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Dynamic Nonlinearity and Nonlinear Single-Degree-
of-Freedom Model for Cable Net Glazing

Ruo-Qiang Feng, M.ASCE"; Jihong Ye?; Guirong Yan®; and Jin-Ming Ge*

Abstract: The nonlinear vibration differential equation and vibration frequency of cable net glazing subject to earthquake loading was deter-
mined, and a geometrically nonlinear single-degree-of-freedom model for cable net glazing was developed. The nonlinear response spectra
were established, and nonlinear time history analysis with finite element (FE) models was conducted to verify them. The nonlinear vibration
differential equation and frequency obtained as described in this paper provide a basis for the nonlinear single-degree-of-freedom model for
cable net glazing. The analytical formula for the nonlinear frequency with a simplified expression is highly precise and convenient for use
in engineering practice. For larger-amplitude seismic waves, the difference between the linear and nonlinear response spectra are more obvious.
As the natural period of cable net glazing is always less than 2 s, the linear response spectra in the Chinese code for the seismic design of build-
ings can be used in the seismic design of cable net glazing as an approximation rather than the nonlinear response spectra of cable net glazing.

DOI: 10.1061/(ASCE)EM.1943-7889.0000575. © 2013 American Society of Civil Engineers.

CE Database subject headings: Cables; Seismic design; Vibration; Earthquake loads; Coating.
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Introduction

Cable net glazing is becoming increasingly appealing because of its
translucence, lightness, and energy savings. It is attractive from both
an architectural and a climatic point of view, as shown in Fig. 1. The
earliest research in the design of cable net glazing was conducted by
Schlaich (2004), Schlaich et al. (2005), Schober and Scheider (2004),
and Feng et al. (2009). Those designs are widely used in airport
passenger terminals, exhibition centers, gymnasia, and hotel halls.
The technological and morphological aspects of the connection
joints of cable net glazing were first addressed by Vyzantiadou and
Avdelas (2004). The construction details of the point-fixed connection
joints were analyzed by Brodniansky and Aroch (2001) and by Saitoh
etal. (2001). The mechanical behavior of the glass panels was studied
by Feng et al. (2007, 2012). Feng et al. (2007, 2009) investigated the
effect of the stiffness of the glass panels on the static and dynamic
performance of cable net glazing. A shaking table test of cable net
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glazing was conducted by Feng et al. (2010) to investigate the
connection between cable and glass panels in earthquakes.

However, very little research has been conducted on the geo-
metric nonlinearity and nonlinear seismic performance of cable net
glazing. While cable net glazing is a structurally important part of a
building, the loss of glass panels because of seismic activity cannot
be neglected. In the Michoacdn, Mexico, earthquake in 1985, ac-
cording to the disaster statistics, 63 of the 263 total glass panels were
broken. In the Northridge, California, earthquake in 1994, 40-60%
of glass panels were broken (Pantelides et al. 1996). In addition to the
direct losses caused by the earthquake, secondary losses included
injuries and deaths caused by the fallen glass panels.

Cable net glazing is a plane structure that does not have a nega-
tive Gauss curvature and thus has a relatively lower stiffness in the
direction perpendicular to the plane of the cable net. The permissible
deflection of cable net glazing is normally 1/50 of the span, but for
some special cases, it may be 1/40 of the span in technical spec-
ification for cable structures of China JGJ257-2012 (Ministry of
Construction 2012), which indicates that it is important to consider
geometric nonlinearity in the analysis of cable net glazing. The
frequencies of a cable net depend on its displacement. The vibrating
displacement of a cable net changes when it is subjected to seismic
loads, and the frequencies of the cable net also change (Feng et al.
2009). The response spectrum method in the seismic design code
(Ministry of Construction 2010) of China for linear and elastic
structures thus has some limitations with respect to the seismic
design of nonlinear cable net glazing, and the geometric nonlinear
response spectra for cable net glazing must be studied. In the Chinese
technical code for glass curtain wall engineering by Ministry of
Construction (2003) of China, the seismic force on glass panels is
five times the maximum seismic force on buildings, but this seismic
design method for glass panels is not applicable to cable net glazing,
and it greatly increases the seismic force on cable net glazing
(Ministry of Construction 2010).

