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An improved optimal elemental method for 
updating finite element models 

Duan Zhongdong ( ~ , ~ ) ~ ,  Spencer B.F. 2., Yan Guirong ( ] ' ~ ) ~ $  and Ou Jinping (x~,~J~)~* 

1. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China 

2. Department of Civil and Environmental Engineering, Universtty of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 

Abstract: The optimal matrix method and optimal elemental method used to update finite element models may not provide 
accurate results. This situation occurs when the test modal model is incomplete, as is often the case in practice. An improved optimal 
elemental method is presented that defines a new objective function, and as a byproduct, circumvents the need for mass normalized 
modal shapes, which are also not readily available in practice. To solve the group of nonlinear equations created by the improved 
optimal method, the Lagrange multiplier method and Matlab functionfmincon are employed. To deal with actual complex structures, 
the float-encoding genetic algorithm (FGA) is introduced to enhance the capability of the improved method. Two examples, a 7- 
degree of freedom (DOF) mass-spring system and a 53-DOF planar frame, respectively, are updated using the improved method. 
The example results demonstrate the advantages of the improved method over existing optimal methods, and show that the genetic 
algorithm is an effective way to update the models used for actual complex structures. 

Keywords: model updating; optimal elemental method; Lagrange multiplier method; genetic algorithm 

1 I n t r o d u c t i o n  

Discrepancies between structural analytical models, 
which usually are finite elbment (FE) models, and test 
results are common in practice. Updating the structural 
models has evolved as a method to reconcile these 
differences. Generally, the existing methods used to 
update models can be classified as the optimization 
based method (Baruck,1982; Berman and Nagy,1983; 
Kabe,1985), sensitivity-based method (Ricles and 
Kosmatka, 1992; Farhat and Hemez,1993) and 
eigenstructure assignment method (Zimmerman and 
Widengren, 1990). Research studies by Baruch (1982) 
and Berman and Nagy (1983) defined a framework 
for the optimal matrix method (OMM). By nature, 
optimization-based methods are used to minimize the 
differences between analytical and updated models 
under the constraints provided by the test modal model. 
OMM provides a closed-form solution, which makes 
this method very appealing. However, updated models 
generated by OMM often lose their sparsity. The optimal 
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elemental method (OEM) enforces the connectivity of  
updated model by preventing the error-free parts from 
updating. The sensitivity-based method (SBM) makes 
use of  the derivatives of  measured parameters, typically 
eigenmodes, to a set of  physical parameters to calculate 
the changes in them. However, it can only be used to 
update models with small discrepancies to test models. 
While the eigenstructure assignment method for model 
updating is similar to the poles assignment method in 
structural control, it uses a fictitious controller to force 
the analytical model to respond like a test model. The 
control gains are used to calculate the perturbation to 
the analytical model. Loss of physical meaning of the 
updated model is the major limitation of  this method. 
There are other methods that update the frequency 
response function directly (Friswell and Mottershead, 
1995). An excellent survey on finite model updating 
methods was made by Mottershead and Friswetl 
(1993). 

In this paper, the optimization-based methods for 
updating finite element models are addressed, and an 
improved optimal elemental method is presented. The 
remainder of  this paper is organized as follows. First, 
the problem of  updating the model is outlined, and the 
OMM and OEM are briefly introduced. An improved 
model updating method is then presented by defining 
a more strict and consistent objective function. Next, 
an iterative solving strategy using the Matlab function 

fmincon and float-encoding genetic algorithm are 
adopted to solve the nonlinear optimal problem caused 
by the improved method. Finally, the proposed method 
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is used to update two structures to demonstrate its 
effectiveness. 

2 Opt imizat ion  based model  updat ing  method  

The governing equations for updating finite element 
models using test modal parameters are the orthogonality 
of updated mass and stiffness matrices to test modal 
shapes and the eigenequation, which are given as 

(I~TMo = ]1~ (l) 

~ T K o  =/~ (2) 

.~ = MA (3) 

where M and K are the updated mass and stiffness 
matrices, respectively; M and K are the modal mass 
and stiffness matrices, ~ is the measured modal shape 
matrix and A is the measured diagonal eigenvalue 
matrix. Superscript T denotes transpose. 

In the procedure of OMM developed by Baruch 
(1982), Berman and Nagy (1983) and Zhang and Wei 
(1999), the mass and stiffness matrices are updated 
separately in the same way. For the stiffness matrix, the 
updated stiffness is found to be closest to the analytical 
stiffness matrix K A by minimizing the following 
objective function 

= 1 M_l/2( K _ KA)M_I/2 (4) 

represent the actual model, which could be closer to the 
test model in practice. On the other hand, the matrices 
of the actual model, which are what the updating 
procedure actually searches for, may not be the closest 
to the analytical matrices. In other words, the matrices 
of the actual model are not on the minimum point of the 
objective function of Eq. (4). This idea can be illustrated 
by example. 

