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Abstract
Structural damage detection based on wireless sensor networks can be affected significantly by
time synchronization errors among sensors. Precise time synchronization of sensor nodes has
been viewed as crucial for addressing this issue. However, precise time synchronization over a
long period of time is often impractical in large wireless sensor networks due to two inherent
challenges. First, time synchronization needs to be performed periodically, requiring frequent
wireless communication among sensors at significant energy cost. Second, significant time
synchronization errors may result from node failures which are likely to occur during long-term
deployment over civil infrastructures. In this paper, a damage detection approach is proposed
that is robust against time synchronization errors in wireless sensor networks. The paper first
examines the ways in which time synchronization errors distort identified mode shapes, and
then proposes a strategy for reducing distortion in the identified mode shapes. Modified values
for these identified mode shapes are then used in conjunction with flexibility-based damage
detection methods to localize damage. This alternative approach relaxes the need for frequent
sensor synchronization and can tolerate significant time synchronization errors caused by node
failures. The proposed approach is successfully demonstrated through numerical simulations
and experimental tests in a lab.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent catastrophic failures of civil engineering structures
around the world (for example, I-35W highway bridge over
the Mississippi River in Minneapolis, Minnesota, US, 2007)
underscore the need for reliable and robust structural health
monitoring (SHM) systems. To make timely decisions
regarding reinforcement and maintenance strategies, these
SHM systems should be capable of collecting structural
response data, identifying the existence or onset of damage in
structures, localizing and quantifying the damage, and tracking
down processing of damage as well as estimating the remaining
life and capacity of the structure. To this end, effective
damage detection algorithms must be integrated into these
SHM systems.

4 Author to whom any correspondence should be addressed.

Although, to date, a large number of damage detection
methods have been proposed and the effectiveness of these
methods has been demonstrated through numerical simulations
or laboratory experiments, conventional SHM systems
integrated with these methods often fail to fully achieve
their anticipated functionality in real-world applications. One
reason for such failure is that relatively few measurement
points are typically deployed in a structure because the sensor
system in a traditional SHM system is cable based, and it is
very expensive and labor intensive to install a large number
of sensors. With recent technological advances in wireless
communication, SHM systems based on a wireless sensor
network (WSN) may provide a feasible solution [1–3]. WSNs
have several advantages over most traditional SHM systems,
such as low installation and maintenance costs, relatively
less installation time, reprogrammable ability and convenient
reconfiguration capacity. Thus, a dense deployment of
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Table 1. Actual clock readings of the reference sensor node and the i th sensor node.

After the first 2 h After an integer (M) multiple of 2 h periods

At the reference sensor node t = 2 h × 60 min h−1 × 60 s min−1 t = M × 2 h × 60 min h−1 × 60 s min−1

At the i th sensor node ti = t + αi t + δti ti = t + αi t + δti

TSE at the beginning of next
block of data sensing

TSE = ti − t = αi × 2 × 60 × 60 s + δti TSE = ti − t = αi × M × 2 × 60 × 60 s + δti

measurement points in a SHM system becomes quite feasible
with WSNs. Researchers have successfully implemented these
networks with a variety of damage detection strategies on
several systems [4–9].

However, unlike conventional SHM where cable-based
systems are properly configured, SHM with WSN systems
faces new challenges related to the inability of the sensors
to sample data simultaneously, resulting in significant time
synchronization errors (TSEs) between different wireless
sensing units. These TSEs may be attributed to both clock
drift and clock offset between wireless sensors [10]. Clock
drift exists because the actual oscillation frequency of a clock
crystal is not precisely its design frequency, and also because
the frequency may change over time due to environmental
factors such as variations in temperature, supply voltage and
shock as well as oscillator aging. Clock offsets exist because
it is infeasible to initialize all the nodes in a WSN at the exact
same moment, and hence each sensor’s clock has its own initial
time.

Several time synchronization protocols have been pro-
posed for WSNs that aim to reduce TSEs by allowing nodes
to agree on a single reference time. These methods can be
classified into the following three groups: receiver–receiver
synchronization-based algorithms (such as the reference broad-
cast synchronization (RBS) [10]), pair-wise synchronization-
based algorithms (such as the timing-sync protocol for sensor
networks (TPSN) [11]) and sender–receiver synchronization-
based algorithms (such as the flood time synchronization pro-
tocol (FTSP) [12] and delay measurement time synchroniza-
tion (DMTS) [13]). These methods provide different mech-
anisms to synchronize local clocks of sensor nodes within a
WSN.

Even when these protocols are employed, completely
synchronized measurements are not guaranteed. Assuming
that a single sensor in the network is designated as the
reference sensor, all other nodes in the network will attempt
to synchronize against the reference’s clock. The relationship
between the clock reading of the i th wireless sensor and that of
the reference clock is as follows

ti = (1 + αi )t − δti = t + αi t − δti (1)

where ti and t denote the clock readings of the i th wireless
sensor and the reference sensor, respectively. αi and δti are
the clock drift rate and initial clock offset of the i th wireless
sensor compared with the reference sensor. The αi t factor
corresponding to the clock drift will cause TSE to accumulate
over time, even when a time synchronization protocol is able
to compensate for the initial clock offset (δti ).

To demonstrate the accumulation of TSE, table 1 lists
sample clock readings and TSEs in a WSN which starts to
collect data every two hours and stops collecting data after
acquiring N data points. The total TSE is the sum of the
initial clock offset δti and the TSE resulting from clock drift.
δti can be assumed to be very small if time synchronization
is performed when the system initializes. The TSE caused by
clock drift continuously increases with time (for instance, on
typical WSN sensor platforms, this effect can be as large as
40–50 μs s−1 [14, 22]). It is worth noting that the total TSE at
the end of one 2 h operation may be viewed as the initial clock
offset for the next block of sensing. Therefore, the longer the
operating time of the WSN, the larger the clock offset for a
given block caused by clock drift, and accordingly, the larger
the total TSE.

