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Abstract: The response surface (RS) method based on
radial basis functions (RBFs) is proposed to model the
input–output system of large-scale structures for model
updating in this article. As a methodology study, the com-
plicated implicit relationships between the design param-
eters and response characteristics of cable-stayed bridges
are employed in the construction of an RS. The key issues
for application of the proposed method are discussed,
such as selecting the optimal shape parameters of RBFs,
generating samples by using design of experiments, and
evaluating the RS model. The RS methods based on
RBFs of Gaussian, inverse quadratic, multiquadric, and
inverse multiquadric are investigated. Meanwhile, the
commonly used RS method based on polynomial func-
tion is also performed for comparison. The approx-
imation accuracy of the RS methods is evaluated by
multiple correlation coefficients and root mean squared
errors. The antinoise ability of the proposed RS methods
is also discussed. Results demonstrate that RS methods
based on RBFs have high approximation accuracy and
exhibit better performance than the RS method based on
polynomial function. The proposed method is illustrated
by model updating on a cable-stayed bridge model. Sim-
ulation study shows that the updated results have high
accuracy, and the model updating based on experimen-
tal data can achieve reasonable physical explanations. It

∗To whom correspondence should be addressed. E-mail:
oujinping@dlut.edu.cn.

is demonstrated that the proposed approach is valid for
model updating of large and complicated structures such
as long-span cable-stayed bridges.

1 INTRODUCTION

In the past two decades, considerable attention has
been attracted to structural health monitoring (Adeli
and Jiang, 2009; Hampshire and Adeli, 2000; Ou, 2004;
Park et al., 2007; Ou and Li, 2010; Xia et al., 2011),
structural system identification (Jiang and Adeli, 2005;
Adeli and Jiang, 2006; Jiang et al., 2007; Gangone
et al., 2011; Jiang and Adeli, 2008a, b; Adeli and
Kim, 2009), and damage identification (Jiang and Adeli,
2007; Li et al., 2011a; Li et al., 2011b; Jafarkhani and
Masri, 2011; Talebinejad et al., 2011; Qiao et al., 2012;
Xiang and Liang, 2012), which aim at developing a
mathematical model, monitoring the performance of
structures and assessing their health conditions. An ac-
curate and effective numerical model is very impor-
tant for parameter identification, damage detection, and
condition assessment of engineering structures. How-
ever, it is difficult to develop an accurate numerical
model of a structure due to modeling errors caused
by the difference between structural design and con-
struction, the uncertainties of loads and environmen-
tal factors, and complicated boundary conditions. How-
ever, structural finite element model (FEM) updating

C© 2012 Computer-Aided Civil and Infrastructure Engineering.
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Response surface method based on radial basis functions for modeling large-scale structures in model updating 211

provides an effective way to obtain a precise numerical
model in each phase during the service life of a struc-
ture. Based on the field-measured data and the opti-
mization theory, FEM updating techniques achieve a
better agreement in output responses between numer-
ical model predictions and measured results in the field.
Mottershead and Friswell (1993) presented a compre-
hensive literature review on model updating techniques.

When using traditional model updating methods, an
initial FEM of the structure is first established based
on acknowledged information and then numerous itera-
tions are performed on the entire FEM in the optimiza-
tion process with a large amount of computation. The
situation becomes even worse for large-scale structures
with numerous degrees of freedoms. To alleviate this
problem, the response surface (RS) method has been
employed to generate an equivalent model to replace
the FEM in model updating and damage identification
process (Fang and Perera, 2009; Faravelli and Casciati,
2004; Horta, 2010). The substitution model is referred
to as “meta-model” or “surrogate model” (Modak et al.,
2002).

The basic idea of the RS method is to model a struc-
ture by seeking an explicit function to approximate the
implicit relationship between the input parameters and
output responses of the structure. The model estab-
lished by the RS method is much more efficient in terms
of computation amount and speed than the traditional
FEM. The implementation of the RS method makes
FEM updating promising in its application in the real-
world structures. Structural FEM updating based on
the RS method mainly contains two parts: establishing
the RS models and model updating based on the con-
structed RS models.

Efforts have been witnessed for the RS method in-
volved into FEM updating during the past 10 years.
Marwala (2004) proposed the RS method for structural
model updating by using multilayer perception to ap-
proximate the relationship between system parameters
and structural responses. Fang and Perera (2011) pro-
posed a damage identification method achieved by RS-
based model updating using D-optimal designs. Deng
and Cai (2010) updated a bridge model by using the ge-
netic algorithm for optimization with the RS method for
modeling the structure. The RS model was constructed
by a quadratic polynomial (QP) function based on the
experimental samples generated by central composite
designs (CCDs). Results of numerical simulations and
the application of an existing bridge showed that this
method worked well and achieved reasonable physical
explanations for the updated parameters. When updat-
ing a bridge FEM, Ren et al. (2010, 2011) also employed
the RS method based on QP functions to model the
bridge. They pointed out that it is still challenging to ap-

ply the RS method in updating the models of complex
civil engineering structures where the relationship be-
tween the design parameters and the output responses
is complicated and a large number of updated param-
eters are involved. Through a comprehensive literature
review in this area, we found that almost all the reported
research about the RS method for model updating is
based on polynomial functions, but that based on ra-
dius basis functions (RBFs) is not much studied, which
is more suitable for multivariate and complicated prob-
lems. Recently, Qin et al. (2011) updated the FEM of
an airplane wing by using the RS method of a Gaussian
(GA) function.