Consider a three DOF structure. The mass and 
stiffness matrices, which represent the analytical model 
of the structure, are 

ll 0!] i4! 20 01 = , = -20 (7, 8) M A 0 1 K A - 0 40 

0 0 -20 20 

Next, alter the element in the first row and the first 
column o f K  A from 40 to 30, and keep all other elements 
in K a and mass matrix M A unchanged. The distance 
between the analytical and altered models, in the form of 
a Euclidean norm of two stiffness matrices, is 10. 

Then, the altered stiffness and mass matrices are 
used to produce the eigenvalues and eigenvectors, which 
could be the measured modal parameters in practice. 
Using the first two of the three modes in implementing 
the OMM and denoting the updated matrices as M U and 
K U, we obtain that M U equates to M r and 

Ku 7__ 

30.58 -20.93 0.44 

-20.93 41.49 -20.71 

0.44 -20.71 20.34 

(9) 

subject to the eigenequation and the symmetry 
constraints given by 

K r l }  = M O A  (5) 

K z = K (6) 

where |1 is the Euclidean norm. A closed-form solution 
for thi;' roblem is available. The OEM for the model 
updating method is similar to the OMM, but excludes 
some error-free elements in the matrix from being 
updated, and thus preserves the sparsity of updated 
matrices. 

As seen from Eqs. (4)-(6), the updated matrices 
should be those which are closest to the analytical 
matrices and satisfy the constraints. However, this 
argument may not be true when the test modal data 
are incomplete, which is often the case in practice. The 
matrices, which are the closest to the analytical matrices 
while satisfying the constraints, may not necessarily 

The Euclidean norm of the difference matrix K A = K u - K  A 
is 9.70, which is less than 10. This implies that the 
matrix of the actual model is not at the minimum point 
of the objective function defined by Eq. (4). Therefore, 
the objective functions of OMM and OEM may mislead 
the updated model to deviate from the actual model. This 
is especially true when fewer measured eigenmodes 
are used for the updating. In this condition, however 
powerful the optimization technique is, the optimization 
result will never approximate to the real solution as 
expected. 

In addition, for the existing optimal matrix and 
elemental methods, the measured modal shapes should 
be mass normalized. However, this requirement can 
seldom be met in modal test and analysis, especially tbr 
ambient vibrations, in which the inputs are unknown. 

3 Improved  opt imal  e lemental  method  

Let's revisit the governing Eqs. (1)-(3). All the off- 
diagonal elements of M and K are zeros due to the 
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orthogonality of updated mass and stiffness matrices to 
modal shapes. The diagonals of the two matrices are non- 
zeros, but they are unknown because of the arbitrarily- 
scaled modal shapes. However, their relationships exist 
in the form of eigenequations of Eq. (3). 

At this point, an improved model updating algorithm 
can be formulated by defining a new object function. 
The updated matrices are found to minimize the sum of 
sfluare of distances of  off-diagonal elements in 111 and 
K to zeros. Then, the new object function is 

N N ~ rl tl ;q 

: E EI(E E +(E E 
p=l q=/ t= |  J = l  /=l  J= l  

q ( P  

(lo) 

The eigenequation and symmetry constraints for the 
optimal problem are given by 

constraints of Eqs. (11)-(12), are always at the minimum 
point of the objective function defined in Eq. (10). 
That is to say that the actual model can consistently 
be achieved by minimizing this objective function. For 
the new objective function, the mass normalized modal 
shapes are not needed for the updating procedure. 

However, the improved method creates a more 
complex optimization problem when compared with 
those used in Baruck and Berman's approaches. 
However, by employing a more efficient optimization 
technique and adding constraints to narrow the search 
domain, the optimization problem can be solved more 
efficiently. 

Generally, the existing optimal methods are not 
capable of resolving large discrepancies between the 
analytical and test models. Additional constraints, i.e., 
that the diagonal elements of the mass and stiffness 
matrices be positive, as shown in Eq. (13), should be 
considered when dealing with two models with a large 
gap. 

n n n 

I=1 1=1 l=l j = l  

p = 1,2,3,...,N (ll) 

m, =m;,,  k,~=k;,, i , j=1 ,2 ,3  ..... n, i r  (12) 

where ~0,p is the modal displacement at the i th degree 
ofpth eigenvector, and ~ is the pth eigenvalue, rn and 
k are elements of the mass and stiffness matrices, and I/ 

N and n are the numbers of the measured modes and 
degrees, respectively. 