One strategy to combat the increasing TSE is to
periodically re-synchronize the entire network against the
reference clock. It is well known that FTSP uses the effect
of clock drift between periodic re-synchronizations to estimate
each node’s clock drift rate αi . Nevertheless, TSE cannot be
completely eliminated under FTSP due to errors in estimating
the clock drift, particularly in an operating SHM system
where these errors can be amplified by node failures. An
implementation of FTSP on a testbed of Berkeley Mica2
sensors accumulated over 60 μs of TSE in the face of node
failure, even under an unrealistically aggressive schedule that
re-synchronized the entire network every 30 s. Furthermore,
time synchronization in a WSN requires that wireless sensors
exchange information, which consumes energy. In addition,
when sensing is in progress, time synchronization may not
perform well [14].

Clearly, full realization of synchronized sensing is quite
challenging. Prior research suggests that the presence of TSEs
has impacts on system identification and damage detection
results. Nagayama [14] investigated the effect of TSEs both
on the transfer function between an input force and sensor
response and on the correlation function of responses, and
found that the identified natural frequencies and damping ratios
were not affected, while phase errors did occur in the identified
mode shapes. Krishnamurthy et al [15] also observed that
TSEs affect the amplitudes of identified mode shapes.

In this study, the goal of performing accurate damage
detection in a WSN having TSEs will be addressed from a
new perspective. Our goal is not to implement a new time
synchronization approach, but rather to enhance the robustness
of damage detection approaches against TSEs and avoid the
need for frequent time synchronization in a WSN, resulting in
diminished energy consumption. First, we will systematically
investigate the influence of TSEs on the magnitude and phase
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of identified mode shapes and examine how one might exploit
this knowledge for accurate damage detection. Then, two
damage detection methods that are tolerant to TSEs are
proposed. The efficacy of these approaches is demonstrated
through numerical simulations on a simply supported beam
and a planar truss. In addition, these approaches are validated
through experimental tests in a laboratory.

2. Background

2.1. System identification using the FDD method

When monitoring in-service civil engineering structures, the
primary sources of external excitations are ambient vibrations
such as those caused by wind or traffic loads. Because ambient
excitation sources are often unmeasurable, only the resulting
structural responses, the system outputs, can be reliably used
for system identification and damage detection. One effective
method for output-only modal identification is the frequency
domain decomposition (FDD) method [16].

In the FDD method, the cross spectral density (CSD)
matrix of the response is first estimated, expressed as
(assuming that the pth discrete frequency is associated with
the mth natural frequency)

G(ωm) = G(p)

=

⎡
⎢⎢⎢⎢⎢⎣

X1(p)X∗
1(p) · · · X1(p)X∗

i (p) · · · X1(p)X∗
n(p)

...
...

...

Xi (p)X∗
1(p) · · · Xi (p)X∗

i (p) · · · Xi (p)X∗
n(p)

...
...

...

Xn(p)X∗
1(p) · · · Xn(p)X∗

i (p) · · · Xn(p)X∗
n(p)

⎤
⎥⎥⎥⎥⎥⎦

(2)

where Xi (p) represents the discrete Fourier transform (DFT)
of the response at the i th DOF, and ·∗ represents the conjugate
transpose operation. To minimize the impact of measurement
noise, the averaged CSD matrix is obtained by performing
an averaging operation on the CSD matrices estimated from
multiple frames of data.

A singular value decomposition (SVD) is performed then
on the averaged CSD matrix at each discrete frequency. The
maximum singular value in each singular value matrix is
collected to form a vector. From the peaks of this vector,
the natural frequencies are identified. The first column of
the left singular decomposition matrix corresponding to a
particular natural frequency is an estimate of the corresponding
mode shape. In the implementation discussed herein,
because only output information is used for identification, the
identified results from the FDD method are actually operational
deflection shapes (OPS).

Assume U1 is the estimate of the mth mode shape. By
dividing all of the components of U1 by the component of
U1 chosen as the reference, the normalized mode shape is
obtained with one component having a value of one. Its
components are, in general, complex values. The phase
associated with each complex value represents the phase
difference between that response location and the reference
sensor location in the mth mode. To obtain real-valued

components of a mode shape, which are typically used for
damage detection methods, the magnitude of each component
of the normalized U1 is calculated. The corresponding sign
for each component is determined by its respective phase. The
phases of the components in the normalized mode shape are
ideally equal to 0 or π for proportionally damped systems with
no measurement error. If the phase is 0, the corresponding
sign is taken as positive; if the phase is π , the corresponding
sign is taken as negative. In practice, due to measurement
and numerical errors, the phases are not exactly 0 or π .
Therefore, the signs of the components are determined in the
following way here: if the phase is in the range of [ − π

2
π
2 ], the

corresponding sign will be positive; otherwise, if the phase is in
the range of [ π

2
3π
2 ], the corresponding sign will be negative.

2.2. Damage detection using flexibility-based methods

Techniques for damage detection based on structural flexibility
have been gaining attention [17–19]. A good estimate of the
flexibility matrix can be obtained with easily identified low-
frequency modes, making flexibility-based methods attractive
for civil engineering applications. Also, the flexibility matrix
corresponding to the sensor coordinates can be extracted
directly from the matrices of system realization. For these
reasons, and due to their success in the prior studies mentioned
previously, flexibility-based methods are employed in this
study.

2.2.1. Classical flexibility difference method. Based on the
assumption that the presence of damage in structures reduces
structural stiffness and thus increases structural flexibility, the
change in structural flexibility between the pre- and post-
damaged states can be used to detect damage. The change in
classical flexibility matrix F can be computed as

�F = |Fd − Fu| (3)

where |·| denotes the absolute value of a matrix; the
superscripts d and u indicate the damaged and undamaged
structures, respectively. Each of the flexibility matrices can
be assembled from the modal parameters using

F =
n∑

r=1

1

ω2
r

ϕrϕ
T
r (4)

where ωr and ϕr are the r th mass-normalized mode shape and
circular modal frequency, respectively, and n is the number
of modes used. In the classical flexibility difference method,
the diagonal entries or the maximum absolute values of the
elements in each column of �F are extracted to form a vector,
yielding damage locations [20].