To bridge the gap in the literature, this study pro-
posed the RS method based on RBFs for modeling
large-scale structures in model updating. Herein, RBFs
are used as the approximate function to model the com-
plex and implicit relationship between design parame-
ters and output responses. First, the RS method based
on polynomial functions is briefly reviewed. Second, the
RS method based on RBFs is proposed. In particular,
some key issues which significantly affect the approxi-
mation accuracy of the RS method are discussed, such
as the shape parameter of RBFs, selection of the in-
put and output parameters, selection of the observed
data points, and evaluation criteria. Third, the proposed
method is demonstrated on a scaled cable-stayed bridge
model.

2 THE RS METHOD

The RS method as a comprehensive statistical and ex-
perimental technology has been widely used to predict
the relationship between the input and output of com-
plicated systems. It can also be considered as the func-
tion fitting or interpolation of the discrete data points,
which obtains the numerical model of the concerned
systems based on the observed samples in the design
space. One feature of this method is to express a com-
plicated implicit function using deterministic formulas.

In this method, the approximate function, design
space, and the quality of experimental samples sig-
nificantly affect the modeling accuracy (Khuri and
Cornell, 1987). In particular, the approximate function
is arguably considered as the most important factor. The
polynomial function has been mostly used as it is contin-
uously derivable and easy for subsequent computation.

2.1 The RS method based on polynomial functions

A polynomial function with different orders can be
adopted as an approximate function in the RS method.
The critical step is to properly determine the order and
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212 Zhou, Yan & Ou

cross-terms of the polynomial function. For most prob-
lems, the first-order and second-order polynomial func-
tions are usually used to satisfy modeling precision and
achieve a reasonable amount of calculation (Hill, 1996).
The most used second-order polynomial RS model can
be expressed as

y = β0 +
k∑

i=1

βi xi +
k∑

i=1

βi i x2
i +

∑
i< j

∑
j

βi j xi x j + ε
(1)

where β is the undetermined regression coefficient, x is
the design variable, k is the number of design variables,
and ε is the error term.

The number of unknown coefficients β in the second-
order polynomial RS model is (k+1)(k+2)/2. β can be
obtained by a least squares estimation. It should be
noted that the number of undetermined coefficients of
the polynomial RS model increase exponentially with
the increase of design variables and the polynomial
order, which means that more observed samples and
larger calculation amount are required for the RS
construction.

Theoretically, for simulation of complex problems
such as a nonlinear curved surface, the RS model with
higher-order polynomial functions achieves better
results. However, the number of unknown regression
coefficients and the amount of calculation will sub-
sequently increase significantly, making the cost of
a high-order RS model unacceptable, especially for
multivariable problems.

2.2 The RS method based on RBFs

To overcome the disadvantages of the RS method based
on polynomial function, the RS method based on ra-
dial basis functions (RBFs) is proposed in this section.
RBFs were first proposed by Krige in 1951 in the Krig-
ing method (Krige, 1951). They have been widely stud-
ied since the 1950s and applied in many fields, such
as geodesy, geophysics, surveying and mapping, pho-
togrammetry, remote sensing, signal processing, geogra-
phy, digital terrain modeling, hydrology (Hardy, 1990),
solving elliptic, parabolic, or hyperbolic partial differen-
tial equations (Fornberg and Piret, 2008), and RBF neu-
ral network (Adeli and Karim, 2000; Karim and Adeli,
2002, 2003; Ghosh et al., 2008; Savitha et al., 2009). In
particular, the application of RBFs in the areas of func-
tion approximation and interpolation of scattered data
has attracted considerable attention (Jackson, 1989).
Compared with other approximate functions, RBFs can
achieve a better performance and the advantage be-
comes more obvious for high-order nonlinear problems.
RBFs have been validated to be the best interpola-
tion methods compared to others by using examples of

Table 1
Commonly used RBFs

Name of RBF Expression Abbreviation

Gaussian φ(r) = e−c×r2
(c > 0) GA

Inverse quadratic φ(r) = (r 2 + c2)−1 IQ
Multiquadratic φ(r) = (r 2 + c2)

1
2 MQ

Inverse multiquadratic φ(r) = (r 2 + c2)− 1
2 IMQ

different kinds of scattered data (Frank, 1982). Powell
(1991) presented a good review of the theory of RBF
approximation.

2.2.1 Radial basis function. The definition of RBF pro-
posed by Stein and Weiss (1971) is as follows: if ‖x1‖ =
‖x2‖, the function φ satisfying φ(x1) = φ(x2) is a RBF.
It means that the RBF only depends on the function
r = ‖x‖, where ‖·‖ denotes the Euclidean norm. The
most commonly used RBFs are listed in Table 1, where
c is the shape parameter and r = ‖x − xi‖ is the Eu-
clidean norm.

2.2.2 Modeling of RS method based on RBFs. The RS
method is used to approximate a real-valued function
f (x) based on a finite set of values f = { f1, . . . , fn}
at discrete points X = {x1, . . . , xn} ∈ Rd. Herein RBFs
are chosen to construct the RS model as an approx-
imation of the function. For positive definite RBFs
such as GA, inverse quadratic (IQ), and inverse multi-
quadric (IMQ) functions, the RS model has the general
form:

y = f (x) =
n∑

i=1

λiφ(‖x − xi‖) (x ∈ Rd, xi ∈ X) (2)

where x = {x1, x2, . . . , xk} is the vector of design vari-
ables (k is the number of updating parameters); X is a
given set of known discrete points; φ(r) = φ(‖x − xi‖)
is a RBF; ‖x − xi‖ is the Euclidean distance between
an arbitrary point x and a discrete point xi; and λ =
{λ1, λ2, . . . , λn} is the regression coefficient vector of an
RS model.

