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DOUGLAS K. LUDLOW*
KIRK H. SCHULZ
JOHN ERJAVEC
Department of Chemical Engineering
University of North Dakota

ABSTRACT

An experimental project introduces the concepts of statistical ex-
perimental design to undergraduates in a laboratory setting. A
safe, inexpensive and easily operable experiment uses a gas chro-
matograph to give quantitative results and to allow students to
concentrate on applying statistical skills without being impeded by
complex equipment or experimental methods. One of the unique
aspects of the experiment is a trade-off between the two most sig-
nificant variables, forcing students to compromise in the selection
of optimum conditions. Such compromises are typical in many
real-world industrial situations. The experiment has been used for
several years in the undergraduate chemical engineering laborato-
ries at the University of North Dakota. Keywords: Statistics, Ex-
perimental Design, Laboratory.

I. INTRODUCTION

Undergraduates often have little exposure to statistical experimen-
tal design even though ABET is increasing the emphasis on includ-
ing more statistical design/quality control in the undergraduate cur-
riculum.1 A recent series of articles2-8 aimed at the practicing engineer
and scientist, have dealt with the application of statistics to achieve
quality control and process improvement. This emphasis on the ap-
plication of statistics and quality improvement in industry has had an
impact on the statistical skills needed by undergraduate engineers. In
response to suggestions from our Alumni Advisory Board, we have
wanted to increase the statistical and experimental design skills of our
graduates for several years. To achieve this goal, the department in-
troduced a semester-long fourth-year technical elective course in
“Engineering Statistics,” increased the emphasis of statistics in the
four-semester-long undergraduate laboratory sequence, and devel-
oped a “workshop” course taken by all students in conjunction with
the third laboratory course.

Our departmental philosophy is that the laboratory sequence is
where the students have the opportunity to develop and practice

some of the skills or “tools” that they will need as practicing engi-
neers; these include observation, analysis, computation, writing,
public speaking, statistical analysis and experimental design.

Experimental design involves using statistical methods in the
planning of experiments so that statistically valid results can be ob-
tained in an efficient manner. Unfortunately, many engineers and
scientists still spend their energies on experimental programs that
produce much data but little information. Part of this failure stems
from the study-only-one-factor-at-a-time syndrome, where the ef-
fect of one factor is determined while all other variables are held
constant.9 This approach may ultimately lead to an understanding
of the effect of the various factors, but does not allow the discovery
of any interactions and usually requires an exhaustive number of ex-
periments. A significant motivation for using experimental design
is that it reduces the number of required experiments to determine
the effects of the variables of interest. However, experimental de-
sign’s greatest value lies in forcing the experimenter to use more
forethought in the scheduling of runs and statistical analysis injects
greater rigor into the interpretation of the results. This reduces the
chances of an experimental program concluding with uninter-
pretable or meaningless results.

The undergraduate laboratory is an excellent place for a student
to learn the true relationship between theory and practice. It has
been recognized that experimentation is a critical and distinguish-
ing element of the engineering profession.10 Students entering into
an undergraduate laboratory have spent most of their scientific life
on the abstract side of measurements and think in terms of pure
theoretical relationships between variables, not of the relationship
of measured variables contaminated by experimental error.11 They
tend to think there are only two options if the results do not agree
with the theory: 1) there is something wrong with the equipment or
its value in elucidating the theory, or 2) the real and theoretical
worlds cannot be bridged, so theory is of little value in the real
world. It is our goal to design undergraduate experiments in such a
way that the true relationship between theory and practice can be
appreciated by the students and the presence of error can be ac-
counted for in a rational manner. At the same time, the experiment
should demonstrate some physical or chemical relationship. Above
all, we believe that each experiment should be a learning experience
in experimentation11 so that students gain some skills and knowl-
edge which will help them in future experiments. 

We developed an experiment to introduce students to the con-
cepts of experimental design and to help students apply and practice
statistical skills learned in the classroom. For the experiment, we
needed a process that had at least two (preferably three) variables on
which several experiments could be run within a short time. Mc-
Cluskey and Harris12 described a simple and safe experiment that
used a 23 factorial design to determine the “best” cup of coffee as a
means of teaching experimental design. The primary drawback to
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their experiment is the difficulty in quantifying the results. We
needed a safe, simple and inexpensive experiment which yielded
clear quantitative results. We developed a gas chromatography
(GC) experiment to fulfill these requirements.