2.2.2. ASH flexibility-based method. Because the damage
detection results using classical flexibilities are embodied as
a nodal or degree of freedom (DOF) characterization, the
classical flexibility difference method cannot directly localize
damage to exact elements. Consequently, the ASH flexibility-
based method [21] was proposed for localizing damage in
beam-like structures. This method determines the change in
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angles-between-string-and-horizon (ASHs) of beam elements
caused by damage, and thus it can localize damage to exact
elements. The ASH flexibility matrix can be constructed as

Fθ =
n∑

r=1

1

ω2
r

Rr RT
r (5)

where Rr is called the th ASH mode shape, which can be
expressed in terms of the r th translational mode shape as

Rr = [ 1
l1
ϕ1,r

1
l2
(ϕ2,r − ϕ1,r ) · · · 1

li
(ϕi,r − ϕi−1,r )

· · · 1
ln
(ϕn,r − ϕn−1,r ) ]T (6)

where ϕi,r denotes the i th component of the r th mode
shape, and li denotes the length of the i th beam element.
The components in the r th column of this flexibility matrix
represent the ASHs of all beam elements of the structure
resulting from a unit moment applied at two nodes of element
r , with no force or moment on the other elements. Thus, the
components in the ASH flexibility are associated with beam
elements rather than nodes.

The diagonals or the maximum absolute values of the
components in each column in the difference of ASH flexibility
matrices between the pre- and post-damaged structures are
extracted as damage indicators. By observing a ‘step and jump’
in the plot of damage indicators versus element numbers, the
damage locations are determined.

3. Influence of TSEs on mode shape identification

In this section, the effect of TSEs on the identified results of
mode shapes is first investigated. Then a strategy for modifying
the distorted mode shapes to be suitable for damage detection
is proposed.

Consider first the impact of various TSE sources. When
TSEs exist among a set of wireless sensors, the sensors start
to acquire data at different times and two sensors may even
acquire the data at different sampling frequencies. Assume we
have two sensors measuring response data at the same DOF,
denoted the i th DOF. Assume that one sensor’s clock is taken
as the reference clock and its time t is used as the time base.
This sensor acquires data using the reference clock, and the
other sensor acquires data using its own local clock. Here, the
two sets of data collected by the reference sensor and the other
sensor at the same location (say, at DOF i ) are designated xi(t)
and x̃i(t), respectively. The two sets of data are related by

x̃i(t) = xi((1 + αi)t − δti) (7)

where αi is the clock drift rate and δti is the initial clock offset
of the other sensor relative to the reference sensor.

Prior research suggests that the clock drift rate αi is
usually relatively small, e.g., Shamm et al [22] observed
that the frequency differences of the crystals used in Mica2
motes introduced a drift of 40 μs s−1. Nagayama et al [14]
estimated the maximum αi among one set of Imote2 nodes
to be approximately 50 μs s−1. Therefore, for a frame of
measured data with relatively short length, the effect of αi on
this frame of data is negligible, and all the accumulated TSE

caused by αi before can be included in δti , as discussed in
section 1. Thus equation (7) can be written as

x̃i(t) = xi(t + δti ). (8)

Performing a Fourier transform (FT) of both sides of
equation (8) yields

X̃ i(ω) = F[x̃i(t)] = F[xi(t + δti )] = eiωδti Xi(ω) (9)

where F[·] represents the FT operation. X̃ i (ω) and Xi (ω)

are the FTs of x̃i(t) and xi(t), respectively. Equation (9)
suggests that δti introduces a phase shift of ωmδti to the
frequency domain representation of the response. However,
equation (9) only applies to the continuous Fourier transform
of data under ideal conditions. In practice, the discrete Fourier
transform (DFT) is used, and thus we really need to explore
the relationship between the DFTs of the data with and without
TSEs. Consider one set of digital data x(n) as the data without
a TSE (reference) and another set of data x̃(n) as the data with
a TSE (for illustration, we consider a time shift of two time
steps here). Thus, the data obtained are

x(n) = [ x(1) x(2) · · · x(N − 1) x(N) ]

x̃(n) = [ x(3) x(4) · · · x(N + 1) x(N + 2) ]
(10)

and the DFTs of x(n) and x̃(n) can be expressed as

X (k) =
N∑

n=1

x(n)e−j 2π(n−1)k
N (11)

X̃(k) =
N∑

n=1

x̃(n)e−j 2π(n−1)k
N (12)

where k is the frequency domain variable. If the two
sides of equation (12) are multiplied by e−j 2π ·2·k

N and then
subtracted from equation (11), rearranging this equation yields
the relationship between X̃ i(k) and Xi (k):

X̃(k) = (X (k) + (x(N + 1) − x(1))e−j 2π ·0·k
N

+ (x(N + 2) − x(2))e−j 2π ·1·k
N )ej 2π ·2·k

N . (13)

Clearly, all terms except the X (k) term on the right-hand side
of equation (13) are caused by the TSE. A larger TSE will
result in more terms in the parentheses on the right-hand side
of equation (13). To better understand the influence of the TSE
on the magnitude of X̃(k), the magnitudes of both sides of
equation (13) are obtained, yielding

|X̃(k)| = |X (k) + (x(N + 1) − x(1))e−j 2π ·0·k
N

+ (x(N + 2) − x(2))e−j 2π ·1·k
N |. (14)

Note that the term outside of the parentheses on the right side
of equation (13) has a magnitude of one. From equation (14)
it is clear that |X̃(k)| �= |X (k)|. That is, the TSE introduces
an error in the magnitude of the DFT of x̃(n) as compared
to that of x(n). However, if the TSE is not very significant,
this error will be small enough to be negligible for the purpose
of application of the FDD method. This conclusion can
be explained by considering equation (14) and noting that
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( )X p

Figure 1. Amplitude of the DFT of response.

in the FDD method we just use the values of the DFTs at
each mode of the structure (i.e., DFTs associated with natural
frequencies). In the sequel, we just examine the discrete
frequency associated with a particular mode, and the frequency
variable is designated p which is assumed to correspond to
the mth mode. Thus, if this mode is excited properly, |X (p)|
will exhibit a peak in the amplitude spectrum of the DFT, as
illustrated in figure 1. |X (p)| and its real and/or imaginary
parts are, in practice, large in magnitude compared to the other
terms in the parentheses. Therefore, the difference between
|X̃(p)| and |X (p)| is small enough to be negligible.