For conditional positive-definite RBFs such as mul-
tiquadric (MQ) function, some additional polynomials
and constraint conditions should be adopted for the
modeling of the RS model. The RS model takes the
form

y = f (x) =
n∑

i=1

λiφ(‖x − xi‖) +
∑
α≤γ

bαxα (3)

If α(α ≤ γ ) and
∑n

i=1 λi xα
i = 0, the solution to Equa-

tion (3) is unique, where γ is the order of conditional
positive-definite function; α and bα are the order and
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Response surface method based on radial basis functions for modeling large-scale structures in model updating 213

regression coefficients of the additional polynomials,
respectively.

As can be seen from Equations (2) and (3), the RS
model based on RBFs can be described as a weighted
sum of a radially symmetric basis function based on the
Euclidean distance. It should be noted that the num-
ber of regression coefficients only depends on the ob-
served points, and almost has no relationship with the
dimension of the design variable vector x. Therefore,
the increase of design parameters does not require more
samples. As a result, the calculation efficiency can be
improved and the computational cost significantly re-
duced, which is very important for high dimensional and
multivariate problems.

2.2.3 Selection of the shape parameter c for RBFs. As
shown in Table 1, the shape parameter c is the only
undetermined coefficient in a RBF, which needs to be
specified by the user. It controls the “flatness” of RBFs,
and is employed to adjust the curve shape of RBFs for
achieving a better approximation precision.

The accuracy of approximating functions using RBFs
highly depends on the selection of the shape parame-
ter c (Frank, 1982; Carlson and Foley, 1991; Schaback,
1995). Therefore, selecting an appropriate shape pa-
rameter plays an important role when using RBFs. The
value of the optimal c depends on the number and dis-
tribution of data points, the RBFs, and the precision
of the computation (the condition number of the in-
terpolation matrix) (Rippa, 1999). The shape param-
eter c in the RBFs application can be divided into
constant c (Carlson and Foley, 1991) and variable c
(Kansa and Carlson, 1992; Sarra and Sturgill, 2009). The
variable c-based methods can produce more rational
and accurate results. However, they are more compli-
cated with high computational costs required. There-
fore, the constant shape parameter-based methods have
been widely used due to their simplicity and efficiency.
In most cases, desired accuracy can be achieved with a
constant shape parameter.

As a numerical illustration of the influence of the
shape parameter c on function approximation, the
Peaks function in MATLAB is adapted to be approx-
imated by the RS method based on RBFs. Peaks is a
bivariate function with the following form:

z = f (x, y) = 3(1 − x)2e−x2−(y+1)
2

−10(
x
5

− x3 − y5)e−x2−y2 − 1
3

e−(x+1)2−y2
(4)

It is obtained by translating and scaling Gaussian distri-
bution with three local minimum points and three local
maximum points on the concave and convex continuous
surface, as shown in Figure 1a.

The RS models based on RBFs (GA and MQ) are
developed for the Peaks function by using the pro-
posed method as described in Subsection 2.2.2. Figures
1b–d display the errors distribution of the obtained RS
approximation with different shaped parameters c using
the same set of data points. It is clear that the magni-
tude and distribution of approximation errors are obvi-
ously different from each other. If a small value c = 0.5
is used, the major error distributes at the vicinity near
the edge where the surface is supposed to be flat. Using
a large value c = 10, the error concentrates around the
maximum or minimum points of the surface. Using the
value of c = 1, a more uniform distribution and small
errors are achieved. The above discrepancy is caused
by the difference in the shape of the approximation
function.

To investigate the influence of different RBFs and
different numbers of samples on selecting the shape pa-
rameter c, the four RBFs were used to approximate the
Peaks function with various amounts of samples. From
Figure 2, it can be observed that: (1) the approximation
errors gradually change with the variation of the shape
parameter c; (2) RBFs almost have the same minimum
error, but the distribution of error is different; and (3)
as the number of the observed data points increases,
the approximation error is reduced dramatically and a
wider range of c can be used.

It can therefore be concluded that the selection of
optimal c should take account of the approximation
RBFs and properties of observed data points. It is sug-
gested that a preanalysis with different approximation
functions and the shape parameter c as a continuous
variable in a certain range is first conducted, and an
optimal value of c can be obtained by observing the
value and distribution of approximation errors.

3 SAMPLING AND EVALUATION CRITERION
OF THE RS METHOD

3.1 Sample generating based on design of experiment

The selection of samples is one of the key issues for
the RS approximation, significantly affecting the accu-
racy and the computational cost of an RS to be con-
structed. Based on the mathematical statistics, design
of experiment (DOE) can efficiently and reasonably
choose the observed samples in the global design space.
With the increase of model complexity, DOE has be-
come an essential part of the modeling process. Nu-
merous methods of DOE were developed for differ-
ent purposes. Some methods were especially proposed
for the RS method, such as CCD (Montgomery, 2006),
D-optimal design, and Box-Behnken design of DOE.

 14678667, 2013, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1467-8667.2012.00803.x by M

issouri U
niversity O

f Science, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



214 Zhou, Yan & Ou

(a) The surface of Peaks  (b) c=0.5     (c) c=1     (d) c=10

Fig. 1. The Peaks surface and the error distribution of the GA RS approximation.
(a) Peaks function, (b) c = 0.5, (c) c = 1, and (d) c = 10.
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Fig. 2. RMS error as a function of c for the GA and MQ RS approximation defined on various amount of data points (n is the
number of data points).