Gas chromatography is an analytical technique used to obtain
quantitative and qualitative measurements of a liquid or gas mixture.
Because of its convenience, sensitivity, versatility and speed, the GC
is a popular analytical device used in most industrial and university
laboratories. This article describes the GC experiment developed to
introduce students to the experimental design of experiments. This
experiment has been implemented and refined during the last five
years and successfully meets the desired objectives of being safe and
simple while yielding quantitative results. A more complete descrip-
tion of gas chromatography is given elsewhere.13

Other equipment could be used to develop experiments that rein-
force the concepts of experimental design. The main requirement is
that there are two to three variables that effect the final outcome. It is
also valuable to have two responses (outcomes) that are important
and must both be optimized (compromised). Any production situa-
tion should work that balances product quality against production
rate. For example in a mechanical engineering laboratory, a lathe ex-
periment could be used which optimizes surface roughness (< accept-
able) and production rate (maximum) versus the three adjustable pa-
rameters of lathe speed, feed and depth of cut.

The ChE undergraduate curriculum at UND includes a four-
semester-long laboratory sequence that begins the second semester
of the second year and continues through to the first semester of the
fourth year. Their experimental tasks become more complex and
the analysis more extensive as the students progress through the
laboratory sequence. During the third laboratory course, the stu-
dents concurrently enroll in a workshop on statistics and learn
about the basic application of statistics to data analysis.14 During the
course they learn about the statistical design of experiments includ-
ing factorial, fractional factorial, and response surface designs. The
students are expected to utilize the statistical concepts they are
learning in the course in the laboratory. 

II. THEORY

In the statistics course discussed above, the students learn efficient
experimental strategies (also called designs) for three situations:
screening, crude optimization, and detailed optimization. Regardless
of the situation, the basic goal is the same—to obtain a mathematical
model to describe the system under study. However, the complexity
of the mathematical model changes to reflect the amount of informa-
tion desired. The mathematical models used by our students are given
below for three independent variables or factors, X1, X2, and X3.

Screening:
f = b0 + b1X1 + b2X2 + b3X3 (1)

Crude Optimization:
f = b0 + b1X1 + b2X2 + b3X3
+ b12X1X2 + b13X1X3 + b23X2X3 (2)

Refined Optimization:
f = b0 + b1X1 + b2X2 + b3X3
+ b12X1X2 + b13X1X3 + b23X2X3
+ b11 X1 + b22X2 + b33X3 (3)

Although these models are just simple polynomials in the X
variables (factors), they have been found to be quite adequate for
the majority of practical problems. Once the experimental situation
is recognized, the students must take enough data to estimate the
coefficients in the model and be able to assess the statistical signifi-
cance of each term. The final model (with only statistically signifi-
cant effects) can then be used to draw whatever conclusions are
warranted about the system under investigation.

The cornerstone of an experimental plan is the 2-level factorial
design. It is used for estimating the coefficients in Equation 2. The
mathematical model includes not only main (linear) terms but
cross-products which allow for interaction of the factors. As a
practical matter, center points are usually added to check on the
adequacy of the model and to give a pure estimate of experimental
error. For screening, which is used to sift out the important factors
from a large number of potentially significant ones, a fraction of
the 2k factorial design is run to estimate the coefficients in Equa-
tion 1. This simple linear model is all that can be afforded at this
stage of experimentation. Finally, if a detailed optimization is re-
quired, a response surface design is run to fit a full quadratic poly-
nomial (Equation 3). The design most often used is a Central
Composite design (as shown in Figure 1 for three factors) which
adds axial points to a 2k factorial design (plus center points). The
other common response surface design was developed by Box and
Behnken15 and is shown in Figure 2. It cannot be built up from a
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Figure 1. Central Composite Design for 3 factors. Design com-
monly used to obtain a detailed response surface for optimization.
Can be built up from fractional factorial and 2k factorial design.2 2 2
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factorial design (a negative aspect), but it has fewer runs and is,
therefore, a good design when the extra precision of the Central
Composite is not needed. It also has only three (equally spaced)
levels of each factor, which is often advantageous. For the experi-
ment discussed in this paper, the Box-Behnken design is recom-
mended to our students.

Once the data are collected using the experimental design, the
data are analyzed rigorously. A four-step procedure is summarized
in Table 1 which we require our students to use to come to the
“best” model for their data. By “best” we mean the simplest model
that adequately describes the response surface. We encourage the
use of spreadsheets for this analysis since the use of statistical pack-
ages often makes the analysis too “canned” and inhibits learning of
all the steps involved. 