Regarding the influence of the TSE on the phase of
the DFT of x̃(n), two sources of phase distortion must be
examined. One is due to the two terms in the parentheses on
the right-hand side of equation (13). Herein we call the phase
distortion contributed by these terms ‘phase error’. The second
is due to the term ej 2π ·2·p

N outside of the parentheses. Here we
call 2π ·2·p

N the ‘phase shift’. For the first source, consider the
part in the parentheses as the sum of three vectors in a complex
plane. As was discussed before, the vector X (p) is very large
in magnitude, and the other two terms are relatively small.
Therefore, the phase error caused by these two terms will be
small when the delay is not very significant. However, the
impact of the phase shift is significant and cannot be ignored.

Based on the above discussion, for a particular mode of
the structure, equation (13) can be approximated as

X̃(p) ≈ X (p)ej 2π ·2·p
N . (15)

In general, if the time shift between the two signals is �n, the
phase error between the two DFTs will be 2π ·�n·p

N , which can
be rearranged as

2π · �n · p

N
= 2π · �n · p

N
·� f

� f
= 2π fm

�n

fs
= ωmδt . (16)

Note that the pth frequency point is associated with the mth
natural frequency of the structure, ωm . � f is the frequency
resolution of the DFT, and �n

fs
is the TSE δt which could be a

non-integer time step shift.
Based on equations (15) and (16), the DFT of the response

x̃i(t) at the mth mode can be expressed as

X̃ i (p) ≈ Xi (p)ejωmδti . (17)

Equation (17) suggests that, in practice, the TSE not only
introduces a phase shift of ωmδti in the frequency domain, but

also introduces an error in the amplitude and an error in the
phase (other than the phase shift of ωmδti ), which is reflected
by the symbol of ‘≈’ in equation (17). However, these two
errors are small enough to be negligible when the TSE is not
very significant. Thus, we conclude that the main impact of the
TSE on the frequency domain representation lies in the phase
shift caused by the term of ejωmδti in equation (17).

Using equation (17) we will consider the impact of the
TSEs on the identified mode shapes. To facilitate the analysis,
let us rearrange the CSD matrix at the mth natural frequency in
equation (2) as

G(ωm) = G(p)

=

⎡
⎢⎢⎢⎢⎢⎣

X1(p)
...

Xi (p)
...

Xn(p)

⎤
⎥⎥⎥⎥⎥⎦

[ X∗
1(p) · · · X∗

i (p) · · · X∗
n(p) ] . (18)

In addition, we can replace the SVD in the traditional FDD
method with an eigenvalue decomposition because the mode
shapes are only related to the left singular decomposition
matrices. The SVD of a CSD matrix at ω = ωm can be
calculated by means of solving an eigenvalue problem [23] as
follows

G(ωm)G∗(ωm) = UΣ2U∗ = UΣΣ∗U∗. (19)

Therefore, let
G(ωm) = UΣ (20)

where Σ and U denote the singular value matrix and the left
singular decomposition matrix, respectively. Σ is a diagonal
matrix. Herein the first column of U, an estimate of the mth
mode shape, is designated U1. As in equation (18), the CSD
matrix of the responses with TSEs is written as

G̃(ωm) = G̃(p) =

⎡
⎢⎢⎢⎢⎢⎣

X̃1(p)
...

X̃ i(p)
...

X̃n(p)

⎤
⎥⎥⎥⎥⎥⎦

× [ X̃∗
1(p) · · · X̃∗

i (p) · · · X̃∗
n(p) ] . (21)

Extending equation (17) to multiple sensors, each having a
different TSE, and substituting the results into equation (21)
yields

G̃(ωm) ≈ PG(ωm)P∗ (22)

where P, in the sequel, is called the time synchronization error
matrix, and is expressed as

P = [ eiωmδt1 · · · eiωmδti · · · eiωmδtn ] . (23)

To identify the mode shapes, an eigenvalue decomposition
is performed on G̃(ωm)G̃∗(ωm) as in equation (19). From
equations (22) and (20), G̃(ωm)G̃∗(ωm) can be expressed as

G̃(ωm)G̃∗(ωm) ≈ PG(ωm)P∗(P∗)∗G∗(ωm)P∗

= PUΣP∗PΣ∗U∗P∗. (24)
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a b

Figure 2. Adjusted first mode shape of a simply supported beam. (a) 1st identified mode shape and (b) 1st AMS after sign adjustment.