The CCD is adopted in this study to generate sam-
ples. The CCD samples (assume n-factor) generally
consist of three components. (1) Cube points: the 2n

cube points come from a two-level full factorial de-
sign, which takes all the possible combinations of the
two-level values of the parameters. (2) Axial points:
the 2n axial points are located on a hyper-cube with
the radius α. An axial point is defined by the rule that
one of the parameters has the minimum or maximum
value and all other parameters have their mid-levels. (3)
Center point: a single point in the center is created by a
nominal design. The nominal design consists of one ex-
periment where all parameters are set to their nominal
values.

It should be noted that the samples for RS model-
ing and accuracy evaluation are different. When select-
ing samples for modeling, high computation efficiency
and low experiment cost are required; when selecting
the samples for accuracy evaluation, a uniform and ran-
dom distribution in the design space of input parameters
is required. In this study, the samples for RS modeling
are generated by the CCD method, and uniformly dis-
tributed pseudo-random samples are utilized for preci-
sion evaluation.

3.2 Evaluation criterion of the RS method

Many RS methods with different approximate functions
and various optimization strategies are widely used in
the engineering fields. Therefore, it is necessary that
some evaluation criteria should be adopted to evaluate
the validity and accuracy of the RS application, and the
commonly used evaluation indexes are described in this
section.

3.2.1 Multiple correlation coefficient R2. The multiple
correlation coefficient is used in a multiple regression
analysis to assess the quality of the prediction of the de-
pendent variable. It is an estimate of the combined in-
fluence of two or more input variables to the observed
output quantity, expressed as

R2 = SSR
SSY

=

n∑
i=1

(ŷi − ȳ)2

n∑
i=1

(yi − ȳ)2
(5)

Only for a linear approximation, SSR = SSY-SSE, then
R2 can be further expressed as
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Response surface method based on radial basis functions for modeling large-scale structures in model updating 215

R2 = SSR
SSY

= 1 − SSE
SSY

= 1 −

n∑
i=1

(yi − ŷi )2

n∑
i=1

(yi − ȳ)2 (6)

where n is the number of the observed samples; yi is the
observed value; y is the average value of yi; ŷi is the pre-
dicted value by the RS model at observed points; SSR
is the regression sum of squares which indicates the dis-
creteness of y; SSY is the total sum of squares, showing
the discreteness of yi; and SSE is the error of squared
sum, indicating the discreteness of y caused by random
errors.

The value of R2 closer to 1 indicates that a higher ac-
curacy of approximation is achieved. Usually, the 0.5 ≤
R2 ≤ 0.8 defines a significant correlation between de-
pendent and independent variables and 0.8 ≤ R2 ≤ 1.0
means a high correlation. It should be noted that only
for a linear approximation, the relationship of SSR =
SSY-SSE can be obtained, then the R2 in Equation (6)
is constrained in the range of [0, 1]. For more general
problems of nonlinearity, the R2 of Equation (5) takes
a value greater than 0.

3.2.2 Root mean squared (RMS) error. For approxima-
tion of a nonlinear function, precision can be evaluated
appropriately by an RMS error, which can be written as

RMS =

√√√√√
n∑

i=1
(ŷi − yi )2

n
(7)

An RMS error represents the discrepancy between
measured values and predicted values of the RS model.
An RS model with higher approximation accuracy
achieves a smaller value of RMS error.

Obviously, the RMS error directly estimates the dis-
crepancy between the measured value and prediction
value, although the R2 is an estimation of the corre-
lation between dependent variables and independent
variables. Compared with RMS, the R2 has the ad-
vantage of comparing the accuracy of both diverse RS
methods and different approximated problems in the
range of 0∼1, but cannot exactly explain the difference
between each model. For example, when R2 is close to 1,
a small change of R2 may generate a great discrepancy
of RMS error. The precisions of different models can
be reflected clearly by the RMS error, but it is inconve-
nient to have a comparative analysis for various models.
In this study, both R2 and RMS errors are adopted to es-
timate the accuracy of RS approximation.

4 SIMULATION STUDY

In this study, a cable-stayed bridge model (see Figure 3)
is used to illustrate the effectiveness of the RS method
based on RBFs. This model was designed and manufac-
tured according to the similarity theory based on a real-
world bridge (Li et al., 2006). The scale factor is 1/40.
The bridge deck and towers were made of aluminum
alloy, and cables were made of steel wires with differ-
ent cross-sectional areas. The bridge deck is 15.2 m long
and 0.82 m wide, and the middle pylon and side pylon
are 3.1 m and 1.9 m high, respectively. The total weight
of aluminum alloy is about 1 ton.

4.1 Finite element model

To model the structure using the RS method, a three-
dimensional FEM of this bridge model was first de-
veloped using ANSYS, as shown in Figure 4. Con-
sidering the complexity of the bridge model, ANSYS
Parametric Design Language (APDL) was utilized. The
bridge girders, piers, and towers were modeled by Ele-
ment SOLID64, which has three translational degrees
of freedom (DOFs) at each node. The bridge decks
were modeled by Element SHELL63, which has both
bending and membrane capabilities with six DOFs at
each node (three translations and three rotations with
respect to x, y, and z directions). The bridge cables were
simulated by LINK10 element, which has the unique
feature of a bilinear stiffness resulting in a uniaxial
tension-only (or compression-only) element.

4.2 Selection of the design parameters and output
characteristic parameters

There exist discrepancies between the prototype bridge
and the bridge model due to the differences in materi-
als, dimensions, boundary conditions, and connections
between segments. It is worth noting that it is very com-
plicated and difficult to exactly depict the mechanical
behaviors of the connections between segments. There-
fore, the adjustments of the material properties of the
connection elements are considered to simulate these
discrepancies. A total of 10 design parameters with po-
tential error are selected as input parameters for the RS
modeling, which are listed in Table 2. Figure 4 shows
the details of connection for FEM of the bridge model.