The matrices of  the actual model, which satisfy the 

m,,>0, k , > 0 ,  i=1,2,3,. . . ,n (13) 

However, the constraints given in Eq. (13) result in 
a group of  nonlinear equations, which makes solving the 
optimal problem more challenging. 

4 Solving strategy for the optimization 
problem 

Employing the Lagrange multiplier method, and 
considering the symmetry of the mass and stiffness 
matrices implicity, the Lagrange function is obtained as 
Eq. (14). 

I N - I  N n n - I  w~n 

E E { E  E 2. + 2 L =-~ [ m Cp,ptp, q + rn~,(q)ptp,,l r162 + 
z~ p = l  q = p + l  t~ l  /=1 j = t + l  

n n - I  

1=1 t=l  / = l + l  

N n "~ n - I  n n-1 

p= l  t=l  t=l  j = / + l  t=l l=l /= l+ l  

t=l z=l 

(14) 

where a ,  d, ~, g and h are Lagrange multipliers. This is 
�9 [5 -! l . t . . i . . . .  

a nonhnear opnmlzatlon problem, m which nonhneanty 
comes from the constraints represented by Eq. (13). 

The Matlab function fmincon in the optimization 
toolbox is used to search for the solution. To take 

advantage of  the large-scale algorithm infmincon, which 
is more powerful and efficient, the optimization problem 
in Eqs. (10)-(13) is formulated with the objective 
function given as 
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N-I  N n n-l 

EE{tE Z E. ="~ mufp~pqg q + mq ((plpq)jq .-~ q)jp(ptq)] 2 -1- 
1-, p=l q=p+l t=l t=l l=t+l 

" k n-1 
[ Z  u~OtPq)tq q- Z ~ kg(~OtPq)Jq "~(PJPq)tq )]2}'~ 

t=l /=l j=t+l 
1 N[n n-l~. a n n - l ~  
?p~--1 ,-~-1 k''~02 +22/=t j=t+l k,/p,pq),p-Zp(~.m,q~p,=, +22,=, J=/+l myCp'PCP'P)]2 

(15) 

The constraints are given by Eqs. (12) and (13). The 
eigenequation stated as constraints in Eq. (11) is 
included as part of the objective function in Eq. (15). 
After the reformulation, the large-scale algorithm of 
fmincon can be implemented. 

The solving technique based on the gradients of the 
objective function, such as the one employed by the 
Matlab functionfmincon, usually can not avoid possible 
local entrapments when the shape of the object functions 
become complex. The genetic algorithm (GA) provides 
a potential way to avoid these local entrapments. A float- 
encoding genetic algorithm (FGA) is proposed to solve 
this optimization problem. The FGA is characterized by 
its ranking-like selection process. The most superior 
individuals in each generation are directly moved to 
the next generation in addition to being involved in the 
genetic process. Penalty functions are adopted to deal 
with the equation and inequation constraints. According 
to the characteristics of the objective function, some 
simple and excellent genetic operators, such as crossover 
and mutation, are mixed. For example, arithmetic 
crossover and one-point crossover are combined when 
implementing the crossover operation, and boundary 
mutation and non-uniform mutation are combined when 
mutations are operated. 

Reducing the size of the optimization problem and 
keeping the number of unknowns small facilitate the 
process of searching for the results. For optimization in 
model updating, using the sparsity of the matrices is an 
effective way to achieve this reduction. In addition, some 
parts of actual structures are error-free. By considering 
these error-free elements, the number of  unknowns is 
further reduced. 

The objective function is made up of contributions 
from the modal mass and modal stiffness matrices. 
Weighing on mass or stiffness matrices to ensure that 
their contributions are balanced is an efficient way to 
make the convergence faster and the solution more 
precise. Finally, setting the initial values of  unknowns to 
be the analytical model matrices is a good technique to 
achieve convergence. 

5 E x a m p l e s  

5.1 Example  1 

Consider a 7-DOF mass-spring system (Heylen 
et ai.,1997). The charateristic parameters for the actual 
or "test" model are taken as m I = 2kg, m 2 = 5kg, m 3 = 

4kg, m 4 = 4kg, m 5 = 3kg, m 6 = 2kg, and m 7 = lkg. All the 
spring stiffnesses are 10000 N/m. The analytical model 
is the same as the actual model except that m3= 3.5kg, m 4 
= 4.5kg, kl, 2 = 8000N/m, ka4 = 7000N/m, k4, 5 = 9000N/m, 
k6, 7 = 6000N/m, and k6, 0 = 8500N/m. Measured noise and 
damping behavior are not present in this example. The 
natural frequencies of the test model and the analytical 
model are shown in Table 1. 