Because Σ and P are diagonal matrices, equation (24) can be
rearranged as

G̃(ωm)G̃∗(ωm) ≈ PUP∗ΣΣ∗PU∗P∗ (25)

and equation (25) is rewritten as

G̃(ωm)G̃∗(ωm) ≈ ŨΣΣ∗Ũ∗. (26)

Therefore, Ũ is the left singular decomposition matrix of
G̃(ωm)

Ũ ≈ PUP∗. (27)

According to the FDD method, the first column of Ũ is an
estimation of the mth mode shape, designated Ũ1, and it can
be expressed in terms of U1 as

Ũ1 =

⎡
⎢⎢⎢⎢⎢⎣

eiωmδt1−iωmδt1 U1,1
...

eiωmδti −iωmδt1 Ui,1
...

eiωmδtn−iωmδt1 Un,1

⎤
⎥⎥⎥⎥⎥⎦

. (28)

To normalize this mode shape Ũ1, each component is divided
by the reference component (say, the r th component) as

Ũ1 ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

eiωm δt1−iωm δt1 U1,1

eiωm δtr −iωm δt1 Ur,1

...
eiωm δti −iωm δt1 Ui,1

eiωm δtr −iωm δt1 Ur,1

...
eiωm δtn−iωm δt1 Un,1

eiωm δtr −iωm δt1 Ur,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

eiωm (δt1−δtr ) U1,1

Ur,1

...

eiωm (δti −δtr ) Ui,1

Ur,1

...

eiωm (δtn−δtr ) Un,1

Ur,1

⎤
⎥⎥⎥⎥⎥⎥⎦

(29)

where Ũ1 denotes the mth mode shape identified from the
response with TSEs, and Ui,1 denotes the i th mode shape
component that would be identified using synchronized data.
δtr is the TSE of the reference (or r th component).

From equation (29), it is clear that the presence of TSEs
introduce a phase shift to each of the mode shape components,
which is reflected in the term eiωm (δti −δtr ) for the i th component.
In addition, the TSEs introduce errors in the amplitude and the
phase of each mode shape component, which is reflected in the
use of ‘≈’.

Note that this analysis evaluates the errors in the identified
mode shapes when the FDD method is applied. The errors
due to TSEs may have a different impact on the identified
mode shapes when using other modal identification techniques.
However, when the FDD method is used, the main source of
error in the identified mode shapes is the phase shift present in
each component in equation (29). In practice, other sources of
error are negligible when typical TSEs are considered.

From equation (29), the non-negligible phase shift in the
i th component is equal to ωm(δti − δtr ). Note that the value
of this error is based both on the TSEs and on the value of
natural frequency ωm . Therefore, higher order modes will
exhibit larger phase shifts and larger distortions.

Based on this analysis, it is possible to estimate the
acceptable TSE to avoid distortion in a given structural mode.
If the phase shifts are small enough to keep the phase of the
components of the normalized Ũ1 in the same region ([ − π

2
π
2 ]

or [ π
2

3π
2 ]) as the normalized U1, the signs of mode shape

components will not be changed. However, if the phase shift
of one component in the normalized Ũ1 is large enough to
force the phase of this component into another range, for
instance, from [ − π

2
π
2 ] to [ π

2
3π
2 ], the sign of this mode

shape component will be different from the true one, and the
identified mode shape will be distorted.

Because it is difficult to estimate TSEs between wireless
sensors, especially for complex WSN configurations, one
cannot easily obtain information on the phase shifts of mode
shape components and thus cannot directly correct the distorted
mode shapes. Alternatively, if one neglects phase information
and assumes all the mode shape components have the same
sign, the modified mode shapes can be used for damage
detection. These modified mode shapes are the absolute
values of the distorted mode shapes, referred to herein as
absolute mode shapes (AMS). The distortion of identified
mode shapes caused by TSEs and the capability of this strategy
are illustrated in figure 2 using an example of a simply
supported beam. This strategy is simple, but very useful
when paired with an appropriate damage detection technique.
It facilitates effective damage detection based on a WSN
with large TSEs, and thus significantly prolongs the time
synchronization period.

6
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a b

Error Error

Figure 3. Comparison between AMSs and true mode shapes. (a) 2nd AMS after sign adjustment and (b) 3rd AMS after sign adjustment.

4. Problem formulation: damage detection strategies
based on the distorted mode shapes and the AMSs

Following the above discussion of the impact of TSEs on the
identified mode shapes, two approaches may be considered to
accommodate these effects in the damage detection problem.
One approach is to directly employ the distorted mode shapes,
and the other is to apply the modified mode shapes (the AMS)
for damage detection. The following approaches have been
considered.

4.1. Damage detection using distorted mode shapes

Although the identified mode shapes may be distorted,
recognizing that the signs of some mode shape components
are changed, the classical flexibility difference method [20] is
still applicable with distorted mode shapes. From equation (4),
it is observed that each diagonal component in the flexibility
matrix is a sum of n squared terms. Thus, if the signs of these
mode shape components are incorrect, the diagonal elements
of the constructed flexibility matrix F from these mode shapes
will still be equal to the true values. Therefore, the damage
indicators extracted from the diagonal entries of the flexibility
matrix are not affected by TSEs when the distorted mode
shapes are used to assemble flexibility matrices.

4.2. Damage detection using absolute mode shapes (AMS)

Because the classical flexibility difference method can be used
with the distorted mode shapes, it can also be used with the
AMSs. However, the method itself cannot localize damage
to exact members. To achieve this goal, the ASH flexibility-
based method is employed. Here equation (5) is still used to
construct the ASH flexibility. However, the ASH mode shape
is constructed by AMSs as

Rr = [ 1
l1
|ϕ1,r | 1

l2
(|ϕ2,r | − |ϕ1,r |) · · · 1

li
(|ϕi,r | − |ϕi−1,r |)

· · · 1
ln
(|ϕn,r | − |ϕn−1,r |) ]T (30)

where |ϕi,r | is the AMS component. The damage indicators are
extracted from the difference in the ASH flexibility matrices
before and after damage in the same way as in the original
ASH flexibility-based method. The feasibility of applying the
AMSs to the ASH flexibility-based method [21] is analyzed.

Figure 4. FEM of simply supported beam.

(1) Due to the sign adjustment in the AMSs, the magnitudes
of the ASH mode shape components calculated from
the AMSs are equal to those calculated from the real
mode shapes, except for ASH mode shape components
corresponding to elements near the nodes of modes,
which will introduce some errors in the constructed ASH
flexibility matrix. This effect is shown in figure 3 which
displays the AMSs of a simply supported beam. For
higher modes which have more nodes, the effect is greater.
Fortunately, higher modes result in smaller contributions
toward the ASH flexibility matrix.