In this methodology analysis, the first 10 natural fre-
quencies and Modal Assurance Criteria (MACs) of
mode shapes, as well as the tensions of 15 cables with
different lengths and angles of inclination (see Figure
4) are selected as the output characteristic parameters.
The natural frequencies and mode shapes are associated
with the bridge deck modes, mid tower modes and side
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Fig. 3. The 1/40 scale model of a cable-stayed bridge.
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Fig. 4. The FEM of the cable-stayed bridge model.

Table 2
Selected design parameters and baseline value

Parameters Baseline value Notation

Young’s modulus of aluminum alloy of bridge decks and pylons 52 GPa E1
Density of aluminum alloy of bridge decks and pylons 2,700 kg/m3 D1
Young’s modulus of deck connection 52 GPa E2
Young’s modulus of pier connection 52 GPa E3
Young’s modulus of middle tower connection 52 GPa E4
Young’s modulus of side tower connection 52 GPa E5
Mass of side tower connection 2,700 kg/m3 D2
Young’s modulus of deck cables 200 GPa E6
Young’s modulus of boundary cables 200 GPa E7
Density of deck additional mass 7,850 kg/m3 D3
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Fig. 5. The approximation error of RS model as a function of c.

tower modes. The observed cables include the bridge
deck cables and boundary cables.

4.3. Selection of an optimal shape parameter c of
RBFs for the RS method

To investigate the selection of optimal shape parame-
ter c for RBF RS of approximating the implicit relation-
ships between physical design parameters and static and
dynamical output quantities of a long-span cable-stayed
bridge, the same numbers of CCD and uniform distri-
bution samples, as well as GA and MQ functions for the
RS model are discussed. Figure 5 shows the approxima-
tion RMS errors in different conditions with continuous
variation of c, and the optimal c is defined as the value
of c with the minimum approximation error.

It can be seen from Figure 5 that the magnitude and
distribution of approximation errors highly rely on the
RBFs and observed samples. Most of the approxima-
tion errors have a continuous and smooth distribution.
The error drops to a minimum and then increases with
the c varies from zero to big value, and it is clear that
an optimal c could be obtained when the error achieves
a minimum. However, it should be noted that there are
some obvious discrepancies among them. The errors of
RS approximation have different trends of distribution
with respect to different characteristic quantities, sam-

ples, and RBFs. Comparing Figure 5a with Figure 5b
and Figure 5c with Figure 5d, shows that the error of
UD samples smoothly changes and the minimum could
be clearly found, but the error of CCD samples has
more extreme changes when c takes an extremely small
or relative big value. By observing the cable tension in
Figure 5b, the error is dramatically disturbed when c
takes a value near 2. One possible reason for the in-
stability could be that the ill-conditioning occurs in cal-
culation. By comparing Figure 5a with Figure 5c and
Figure 5b with Figure 5d, it can be seen that the GA
and MQ RS model are similar with respect to UD sam-
ples, but the situation is obviously different for CCD
samples. The MQ RS model based on CCD samples
has a long stable region for optimal c and stability of
solution.

Based on the above discussion, it can be concluded
that the optimal c of RBFs heavily depends on the ob-
served samples of parameters, RBFs, and the approxi-
mated relationship. Therefore, the selection of an opti-
mal c for each output characteristic quantity should be
independently calculated.

4.4. Analysis of the RS method based on RBFs

In this section, the performance of the RS method based
on different RBFs is evaluated for approximation. For
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Fig. 6. The flowchart of RS modeling based on RBFs.

comparison, the RS method based on polynomial func-
tions is also implemented. The flowchart of RS model-
ing and model updating based on RS methods of RBFs
is shown in Figure 6.

The CCD method is adopted to generate the sam-
ples for RS modeling. Level of center points takes the
baseline value, and the corner points and star points
take 120% and 80% of the baseline value as the upper
and lower bounds, respectively. Finite element analysis
is performed and corresponding characteristic quanti-
ties can be obtained from the output responses. Then,
RS models are constructed based on input samples and
the output characteristic quantities. Based on uniformly
distributed pseudo-random samples, accuracy of RS ap-
proximation for each output quantity is investigated
with the continuous change of c from 1.0 × 10−5 to 500,
and the optimal c is determined when the error reached
the minimum. Meanwhile, the multiple correlation co-

efficient R2 and RMS error are employed to evaluate
the accuracy of RS methods. If the constructed RS mod-
els have good performance on both R2 and RMS er-
ror, then they can be used for model updating. Other-
wise, the observed samples and approximation function
should be adjusted and the RS modeling procedures
should be repeated.

Figure 7 presents the RS based on the GA function
for the approximation of natural frequency, MAC, and
cable tension with respect to the design parameters of
E1 and D1. It can be seen that the relationship between
design parameters and MAC is more complicated than
the other two.

4.4.1 The analysis of approximating precision. Figure 8
shows the R2 and RMS error of the first 10 natural fre-
quencies approximation of the five discussed RS mod-
els. As can be seen from Figure 8a, R2 of all the five RS
models is nearly equal to 1, which means that all the five
RS models have high approximation quality of natural
frequencies. The RMS error of the 10 natural frequen-
cies is shown in Figure 8b, which clearly displays the
detail precision of each RS model. It can be observed
that the error has a stable distribution, and GA model
has a higher accuracy than the other four RS models.
QP model also has a good precision, but IQ, MQ, and
IMQ models have relatively bigger errors. Focusing on
the RBFs model, GA and IMQ have better accuracies
than IQ and MQ.