Denoting BB as the OMM presented by Baruch 
(1982) and Berman (1983), and IM(GT) and IM(GA) 
as the improved method (IM) employing the gradient 
optimization technique and Genetic Algorithm, GT and 
GA, respectively, a different model updating method is 
implemented for comparison. In the BB method, the 
mass normalized modal shapes are used, and in the IM 

ml 

@ ~ kl,2 

[m2 IIms  I 
@~k2,4 @~k4,5 ~ k5,7 

I II I k~ 3 m 4  m 7  

m3l lm6l  

Fig. 1 7 DOF spring-mass system 

Table 1 Results of frequencies of a 7-DOF spring-mass system rad/s 

Mode No. 1 2 3 4 5 6 7 
Actual 26.175 52.157 77.199 100.00 103.56 116.1 163.09 

Analytical 25.378 48.757 78.699 97.388 103.27 111.53 162.2 
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methods, the sparsity of  the mass and stiffness matrices 
is used. 

Two cases are considered in terms o f  the 
completeness of  measured modes. In case 1, all seven 
modes are used in updating the model and in case 2, only 
the first three modes are used, 

For Case t, the frequency errors o f  the updated 
model when compared to the "test" model are given 
in Table 2, and the matching modal shapes are plotted 
in Fig. 2. (Note that "IM(GD)," which appears in the 
legends of  Fig. 2 should read "IM(GT)." ) 

The results show that the BB and IM (GT) methods 
produce the exact updated model as the actual model, 
while the IM (GA) provides almost exact results except 
for a very small discrepancy in the first frequency. 

The relative errors of  the diagonal elements in the 
updated mass and stiffness matrices are also listed in 
Tables 3 and 4, respectively, for Case 1. The BB method 
again reproduces the diagonals in mass and stiffness 
matrices as expected, and IM(GT) and IM(GA) produce 
the results with errors of  less than 0.3%. 

The results for Case 2, where only the first three 
modes are considered, are shown in Fig. 3 and Tables 
5-7 (Note that "[M(GD)," which appears in the legends 
o f  Fig. 3 should read "[M(GT). ' ) .  The IM(GA) method 
provides the most accurate modal frequencies, and the 
modal shapes match very welt with the actual ones. It is 
also superior to the BB and IM(GT) methods in updating 
the diagonals in the mass and stiffness matrices. 

In practical applications, only truncated modes are 

Table 2 Relative error of frequencies for the updated models (Case 1) % 

Mode No. 1 2 3 4 5 6 7 
BB 0 0 0 0 0 0 0 

IM(GT) 0 0 0 0 0 0 0 
IM(GA) -0.02 -0.00 0.00 0.00 0.90 -0.01 -0.00 
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Table 3 Relative error of diagonals for the updated mass matrix (Case 1) % 

DOF No. 1 2 3 4 5 6 7 

BB 0 0 0 0 0 0 0 

IM(GT) -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0,03 

IM(GA) 0.23 0.22 0.22 0.16 0.16 0.09 -0.05 

Table 4 Relative error of diagonals for the updated stiffness matrix (Case l) % 

DOF No. 1 2 3 4 5 6 7 

BB 0 0 0 0 0 0 0 

iM(GT) -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 
[M(GA) 0.20 0.22 0.20 0.11 0.13 0,06 0.02 

Table 5 Relative error of frequencies for the updated models (Case 2) % 

Mode No. 1 2 3 4 5 6 
BB 0.00 0.00 -0.00 - 12.50 -3.64 -6.45 

IM(GT) -6.77 -l.21 -3.06 -6.45 -2.80 -0.56 

IM(GA) 0.03 -0.47 0.0 l -0. I 1 0.28 - 1.45 

5 
P, 

O 
3 

7 

6 

2 1 
---(~-- [M(GA) 

i I i _ _  

0.5 ,0 
Magnitude 
1 st mode 

6 

5 

2 
- o - - B B  \ 

- ~  IM(GT) \ 
1 --<:~, IM(pA), \ 

0 
Magnitude 
2nd mode 

5 

==4 

O 
3 

7 "' 

6 

1 
---C--BB ~ ~-~3MB( O T ! 