(2) Although the signs of some components in ASH mode
shapes calculated from the AMSs are not correct
compared with the real ASH mode shapes, it is the same
case for both the intact and damaged states.

Therefore, the ASH flexibility-based method is still effective
when the AMSs are available. Because this method determines
local ASH changes caused by damage, the damage indicators
extracted from the difference in the ASH flexibility matrices
constructed using the AMSs before and after damage are able
to localize damage to exact elements.

5. Numerical simulations

5.1. Simply supported beam

To validate the performance of the proposed strategy, a simply
supported beam is first studied numerically. This beam is
assumed to be made of aluminum with dimensions 2080 mm×
20 mm × 20 mm. Young’s modulus, the mass density and
Poisson’s ratio of the material are 70 Gpa, 2700 kg m−3

and 0.3, respectively. The beam is modeled using 26 beam
elements, each of 80 mm long, with 27 nodes, as shown in
figure 4. The first five analytical natural frequencies are shown
in the first column of table 2.

Assume that energy dissipation is included as proportional
viscous damping with a magnitude of 1% of critical in each

7
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a b c d

e f g h

Figure 5. Influence of TSEs on identified mode shapes ((a)–(d)) and modified mode shapes ((e)–(h)). (a) 1st distorted mode, (b) 2nd distorted
mode, (c) 3rd distorted mode, (d) 4th distorted mode, (e) 1st AMS, (f) 2nd AMS, (g) 3rd AMS and (h) 4th AMS.

Table 2. First five natural frequencies of simply supported beam (Hz). (Note: δtmax represents the maximum sampling delay between wireless
sensors.)

Identified results

Analytical δtmax = 10/1152 s δtmax = 20/1152 s δtmax = 50/1152 s

Intact Damaged Intact Damaged Intact Damaged Intact Damaged

1 10.67 10.49 10.69 10.41 10.69 10.41 10.69 10.41
2 42.59 40.54 42.47 40.50 42.47 40.50 42.47 40.50
3 95.54 89.40 95.06 89.44 95.06 89.44 95.06 89.44
4 169.13 160.12 169.88 159.75 169.88 159.75 169.88 159.75
5 262.84 255.36 262.13 254.53 262.13 254.53 262.13 254.53

mode of the structure. A band-limited white noise is applied
vertically at all nodes to simulate ambient vibration. Simulated
acceleration responses in the vertical direction are computed
using Newmark-Beta integration. It is assumed that only the
acceleration time history is recorded and the sampling rate
is 1152 Hz. To simulate practical field conditions, Gaussian
white noise with the mean value of zero and an RMS (root
mean square) equal to 5% of the RMS of the responses is added
to the acceleration responses.

5.1.1. Influence of time synchronization error on identified
mode shapes. The intact structure is considered here. Errors
in synchronization of the simulated wireless sensors are
simulated by delaying acquisition of the response. A delay
vector is generated randomly for the various sensor nodes, and
the maximum value is set to 50/1152 s (50 time steps). The
delay imposed on the acquisition of responses at each node is
listed in table 3.

Using the FDD method, the first four mode shapes are
identified using the simulated data with delays. These results
are shown in figures 5(a)–(d). In each figure, the solid line
represents the identified mode shape, and the dashed line
represents the analytical mode shape. Obviously, the identified
mode shapes are severely distorted. Several components

deviate significantly from the corresponding analytical modes.
The amplitudes appear to be almost the same as the analytical
modes, but several components have incorrect signs. This
result is consistent with the discussion in section 3.

Using the strategy proposed in section 3, the associated
AMSs are obtained and are presented in figures 5 (e)–(h). Note
that these agree well with the absolute values of the analytical
modes.

5.1.2. Damage localization. Damage is simulated as a
50% reduction of Young’s moduli in elements 4 and 22.
Three different cases are studied with random delays having
maximum values of 10/1152 s, 20/1152 s and 50/1152 s,
respectively. The first five natural frequencies identified in
these three cases are shown in table 2. It is demonstrated
empirically that TSEs in a WSN do not affect the identification
results of natural frequencies, reinforcing the conclusions of
prior researchers [14].

Both the ASH flexibility-based method and the classical
flexibility difference method are employed here to localize
damage in the simply supported beam. The procedure for
localizing damage using the AMSs with the ASH flexibility-
based method is as follows. The modal parameters are
identified using the FDD method, and then the identified mode

8
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a b

Figure 6. Damage localization results with maximum sampling delay of 10/1152 s. (a) Classical flexibility difference method and (b) ASH
flexibility-based method.

Table 3. Simulated delays in data acquisition. (Note: ‘44’ means acquisition of the data is delayed 44 time steps (i.e., 4/1152 = 0.0382 s).)

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13

Delay 44 29 42 21 17 44 0 27 9 8 6 36 48

N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24 N25

Delay 50 30 29 16 49 5 36 27 20 10 35 2

Figure 7. Damage localization results with maximum sampling
delay of 20/1152 s.

shapes are used to obtain the AMSs. Next, the ASH flexibility
matrix is constructed using the AMSs and natural frequencies,
and the maximum absolute values of the components in each
column of the difference between ASH flexibility matrices
before and after damage are extracted as damage indicators.
In each of the three cases, a different number of modes
(three, four and five) are used to assemble the ASH flexibility
matrix to explore the impact. Similar results are obtained
with three, four or five modes, and thus representative results
corresponding to using five modes are presented in figures 6–
8. When the maximum sampling delays (designated δtmax)
are 10/1152 and 20/1152 s, the results demonstrate that the
ASH flexibility-based method can easily localize the damage
to the exact elements by observing ‘step and jump’ in a plot
of damage indicators versus element number. When δtmax

reaches 50/1152 s, the damage localization results are not
as good as in the other two cases. This outcome occurs
because, as δtmax increases, the errors in the magnitude of the
identified mode shapes increase, which reduces the accuracy of
the damage detection results. Based on the above observation,

Figure 8. Damage localization results with maximum sampling
delay of 50/1152 s.

the maximum sampling delay that the proposed strategy can
tolerate is 50/1152 s (43.400 ms) for this structure, in terms
of obtaining useful information to localize damage. If δtmax

continues to increase, the errors will yield poor results.
The damage location results using the distorted mode

shapes with the classical flexibility difference method for
the first case are also presented in figure 6 for comparison.
Although there are peaks around the two damage sites, it is
difficult to precisely determine the damaged elements.