Figure 9 presents the R2 and RMS error of RS models
approximation for the first 10 MACs. Clearly, the ap-
proximation results are not as good as natural frequen-
cies, and RS models of RBFs have a relatively better
performance than the QP model. The R2 and RMS error
for a different MAC change dramatically. As observed
in Figure 9a, the RS approximations for MACs of the
9th and 10th frequencies are almost invalid. However,
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Fig. 7. The GA RS of frequency, MAC, and cable tension with respect to the design parameters of E1 and D1.
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Fig. 9. The R2 and RMS error of the RS approximations for the first 10 MACs.

the other MACs have acceptable accuracies (R2 ≥ 0.6).
It could be also seen in Figure 9b that the RMS errors
of the 9th and 10th MAC are significantly bigger than
other MACs. The 1st MAC has the lowest error with an
average value of 1.6 × 10−5, but the 10th MAC has the
highest error with the mean value about 2.5.

There are two possible explanations for the high
discreteness of MAC approximation. (1) MAC of
mode shapes indicates the spatial vibration property
of a structure, the limit of measurement points in the
experimental tests makes it difficult to capture the inte-
gral characteristic of the entire structure, especially for
high-order mode shapes. Usually, only the first several
mode shapes can be identified with a satisfied accuracy.
(2) The mode shapes of a cable-stayed bridge are more
complicated due to the flexibility of this type of struc-
ture and the coupling effect between the bridge deck
and the tower.

Figure 10 illustrates the R2 and RMS error in RS ap-
proximation of 15 different cable tensions of the cable-
stayed bridge. As shown in Figure 10a, all the R2 are
very close to 1, indicating that the quality of the approx-

imations of RS methods to cable tensions is very good.
The RMS errors are shown in Figure 10b, and it can
be observed that the errors of the 15 cable tensions ex-
hibit stationary distribution. Obviously, the RS method
of RBFs has a better performance than the QP method;
the MQ and IMQ of RBFs could obtain a higher accu-
racy than the GA and IQ model.

Multiple correlation coefficient R2 is used to assess
the quality of RS approximation by correlation between
design parameters and response quantities. An RMS
error directly estimates the gap between the observed
points and the approximation value of the RS method.
However, R2 and RMS error may not reach a consistent
conclusion. Because R2 and RMS error are both very
important evaluation indices for RS method approxima-
tion, it is suggested that only the RS method approxima-
tion with good performance in both R2 and RMS error
should be utilized for model updating.

4.4.2 The optimal shape parameter c. The optimal
shape parameter c for each RS model with respect
to approximated characteristic quantity is determined
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Fig. 10. The RMS error and R2 in the RS approximations of 15 different cable tensions.
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Fig. 11. The optimal shape parameter c in the RS approximations
of frequencies (a), MACs (b), and cable tensions (c).

independently. Precision inspection is conducted re-
peatedly with the c monotonously and continuously
changing from 0 to 500 and the optimal c is deter-
mined when the approximation error drops to the mini-
mum. Figure 11 illustrates the selected optimal c in the
RS model of RBFs approximation to natural frequen-
cies, MACs, and cable tensions. It can be seen that the
optimal c changes irregularly and highly depends on
RBFs and approximated characteristic quantities. From
Figures 11a–c, the optimal c of RBFs for different
natural frequencies and cable tensions approximation
changes stably, but MACs exhibit extreme situations
where the optimal c takes a value that is close to 0 or
a big value.

The above analysis indicates that for approximating
the system of a large and complex structure by using
the RS method of RBFs, the optimal c is highly depen-
dent on the approximated problems and should be de-
termined independently. The approach of precision in-
spection with c as continuously variable in a reasonable
range is recommended, and then the optimal c can be
determined as the approximation error reaches to the
minimum.

4.4.3 The analysis of antinoise ability. It is well known
that measurement noises on the input excitation and
output response signals are unavoidable in structural
experimental tests on site or in the lab, which negatively
impact the experimental results. To get a better under-
standing of the performance of RS approximation un-
der the situation of signals contaminated by measure-
ment noises, GA white noise with various levels from
0% to 10% (the signal-to-noise ratio form 100 dB to
10 dB) was added to the output responses obtained
from FEM analysis. Based on the noise-contaminated
data, the RS models of RBFs and QP function were
modeled, and precision inspection was conducted.
Figure 12 shows the approximation errors for natural
frequencies, MACs, and cable tensions under different
levels of noises. It can be seen that noise significantly in-
fluences the approximation errors of RS methods, and
the RS methods with different approximate functions
are also diverse. It can be clearly seen from Figure 12
that RS method of RBFs has a better antinoise ability
than RS method of QP function, and the IQ and IMQ
of RBFs have a better performance than the GA and
MQ function. It should be noted that the low-level noise
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Fig. 12. The approximation error of RS models for frequency (a), MAC (b), and cable tension (c) under the situation of data
contaminated by different degree noises.

(≤1%) significantly reduces the accuracy of approxima-
tion. However, with the increasing of noise level (≥1%),
the approximation error of RBFs increases slowly al-
though the QP still keeps a rapid growth. IQ and IMQ
of RBFs have the best antinoise ability under rela-
tive high-level noise (≥1%) and QP function is the
worst one.

It can be concluded that noise has considerably neg-
ative effect on the RS method for approximation of
the static and dynamic properties of a long-span cable-
stayed bridge. The RS based on RBFs has a better per-
formance than the RS based on polynomial function,
and the IQ and IMQ of RBFs have the best antinoise
ability in the discussed five RS models.

