenotypes
relating to language, such as ADI-R overall language and
word delay. Important genes show connections to cognition
and brain disorders. There is evidence that NHEJ1 is involved
in brain development, cognition [39], and microcephaly [40].
MGAT4A is linked with schizophrenia [41], PTSD [42],
and bipolar disorder [43]. RARB is a strong ASD evidence
candidate gene [44]. TENM4 is associated with ASD, mental
disorders, and intelligence [45]. TNIK is linked with ASD
[46] and psychiatric disorders [47]. CFAP65 is a candidate
gene for epilepsy [48].

IV. CONCLUSION

This study suggests that a PheWAS-inspired approach
using SNPs with phenotype data has potential in identifying
genes associated with ASD. The clustering of the ASD
phenotype-phenotype graph yielded discriminant genes for
each cluster. The extensive literature review identified 8
genes with strong previous evidence of association to ASD,
as well as 14 genes with weaker previous evidence of links
to ASD and other related conditions.

Overall, the PheWAS-inspired methodology was success-
ful at finding genes associated with ASD: from over 14,000
SNPS, 22 important genes were isolated. The clustering
was successful in matching related phenotypes, and in dif-
ferentiating different aspects of ASD. In particular, cluster
2 effectively isolated aberrant behavior phenotypes, and
cluster 6 effectively differentiated cognition and brain-related
phenotypes. All clusters included genes with associations
both to ASD generally, as well as to individual phenotype
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TABLE I
DESCRIPTION OF OUTCOME CLUSTERS BY PHENOTYPES, SNPS AND IMPORTANT GENES.

# Phenotypes SNPs (Occurrences) Important Genes

1

ADI-R scores (nonverbal communication, socialization, abnormality
evidence), ADOS scores (communication, communication & social, CSS,
reciprocal social, social affect), RBS restricted behavior score, SRS-P
motivation score, Dysmorphic

rs8084578(5), rs1927636(4), rs3753938(4),
rs16860907(3), rs1933099(3), rs1469064(3),
rs2535370(3), rs12505042(3), rs1599167(3),
rs1051774(3), rs6534010(3), rs1927621(3)

SEMA3E,
LRBA,
CACNG4

2

ABC scores (irritability, lethargy, hyperactivity, inappropriate speech,
overall total), RBS scores (self injurious, compulsive behavior, ritualistic
behavior, sameness behavior, overall total), CBCL externalizing &
internalizing T scores, BAPQ (mother)

rs9945776(5), rs7335101(5), rs6707140(4),
rs10098925(4), rs9959803(4), rs7326004(3),
rs250791(3), rs16996444(3), rs3828139(3)

DCC, SPATA13,
FAM155A,
DIAPH1,
ST3GAL3

3 ABC Stereotype, ADI-R Restricted & Repetitive Behavior, BAPQ
Father, SRS-P Awareness, Communication, Mannerisms, Overall T Score

rs719867(6), rs2109217(4), rs35765056(4),
rs4653939(3), rs4653942(3) OBSCN, KRT26

4 ADOS Restricted Repetitive, RBS Stereotyped Behavior, SRS-T Scores
(awareness, cognition, communication, mannerisms, motivation, T score)

rs4705000(4), rs9566309(4), rs7982105(3),
rs655089(3), rs6687487(3), rs6810871(3),
rs716897(3), rs12306561(3), rs2303492(3)

SGCD, EPHB2,
RASGRF2,
ARFIP2

5 Phrase delay, SRS-P cognition score, Vineland scores (communication,
daily living, socialization, overall)

rs1522026(6), rs855017(6), rs1563119(6),
rs700874(6), rs1718031(6), rs700873(6),
rs855025(6), rs7982105(4), rs11215264(3),
rs9566309(3), rs7174994(3), rs7192876(3)

LOC105369506,
ZDHHC7

6 ADI-R Overall Language, ADOS Module, Word Delay, Regression,
Overall IQ, Nonverbal IQ

rs4871046(3), rs10173578(3), rs16859536(3),
rs6709739(3), rs6765578(3), rs948396(3),
rs1792136(3), rs9827202(3), rs6781167(3),
rs12465007(3), rs10799754(3)

MGAT4A,
NHEJ1, RARB,
TENM4, TNIK,
CFAP65

ADI-R: Autism Diagnostic Interview – Revised; ADOS: Autism Diagnostic Observation Schedule; RBS: Repetitive Behavior Scale;
SRS: Social Responsiveness Scale; ABC: Aberrant Behavior Checklist; BAPQ: Broader Autism Phenotype Questionnaire;
CBCL: Child Behavior Checklist; CSS: Calibrated Severity score;

manifestations. This PheWAS cluster analysis provided new
avenues for further clinical investigation into biological
targets involved in ASD as well as developing targeted
therapies directed at these gene targets. Larger sample sizes
and broader genetic screening is needed to validate the
associations shown in this study.
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