5.2. Planar truss

A 14-bay planar truss structure simply supported at the
ends (see figure 9), is also considered to illustrate the ASH
flexibility-based method using the AMSs. The cross-sectional
area of each member is 1.122×10−4 m2. Young’s modulus, the
mass density and Poisson’s ratio of the material are 2×1011 Pa,
7850 kg m−3 and 0.3, respectively. The model has 28 nodes
and 53 members. The numbering of elements and nodes of

9
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Figure 9. 14-bay planar truss.

Figure 10. Results using ASH flexibility when δtmax is 20/1152 s.

Figure 11. Results using ASH flexibility when δtmax is 50/1152 s.

the FEM is shown in figure 9. Lumped masses of 0.5 kg are
applied on the 1st and 28th nodes, and 10 kg on all other nodes.

Simulation of a modal experiment is similar to that of
the above numerical example. A band-limited white noise is
applied in the horizontal and vertical directions at all nodes to
excite the structure. The sampling frequency of acceleration
response is 1152 Hz and the sampling duration is 60 s. The
noise added to the response at each node is prescribed to
have an RMS value equal to 5% of that of the corresponding
response.

Damage is simulated as a 50% reduction in the cross-
sectional area of the following members: members 16, 43 and
29 in the 4th bay, and members 22, 49 and 35 in the 10th
bay. Several cases with different δtmax (20/1152, 50/1152,
200/1152 and 300/1152 s) are studied. The simulated
acquisition delays representing TSEs are generated randomly
as above. The identified frequencies do not change for the
different cases. The first four identified natural frequencies are
8.72, 28.97, 42.75 and 57.66 Hz.

To use the ASH flexibility-based method, the truss is
considered as a beam with 14 elements. Only the vertical

Figure 12. Results using ASH flexibility when δtmax is 200/1152 s.

Figure 13. Results using ASH flexibility when δtmax is 300/1152 s.

responses of the nodes at lower chords are used for identifying
mode shapes. Different numbers of AMSs (one through four)
are used to construct the ASH flexibility matrix. Similar results
are obtained using a different number of AMSs. Thus, for each
case, only representative damage localization results using the
first four modes are presented, as shown in figures 10–13.
When the maximum sampling delay is less than 200/1152 s,
the damaged regions are identified accurately. As δtmax is
increased to 300/1152 sec, the larger amplitude errors in
identified mode shapes prohibit good damage localization
results.

6. Experimental validation

To further demonstrate the effectiveness of the proposed
strategy in practical applications, experimental tests are
conducted on a steel cantilever beam at the Structural Control
and Earthquake Engineering Laboratory at Washington
University.

The beam is 108 inches long, 3 inches wide and
0.25 inches thick, as shown in figure 14. The numbers in the
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Table 4. Actual sampling frequency of each sensor board.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

f s 280.72 280.23 286.43 298.44 293.61 277.30 300.45 294.69

8

7

6

5

4

3

2

1

Figure 14. Damaged cantilever beam and sensor placements in
experiment.

circles in this figure represent the element numbers. It is fixed
to a shake table. Eight Intel Imote2 sensor platforms (IPR2400)
with accelerometer boards and battery packs are used in these
tests. Each Imote2 board is equipped with an integrated SRAM
with 256 kB, an external SDRAM with 32 MB, an XScale
CPU capable of running at the speed of up to 614 MHz,
and an 802.15.4 radio (CC2420) as well as an antenna using
2.4 Hz5. Sensors are deployed uniformly along the beam to
measure acceleration responses, as shown in figure 14. Before
deploying the wireless sensors, the ‘remotesensing’ application
developed by UIUC [24] is first uploaded to the Imote2 board
of each sensor. For data collection, the sampling frequency of
acceleration responses is set to 280 Hz, the number of sampling
points is 12 288, and the size of each frame of data is 512. The
wireless sensors transmit data packets to the PC base station
through a gateway mote. The gateway mote consists of an
Imote2 board and an interface board, and is connected to a PC
with a USB cable. The sensors here are within a single hop of
the base station.

The beam is excited along the weak axis of bending using
an impact. The acceleration response data in this direction is
collected at each node, and is transmitted to the PC. Then the
PC performs modal identification and damage detection using
MATLAB. Damage in the beam is simulated by adding a pair
of thin, symmetric steel plates in element 4. They are 13.5 inch
long, 3.625 inch wide and 0.0625 inch thick. Here the length
of the added plates is equal to that of one element. In fact,
adding mass here not only changes the mass of the structure,

5 ITS400 Imote2 Basic Sensor Board, Crossbow Technology, Inc.

Table 5. Identified natural frequencies of cantilever beam before and
after damage.

Order Intact (Hz) Damaged (Hz) Percentage change (%)

1 0.5864 0.5865 0.02
2 3.9580 4.1055 3.73
3 11.4341 11.4367 0.02

but also changes (increases) the stiffness of the structure, and
accordingly, the flexibility. Modal experiments are performed
on the intact and damaged beams, sequentially.

The acquired data from each sensor node is formatted in
two columns. The first column represents the time stamps and
the second column represents the acceleration response data.
The actual sampling frequency of each wireless accelerometer
node is calculated from the time stamps of each frame of
data. From these tests, it is observed that the variation
in sampling frequencies over time is very small, and the
maximum deviation percentage is less than 0.04%. The
average value of these sampling frequencies of all frames of
data is taken as the sampling frequency of this sensor node.
From the calculated sampling frequencies of all sensor nodes
in one test, as shown in table 4, the sampling frequencies
deviate from 280 Hz varying from sensor to sensor, and
the maximum deviation percentage from 280 Hz is 7.30%.
Therefore, a resampling operation has to be performed on the
raw data before further processing the data. In this study, the
maximum among the actual sampling frequencies is taken as
the resampling frequency.