5 MODEL UPDATING OF THE CABLE-STAYED
BRIDGE MODEL

5.1 Dynamic testing of the bridge model

The dynamic testing has been conducted on the
bridge model and the experimental setup is shown in
Figure 13. The accelerometers are installed on both
sides of the bridge deck along the longitudinal direc-
tion. There are totally 18 measurement points with
symmetric distribution (14 points for vertical testing
and the other 4 points for lateral testing). Two elec-
tromagnetic shakers are installed at the closure seg-
ments to excite the bridge model using white noise
excitation.

Based on the dynamic testing, the first 10 natural fre-
quencies (see Table 3) of the bridge deck are identi-
fied by eigen-system realization algorithm (ERA) com-
bined with natural excitation technique (NExT). ERA
and NExT methods for modal parameters identification
have been widely used in the field testing and lab exper-
iment of civil engineering structures.

5.2 Constructing the RS models

A cable-stayed bridge is taken as simulation study and
experiment validation to demonstrate and present the
procedures of the proposed RS method based on RBFs
for FEM updating. According to the manufacture of the
bridge physical model and limited dynamic testing data
for model updating, six parameters with potential errors
are selected to be updated in the model updating. They
are Young’s modulus of aluminum alloy (E1), density of
aluminum alloy (D1), Young’s modulus of deck connec-
tions (E2), the additional mass on deck (D3), Young’s
modulus of deck cables (E6), and Young’s modulus of
boundary cables (E7). Their baseline values are 52 GPa,
2,700 kg/m3, 52 GPa, 51 kg, 200 GPa, and 200 GPa, re-
spectively. The baseline values are usually chosen from
the original construction drawings of structures. The
sensitivities of the first 10 frequencies with respect to the
selected six physical parameters are shown in Figure 14.
It can be seen that all six parameters have considerable
influence on natural frequencies, but E2 has a relatively
small sensitivity compared with the other parameters.

The physical parameters are sampled by using CCD
of DOE. The initial design value of each parameter is
taken as the level of center points in CCD sampling,
and the corner points and star points take the levels of
120% and 80% of the initial value, respectively. Then,
the axial points of six-parameter CCD samples take the
values of 52.43% and 147.57% of initial value. A total of
45 samples are used for RS modeling. The FEM analysis
is implemented with the samples of parameters as input,
and the corresponding response of natural frequencies
are obtained. Then, the RS model of each natural fre-
quency is constructed by the RS method based on GA
function. GA RBF is used for the RS modeling because
it has a good performance on approximating the rela-
tionships between natural frequencies and physical pa-
rameters as discussed in Section 4.4.
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Fig. 13. Dynamic testing of the bridge physical model.

Table 3
The identified natural frequencies (Hz)

Order Description Value

1 The first order of vertical mode 4.014
2 The second order of vertical mode 8.839
3 The third order of vertical mode 10.822
4 The first order of lateral mode 10.963
5 The fourth order of vertical mode 11.857
6 The fifth order of vertical mode 14.312
7 The second order of lateral mode 15.075
8 The sixth order of vertical mode 16.344
9 The seventh order of vertical mode 21.926

10 The eighth order of vertical mode 22.962
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Fig. 14. Sensitivity of frequencies to physical parameters.

Accuracies of RS approximation of the 10 natural fre-
quencies are investigated with the continuous change of
shape parameter c from 1.0×10−5 to 10, and the optimal
c is determined when the error reaches to the minimum.

Table 4
Optimal c of RBF RS models of frequencies

Frequency no. 1 2 3 4 5 6 7 8 9 10

Optimal c (10−4) 8.3 7.5 8.6 8.9 6.5 8.3 5.7 6.9 8.7 6.9

The optimal c for the RS models of frequencies is listed
in Table 4. The multiple correlation coefficient R2 and
RMS error are employed to evaluate the constructed
RS models as shown in Figure 15. It can be seen that all
the R2 are very close to 1 and the RMS errors are very
small (10−5), then it can be concluded that the RS mod-
els have good quality and accuracy of approximation,
and can be used for the following model updating.

5.3 Model updating based on numerical simulation

Numerical simulation of model updating on the bridge
model is carried out to test the validity of the proposed
approach. A random change is taken to the physical
parameters based on the initial design values in de-
sign space and corresponding natural frequencies are
obtained from the FEM analysis as target (measured)
characteristic information for model updating. An ob-
jective function is built up using the residuals between
the measured and the RS predicted natural frequencies

Obj(X) =
N∑

i=1

wi

(
fai − fei

fei

)2

(8)

where fei and fai are the ith measured and RS pre-
dicted natural frequencies respectively; wi is the weight
coefficient of ith natural frequency; N is the num-
ber of modes involved; and X is the vector of design
parameters.
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Fig. 15. The R2 and RMS error of the GA RS models of the natural frequencies.

Table 5
The model updating results of cable-stayed bridge in numerical simulation

Parameter Notation Initial value Target value Updated value Error (%)

Young’s modulus of aluminum alloy (GPa) E1 52 49.92 49.95 0.06
Density of aluminum alloy (kg/m3) D1 2,700 2,835.00 2,832.84 −0.08
Young’s modulus of deck connection (GPa) E2 52 44.20 44.61 0.91
The additional mass on deck (kg/m3) D3 7,850 8,007.00 7,991.61 −0.19
Young’s modulus of deck cables (GPa) E6 200 190.00 190.22 0.12
Young’s modulus of boundary cables (GPa) E7 200 180.00 180.70 0.39

Then, FEM updating is implemented based on the
constructed RS models and objective function (values
of all the weight coefficients are taken as 1) by us-
ing a genetic algorithm (Sgambi et al., 2012; Putha
et al., 2012). The updated results of numerical simu-
lation are summarized in Table 5. The updated val-
ues of the parameters are very close to the true values
with a maximum error of only 0.91%. The comparison
of the 10 natural frequencies which are employed for
model updating can be found in Table 6. The updated
values and true values of natural frequencies are al-
most the same. Therefore, the numerical simulation in-
dicates that the performance of the RS method of RBFs
for model updating of a cable-stayed bridge is very
encouraging.