III. TASK ASSIGNMENT

Most of the experiments in the two third-year laboratory cours-
es are based on a textbook.16 For other experiments the students re-
ceive a manual which has a three-to-four page description of the
additional experiments. The description gives general underlying
principles and desired results of the experiment without necessarily
being a “cook book.” Before the students can initiate an experiment
they must pass a prelaboratory quiz. This assures that they are fa-
miliar with the procedures and purposes of the experimental inves-
tigation. For the GC statistical design experiment, they have to set

up their experimental design and schedule of experiments before
entering the laboratory to collect data.

A. Project Description
The students are asked to optimize the operating conditions of a
GC so that the analysis of a two-component liquid mixture (ethanol/
methanol) can be performed in the minimum amount of time with
the desired level of accuracy (resolution). A problem that occasion-
ally occurs in GC analyses is that of peak resolution. Due to similar-
ities of the physical properties of some substances, their GC peaks
will overlap. This often leads to inaccurate or unusable results. Typ-
ical procedures to improve peak resolution include using a smaller
sample size, operating the GC at a lower temperature, or using a
lower carrier gas flow rate. The last two procedures also lead to
longer times for analysis since the sample will take a longer time to
elute from the GC column. 

The output of the GC is processed with an integrator that gives
the results of elution time, area under the peak (A), and the area-to-
height ratio (A/H) for each compound eluting from the GC. The
A/H is essentially the width of the peak at half of its height and cor-
responds to the time that the bulk of the component is actually elut-
ing from the GC. (If you assume that the peak is approximated by a
triangle, then the area is (B×H)/2, and A/H is the half width of the
peak). One method to quantify the resolution of peaks is by calcu-
lating the following:

Y1 = (Time between peak midpoints)/(A/Hpeak 1 + A/Hpeak 2) (4)
Higher values of Y1 indicate better resolution of the peaks. To

October 1995 Journal of Engineering Education 353

Figure 2. Box-Behnken15 design for 3 factors. Advantages of only three, equally spaced levels for factors and only requires 15 runs to fit full
quadratic response surface model. 
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Table 1. Summary of four-step procedure for determination of the best response surface model.

354 Journal of Engineering Education October 1995
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ensure good resolution with no distortion of the peaks due to over-
lap, Y1 should have a value of at least 1.5. Optimal operating condi-
tions will also include the shortest operation time which gives an
adequate value of Y1. The second function that the students opti-
mize (minimize) is the time for the last peak to pass through the
GC, or

Y2 = (Time for second peak) (5)

The students are told to use a Box-Behnken15 statistical design
which gives all the information to fit the response surface of three
variables (factors) using only 15 experiments (which includes three
replicates at the average conditions) The three operating variables
are the sample size, the GC oven temperature, and the carrier gas
flow rate. They are given the limits on the operating conditions
(maximum and minimum sample, operating temperature and car-
rier gas flow rate) and told to design a series of experiments which
will enable them to determine the optimum operating conditions
(minimize Y2 for conditions where Y1 is at least 1.5).

B. Experimental Work
Using the Box-Behnken approach, the students can plan their

experiments by operating each variable at three different levels.
They typically operate at two convenient limits of the operating
range of the variable and at a midpoint level. Table 2 shows some
typical operating conditions for the three variables, and Table 3
shows the required runs for the experimental design. Each variable
(factor) is evaluated at three equally spaced levels; these are shown
in coded form in which the largest value of a variable is one and the
lowest is negative one. The variables are coded using

Xi = (Factor Valuei - Center)/(High Value - Center) (6)

There are several statistical reasons why the variables should be
coded, the major one being to minimize interdependency of the co-
efficients in the quadratic equation. It also puts all factors on the
same scale, so that the most important coefficient has the largest
absolute value.

To avoid the risk of any mechanical or operator biases clouding
the conclusions, the various runs should be performed in random
order. However, the time required to vary the oven temperature
prohibits total randomization in the four-hour-long laboratory. We
suggest that the students group some (not all) of the runs at a given
temperature. The “Run Order” column in Table 3 demonstrates a
typical ordering of the runs that allows some randomness and yet
keeps down the number of times that the oven temperature is
changed. Also, the run order is set up so that the three runs at repli-
cate conditions are dispersed throughout the series of experiments.