Because FTSP (FTSP is selected because it is a state-
of-the-art protocol as well as the de facto standard time
synchronization protocol in WSNs) has been embedded in
the application, the resampled measured data can be taken as
synchronized. First, the synchronized data is used for modal
identification and damage localization. The FDD method
is used to identify modal parameters. Table 5 presents the
identified natural frequencies of the cantilever beam before
and after damage. As we expect, the identified mode shapes
are not distorted, as indicated by the black lines with squares
in figure 16. The damage localization results using both
the ASH flexibility-based method and the classical flexibility-
based method are plotted in figure 15. From figure 15(a), the
damage indicators are classified into two clusters, and the jump
point between them suggests that element 4 is damaged, which
is consistent with the actual damage scenario. When using
the classical flexibility-based method with the distorted mode
shapes, there is a peak around the damaged element, but it is
difficult to determine the exact damaged element, as shown in
figure 15(b).

To simulate the TSEs in the WSN, an acquisition delay
is incorporated into each sensor’s resampled data. Three
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a b

Figure 15. Damage localization results for cantilever beam using two flexibilities when the data is synchronized. (a) Maximum values in
difference matrix of ASH flexibility and (b) diagonal elements of difference matrix of deflection flexibility.

Figure 16. Identified modal parameters when δtmax is 20/280 s. (a) 1st mode of intact beam, (b) 2nd mode of intact beam, (c) 3rd mode of
intact beam, (d) 1st mode of damaged beam, (e) 2nd mode of damaged beam and (f) 3rd mode of damaged beam.

cases with different δtmax (20/280, 30/280 and 40/280 s) are
considered here, and different random delays are considered
for the intact and damaged cases. For each case, both methods
are used to localize damage.

The identified mode shapes for the case with a δtmax of
20/280 s are plotted in figure 16. In general, they are severely
distorted. However, although the signs of some mode shape
components are incorrect, their amplitudes are approximately
correct, which verifies the discussion in section 3. To detect
damage, the proposed strategy is first used to obtain the
AMSs, and then the ASH flexibility matrix is constructed using
the AMSs. Next, the damage indicators based on the ASH
flexibility constructed by the first three modes are extracted.
These values are presented in figure 17(a). The damage
indicator of the fourth element exhibits a jump between two
clusters of damage indicators, and thus clearly the damage of
element 4 is identified.

The identified modal parameters and the damage
localization results are presented in figures 18 and 19,
respectively, for the case in which the δtmax is 30/280 s.
Comparing figures 16 with figure 18, it is found that the
distortion of the identified mode shapes in the latter is more
severe, as the time synchronization errors increase. The
damaged element can be identified using the ASH flexibility-
based method with the first three modes, as shown in
figure 19(a).

When δtmax reaches 40/280 s, the identified mode shapes
are severely distorted. The damage localization results when
the first mode is used are shown in figure 20. Obviously, the
accuracy of damage localization is reduced due to the relatively
large error in amplitude caused by the TSEs.

Based on the observations discussed above, two main
conclusions can be drawn. First, the proposed strategy is
tolerant of time synchronization errors of up to 30/280 s
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a b

Figure 17. Damage localization results for cantilever beam using
two flexibilities when δtmax is 20/280 s. (a) Maximum values in the
difference matrix of ASH flexibility and (b) diagonal elements of the
difference matrix of deflection flexibility.

for this beam. However, using traditional damage detection
methods, a TSE of less than 4/280 s hinders correct modal
identification and damage detection results. Thus, the proposed
strategy facilitates prolonging the time re-synchronization
period significantly. The second conclusion is that the ability
to perform damage localization with the ASH flexibility-
based method using AMSs is more effective than the classical
flexibility-based method with distorted mode shapes.

7. Conclusions

Time synchronization errors (TSEs) attributed to clock drifts
and clock offsets in a WSN have an impact on both the
amplitudes and phases of the identified mode shapes. The
largest error in the mode shapes, and the one that must
be considered in practice, is the significant phase shift at
each sensor node. TSEs can be minimized by frequently

a b

Figure 19. Damage localization results for cantilever beam using
two flexibilities when δtmax is 30/280 s. (a) Maximum values in the
difference matrix of ASH flexibility and (b) diagonal elements of the
difference matrix of deflection flexibility.

implementing time synchronization protocols. However, this
requires a significant amount of energy. Here we alleviate
this technical challenge from a new perspective. A damage
localization strategy that is tolerant of TSEs is proposed
to reduce the time synchronization frequency. First, the
distortion in the identified mode shapes caused by the TSEs
is investigated, and then a strategy is developed for modifying
the distorted mode shapes for use in damage detection.
Then the modified mode shapes are utilized with the ASH
flexibility-based damage detection method to perform damage
localization at the member level. Numerical simulation
results of a simply supported beam and a planar truss
demonstrate that the aforementioned proposed strategy is able
to tolerate significant time synchronization errors, and thus can
relax the requirement of frequent sensor synchronization in
WSNs without sacrificing accuracy in modal identification and
damage localization results. The use of the proposed approach
that allows for prolonging the time re-synchronization period
has been validated through experimental tests in the laboratory.

Figure 18. Identified modal parameters when δtmax is 30/280 s. (a) 1st mode of intact beam, (b) 2nd mode of intact beam, (c) 3rd mode of
intact beam, (d) 1st mode of damaged beam, (e) 2nd mode of damaged beam and (f) 3rd mode of damaged beam.
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a b

Figure 20. Damage localization results for cantilever beam using
two flexibilities when δtmax is 40/280 s. (a) Maximum values in the
difference matrix of ASH flexibility and (b) diagonal elements of the
difference matrix of deflection flexibility.
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