2 ~ A  

A 1 i 

1-1 0 
Magnitude 
3rd mode 

7 

6 

5 o 

n ,  
�9 
m 3  

1 
/// --c~-- BB 

2 ' - -~  -...~-4M(GT 

-1 0 1 
Magnitude 
4th mode 

5 
,.o 

= = 4  

O 

3 

6 

2 I ~ I M { G T  
~--IM(GA 

I i ~ -  [ t 

-5 0 5 
Magnitude 
5th mode 

==4 
0 

7 

5 

o 

\ 
3 ~, 

Rea~ 
2 ---o--BB 

---A-- IM(GT) 
1 ,-~_>-- J M(QA) 

-30 0 
Magnitude 
6th mode 

5 
P, 

..Q 

E 
~ 4  

k~ 

O 

3 

6 

! 
2 [ ---4~-ReaI 2 ---<>-BB 

~ [ M ( G T )  
---o-IM(G_.A~ 

0 400 
Magnitude 
7th mode 

Fig. 3 Actual vs. simulated modal shapes (Case 2) 
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Table 6 Relative error of diagonals for the updated mass matrix (Case 2) % 

DOF No. 1 2 3 4 5 6 7 
BB 0.58 0.99 - 10.38 12.52 -0.36 -0.19 -0.10 

IM(GT) -5.88 - 1.15 -11.06 2.44 -4.12 -11.99 -6.58 
IM(GA) -0.35 3.38 -4.06 4.89 -1.75 0.43 8.30 

Table 7 Relative error of diagonals for the updated stiffness matrix (Case 2) % 

DOF No. 1 2 3 4 5 6 7 
BB -3.39 -12.55 -9.60 -18.55 -5.65 -19.62 -17.58 

IM(GT) d2.42 -15.72 2.84 -30.68 -6,39 -I4.36 -20.26 
IM(GA) -0.69 2.309 -5.289 -3.399 -0.91 3.94 3.69 

available, and the practical meaning of  the proposed 
improved method with the genetic algorithm ([M(GA)) 
is demonstrated by case 2. 

5.2 E x a m p l e  2 

To further validate the effectiveness of  the improved 
method, consider a 14-bay simply supported planar 
steel truss as shown in Fig. 4. It is 5.6m long and 0.4m 
tall, and consists o f  53 members  (hollow steel tubes, 
17.1mm outer diameter, 3.1ram wall thickness). The 
material properties are as follows: Young's Modulus 
is 1.999• the Possion ratio is 0.3 and the mass 
density is 7827kg/m 3. The damping ratio is 1% for each 
mode. The finite element model for the structure is 
denoted as actual or "test" model. The analytical model 
is produced by reducing the sections of  diagonal bars 2- 
5 and 4-7, and the vertical bars 4-5and 6-7 of  the actual 
model by 90%, 70%, 90% and 50%, respectively. 

The vertical acceleration responses of  the actual 

model and analytical model under random white noise 
are simulated, and the modal parameters of  the two 
models are identified by the eigen-system realization 
algorithm (ERA). The first six natural fiequencies of  
the test model and the analytical model, as well the 
discrepancies between the two models before updating 
are shown in Table 8. 

Then, the mass and stiffness matrices of  the 
analytical model with the identified modal parameters 
were updated using IM(GA). The frequency errors alter 
updating are also shown in Table 8. The corresponding 
modal shapes are shown in Fig.5, where, for simplicity, 
only the lower chord nodes are plotted. The model 
updated with IM(GA) matches the actual structure very 
well. 

6 C o n c l u s i o n s  

The objective function of  the optimal matrix method 
and optimal elemental method used to update finite 

1@ 0.4mx14 I~ 
3 5 7 9 11 13 15 17 19 21 23 25 27 

Fig. 4 A fourteen bays planar truss 

Table 8 First six frequencies of the structure before and after updating 

Error of frequency Error of frequency Mode No. Actual (Hz) Analytical (Hz) 
before updating (%) after updating (%) 

1 8.79 8.34 5.12 -0.55 
2 29.60 28.35 4.22 -1.48 
3 43.39 37.70 13.11 2.23 
4 59.10 56.06 5.14 -0.24 
5 90.62 84.33 6.94 -0.40 
6 119.81 92.08 23.14 -0. [ 1 
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Fig. 5 Actual vs. updated modal shapes for the 14-bay structure 

element models may misrepresent incomplete modes 
and differ significantly from those presented in the 
actual structure. The updated model that is closest to the 
analytical model under the constraints of orthogonality 
and eigenequation is not necessarily the actual model. 
An improved optimal elemental method is presented in 
this paper by defining a new objective function, which 
consistently represents the actual condition of the 
model. Both traditional optimization techniques based 
on gradients and the genetic algorithm are employed 
to solve the nonlinear optimization problem found in 
updating these models. Two examples are given that 
demonstrate the advantages of the improved model 
updating method, and the potential of this method to use 
the solving strategy found in the generic algorithm to 
update actual complex structures. 
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