Students collect data following the run order. After the operat-

ing conditions are set and the GC stabilized, the students inject
their sample, and the integrator gives them the quantitative results
to calculate Y1 and Y2. Depending on conditions, a run will take be-
tween 2- and 15-minutes for both components to elute from the
GC, with most runs being on the order of 3- to 5- minutes. Typi-
cally, about five minutes are required for the GC to stabilize after
adjusting carrier gas flow rate and about 20 minutes for it to stabi-
lize after changing the temperature. All 15 runs can usually be com-
pleted within three to four hours. Sometimes the students will split
the runs between two four-hour laboratory periods.

C. Sample Results 
The final two columns in Table 3 are typical results obtained by a

student. As mentioned above, the ensuing data analysis is most often
done on a spreadsheet. Multiple regression analyses are completed
for both Y1 and Y2 to fit the general quadratic model (Equation 3)
with the coded independent variables (Step 1 in Table 1). The stu-
dents then check for outliers (Step 2 in Table 1) by constructing a
Half-Normal plot14,17 of the residuals (Figure 3). Any residual that
falls far off the line of the Half-Normal plot indicates that it does not
fit the quadratic model very well and should not be used in the calcu-
lation of the coefficients. Had any outliers been detected, they would
have been removed (one at a time) and the regression repeated.
Sometimes additional data points are collected to replace the outliers.

Next the best response surface model is found by eliminating
any nonsignificant terms (Step 3 in Table 1). The multiple regres-
sion package of the spreadsheet gives all of the coefficients of the
quadratic model with their corresponding standard errors. From
these the t-statistic can be determined to test whether any of the co-
efficients in the quadratic model are nonsignificant. The left-hand
columns of Table 4 give the regression analysis for the Y1 values
given in Table 3. As shown, for this set of data, the coefficient b23
for the interaction effect between variables X2 and X3 is not shown
to be significantly different than zero (its t-statistic is less than two).
The data are then regressed again with a model that eliminates the
X2X3 interaction, and the results are given in the right-hand
columns of Table 4. In this case, all of the remaining coefficients are
shown to be statistically significant, and the response surface model
is completed.

Finally, the statistical analysis is completed by checking the ade-
quacy of the model (Step 4 in Table 1) by comparing the Lack-of-
Fit variance, sLoF

2, to the Pure-Error variance sPE
2. Also, the residu-

als are plotted against run order, X1, X2, and X3 to see if any trends
appear. The response surface model is then plotted as contour plots
using a graphical software package. In this case, since X1 (sample
size) had the least effect (as noted by the smallest coefficients), plots
are made of the responses versus X2 and X3. Several plots of the re-
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Table 2. Variables and typical operating levels.
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sponse surface can be generated for both Y1 and Y2. Figures 4 and 5
show two such plots generated for the data in Table 3 with the re-
sponse surface models developed by the student. By overlaying the
Y1 and Y2 contour plots (Figure 6), the point can be found where
Y2 is minimized subject to the constraint that Y1 is 1.5 or greater.
For these data, the optimum gas flow rate, X2, is 68 cm3/min, and
the oven temperature, X3, is 440 K. It should be noticed from the
contour plots that this experiment demonstrates vividly the com-
promises that must often be made in the real world between various
objectives. In this case, a compromise must be made between speed
and accuracy (resolution). Resolutions of more than 3 could be ob-
tained, but the price is doubling or tripling of the analysis time.

IV. DISCUSSION

A motivating factor behind the development of this experi-
ment was the feedback we received from our Alumni Advisory 
Board and the prevalence of articles2-8 on the need for more skills in
statistical design of experiments and statistical analysis of data for

356 Journal of Engineering Education October 1995

Table 3. Box-Behnken experimental design for three factors with a typical run order and experimental responses.

Figure 3. Half-Normal plot of residuals for typical student
data for Y1. Used as initial stages of statistical analysis to eliminate
poor data (outliers).
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quality improvement. One of our responses has been to implement
a course taken concurrently with this laboratory course that teaches
the students some of the principles of experimental design and
analysis. The course was placed in the middle of the laboratory se-
quence so that the students could take advantage of the informa-
tion. At this level, the students have grappled with trying to inter-
pret experimental data from the previous laboratory courses and
have experienced some of the pitfalls of applying linear regression
to unplanned data.9 The students then have two laboratories to
practice and hone their newly-learned statistical skills.