5.4 Model updating based on experimental data

Model updating is also carried out on the bridge model
based on experimental data. The objective function is
built up using Equation (8). The weight coefficients of
the objective function are taken as [3 3 3 1 2 2 2 1 1
1] for the first 10 natural frequencies. The lower or-
der natural frequencies take relatively larger weight co-
efficients than higher natural frequencies because the
lower natural frequencies of structures can be identi-

Table 6
Comparison of natural frequencies after model updating in

numerical simulation

Target Updated
Order value (Hz) value (Hz) Error (%)

1 4.0349 4.0350 0.0015
2 8.9033 8.9038 0.0051
3 10.8117 10.8121 0.0038
4 11.6142 11.6129 −0.0114
5 11.6060 11.6045 −0.0134
6 14.0175 14.0174 −0.0006
7 14.8664 14.8684 0.0137
8 15.5512 15.5523 0.0071
9 21.0115 21.0133 0.0087

10 21.5404 21.5368 −0.0167

fied with high accuracy, and lateral model (4th mode)
of bridge deck takes a small weight coefficient because
the testing and identification are not very reliable due
to the fact that few sensors are used. Model updating
is optimized by using a genetic algorithm. The lower
and upper bounds for the six parameters are set to
be [90%; 90%; 60%; 90%; 90%; 60%] and [105%;
105%; 100%; 105%; 105%; 110%] of initial design
values.
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Table 7
Results of model updating based on tested data

Parameter Initial value Updated value Difference (%)

E1 (GPa) 52 50.76 −2.39
D1 (kg/m3) 2,700 2,772.90 2.70
E2 (GPa) 52 45.77 −11.99
D3 (kg/m3) 7,850 7,930.07 1.02
E6 (GPa) 200 194.58 −2.71
E7 (GPa) 200 157.00 −21.50

Table 8
Error of natural frequencies after model updating based on

tested data

Measured Updated
Order value (Hz) value (Hz) Error (%)

1 4.014 4.045 0.760
2 8.839 8.971 1.493
3 10.822 10.824 0.022
4 10.963 11.722 6.922
5 11.857 11.662 −1.648
6 14.312 14.167 −1.012
7 15.075 15.033 −0.280
8 16.344 15.722 −3.806
9 21.926 21.247 −3.096

10 22.962 21.830 −4.932

The results of model updating are listed in Table 7. As
can be seen from the table, the Young’s modulus of alu-
minum alloy (E1) and the additional mass on deck (D3)
have been decreased because the material and dimen-
sion are slightly smaller than real values. The increase
of the density of aluminum alloy (D1) is reasonable be-
cause the connections of deck and cables increase the
mass on the deck. The large decrease of Young’s modu-
lus of deck connection (E2) can be predictable because
the stiffness of the connection of deck is weaker than
the intact deck. The decrease in Young’s modulus of
deck cables (E6) and boundary cables (E7) could be at-
tributed to the weakness of the connection and bound-
ary condition at the ends of cables.

The comparison of the natural frequencies between
measured values and updated values after model updat-
ing can be seen from Table 8. The results are acceptable
with almost all errors below 5% except the first-order
lateral mode with the largest error 6.92%. However, it
is obvious that the results are not so good as numeri-
cal simulation. The gap between tested values and up-
dated values cannot be closed because of the existing
error in testing and identifying of the physical model
experiments. The relatively big errors in lateral modes
and higher order modes are consistent with the practical
cases in field testing.

6 CONCLUSIONS

The article proposed the RS method based on RBFs
to model large-scale structures for model updating.
The complicated and implicit relationships between de-
sign parameters and output characteristic parameters
of cable-stayed bridges are employed to investigate the
performance of the RS method based on RBFs. A
three-dimensional FEM of a scaled cable-stayed bridge
model is established for numerical simulation. The de-
sign parameters of interest include global and local
physical parameters, and the output response quanti-
ties consist of static properties and dynamic features
of cable-stayed bridges. To successfully apply the RS
method of RBFs for model updating of cable-stayed
bridges, appropriate RBF for different approximated
relationship should be first determined. Meanwhile, the
selection of an optimal c of RBFs is very important,
which heavily depends on the modeling samples, RBFs,
and the approximated relationship.

The simulation study of a cable-stayed bridge shows
that all of the RS models have high accuracy for ap-
proximation of frequencies, MACs and cable tensions.
RS model of RBFs exhibits a better performance than
polynomial RS model. It can also be found that differ-
ent RS models have different performance for various
approximated problems. GA RBF has the highest pre-
cision for frequencies approximation, but MQ and IMQ
of RBFs have a better accuracy for cable tension ap-
proximation. For MAC, RBFs are almost the same but
slightly better than a polynomial function. Concerning
the antinoise ability, the RS method based on RBFs has
remarkable advantages over the QP model.

It is demonstrated that the increase of design space
dimensions (model variables) does not require adding
more samples for RBF RS construction. Therefore, the
RS method based on RBFs has the potential to apply
in more complicated, high dimensional and multivari-
ate problems. The approach and strategies proposed in
this article have been applied to the model updating of a
cable-stayed bridge model. Simulation study and exper-
imental verification indicate that this method works well
and can be easily implemented in practice for model up-
dating of complicated bridges such as long-span cable-
stayed bridges.
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