This experiment, which was developed to reinforce the concepts
of experimental design and statistical analysis, has been successful
for various reasons. First, the experimental portion of the project is
relatively simple and safe. With adequate planning, the complete set
of runs can be finished within four hours. Sometimes the students
will split the runs between laboratory days, but more often, they will
complete a second pass through their experimental design to have
more replicate data. With the use of an integrator, the students can
concentrate on the experimental design and statistical analysis with-
out being burdened with interpreting the chromatogram. In experi-

ments in previous laboratory courses, the students are introduced to
the operation and theory of gas chromatography. Another advan-
tage of the statistical-experimental-design-using-a-GC project is
that the response signal can be easily quantified. The integrator
gives A/H ratios and retention times for each peak, and the students
can easily transfer these results to a computer for processing. The
multiple regression analysis and the determination of the best re-
sponse surface model by the elimination of all nonsignificant coeffi-
cients can be completed entirely using a statistical software package.
Typically the students perform the multiple linear regression using a
spreadsheet since they are more familiar with it. We encourage this
since it reinforces the methodology for only a bit more effort. Final-
ly, another reason for the success of this experiment is that the ef-
fects of the variables are not easily predicted which is often the case
in real-world industrial optimization problems.18 As was the case in
the example shown, the student’s results will often predict curvature
in the response surface and the optimal operation conditions are not
on one of the boundaries or limits of operating conditions. The task
of finding conditions that are a good compromise for two responses
is a very realistic situation.

October 1995 Journal of Engineering Education 357

Table 4. Typical regression analysis to determine response surface model (Analysis for Y1, resolution of peaks.)
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This experiment, like most good research projects, has several
facets worthy of additional exploration. Some students have used
different experimental design models (factorial, central composite)
with similar results. Of course a simple factorial experimental de-
sign can only be used to develop a linear empirical model. Other
variables such as the ratio of the two components in the mixture
can also be examined. Many GCs are set up with multiple columns,
so GC column length could also be a variable.

The student response to the experiment has generally been excel-
lent. Most come away from it with an appreciation for the useful-
ness of experimental design to minimize the number of experiments
that need to be run while maximizing the predictive information.
All students obtain at least a basic level of skill in statistical analysis
of data and gain some sense of how to deal with experimental error
in their analyses. We have noted since introducing the experiment
that many students will apply experimental design concepts in sub-
sequent courses, in laboratories, and in individual research projects.
Students who have worked in industry, either in a summer job or a
more extensive cooperative education internship, have found many
uses for the skills developed. Feedback from the recent graduates
and employers has also been very positive. Most important, the
feedback from our Alumni Council which represents a broad range
of industry has been overwhelmingly supportive.

V. CONCLUSIONS

A simple and safe experiment with easily quantified results has
been developed using gas chromatography to demonstrate the
concepts of experimental design and statistical analysis of experi-

358 Journal of Engineering Education October 1995

Figure 4. Contour plot of Y1 (Resolution of Peaks) as a function
of X2 (Oven Temperature) and X3 (Gas Flow Rate) at the aver-
age value of X1=1 (Sample Size). Plot shows regions on response
surface map where acceptable resolution (Y1 >_ 1.5) are obtainable.

Figure 5. Contour plot of Y2 (Analysis Time) as a function of
X2 (Oven Temperature) and X3 (Gas Flow Rate) at the average
value of X1=1 (Sample Size). Plot shows operating conditions that
minimizes the total analysis time.

Figure 6. Contour plot of Y2 (Analysis Time) as a function of
X2 (Oven Temperature) and X3 (Gas Flow Rate) at the average
value of X1=1 (Sample Size) with the resolution constraint (Y1)
overlaid. This plot shows the need to compromise needs to be made
between accuracy (resolution) and speed of analysis.

ELUTION TIMERESOLUTION

ELUTION TIME

 21689830, 1995, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/j.2168-9830.1995.tb00190.x by M

issouri U
niversity O

f Science, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ments. The experiment has been designed and implemented so
that the students can concentrate on developing and refining their
statistical skills without getting bogged down with esoteric aspects
of the project.

The experiment has been implemented and refined over the last
five years and the response has been enthusiastic from the currently
enrolled students and from the recent graduates. In summary, our ex-
perience with this experiment has been quite positive. Operation of
the experiment goes well, and most of the students report that they
developed an appreciation for the usefulness of statistical experimen-
tal design.
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