In this study, the nonlinear static equilibrium equation and the
nonlinear vibration differential equation of cable net glazing subject
to dynamic loads were determined, and the static and dynamic
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(b)

Fig. 1. Time Warner Center in New York; (a) outside view; (b) inside
view

geometric nonlinearity of cable net glazing was examined. A geo-
metrically nonlinear single-degree-of-freedom model for cable net
glazing was developed, and a nonlinear time history analysis was
conducted with an FE model to verify the nonlinear single-degree-
of-freedom model. The nonlinear single-degree-of-freedom model
was then used to determine the nonlinear seismic response of cable
net glazing subject to seismic waves with the time history method.
The linear and nonlinear acceleration and displacement spectra
were compared. Finally, on the basis of nonlinear spectra, the seis-
mic response of cable net glazing was analyzed by the mode de-
composition response spectra method.

Nonlinear Static Equilibrium Equation of Cable Net
Glazing Based on Membrane Theory

Membrane theory by Krishna (1978) is adopted to determine the
nonlinear static equilibrium equation of a cable net, and the cable net
is modeled in the form of an isotropic continuous membrane. The
analytical expressions of the nonlinear static equilibrium equation
can be obtained with good precision using membrane theory by
Irivne (1992).
The assumptions in this paper are as follows:
1. The cable net is assumed to be a continuous isotropic tension-
only membrane,
2. Only the out-of-plane nodal displacements of the cable net are
considered, and the in-plane nodal displacements are neglected,
and
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y

Fig. 2. Model of a cable net facade

3. The displacement shape of the cable net subject to uni-
formly distributed loads is assumed to be a symmetric func-
tion, namely ¢, (x,y) = sin[m(x/L,)]sin[7(z/L;)].

where the coordinate system is shown in Fig. 2, the horizontal di-
rection is assumed to be the xdirection, the wind direction is the
ydirection, the vertical direction is the z direction, and the origin of
the coordinates is the left corner of the cable net glazing.

When the central nodal displacement of the structure is u., any
nodal displacement is

sl o

Subject to uniformly distributed loads, the static equilibrium equa-
tion of any node in the cable net is

Fu
072

= )\ Fu T _
Hy+hy ) ==+ (H: + h; = —Py )
ox?
where H, and H, = unit-distance horizontal components of the ini-
tial cable pretension in the x and zdirections, s, and h, = unit-
distance horizontal components of the cable tension increment in the
x and zdirections, and Py = uniform-distributed load.

The expressions for &, and &, are
h_x = EA—xALx/Lx €))
h_z = E‘TZALZ/ L, )

where A, and A, = unit-distance cross-sectional areas of the cables
in the x and zdirections, and E = Young’s modulus of the cable.
The elongation of the cable is

’
L[ (oY, _ 2. ofmz
AL, = ZJ (0x> dx = uZsin (LZ)/(4LX) )
0
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Lz 5
(Y i (T
AL, = ZJ <dz> dz = u; sin (Lx)/(4Lz) (6)
0

By substitution of Egs. (3)-(6) into Eq. (1), one obtains

2 2 2 2,
Ha——l-HM—l—EA sm( )0

ox? 072 412 ox?
2 2 v}
u; o“u
EA, =—P 7
+ i “sin <L ) 02 0 @)

Eq. (7) is the nodal displacement in the cable net. When the left and
right sides of Eq. (7) are integrated in the field of integration of the
whole cable net, the structural equilibrium equation of the cable net
can be obtained after simplification as

H, H. )\ 3_ Py
EA, FEA = 8
(Lg +L2) - ( 6L4 * 6LZ> =4 ®

where the linear part of the structural stiffness is

H,  H:
a=|—=>+— ©
(L?C L
and the nonlinear part of the structural stiffness is
b= | EA, EA, T u? 10
N 6L4 + 54 6L4 (10)

When the structural span is determined, Eq. (9) shows that the initial
linear part of the structural stiffness of the cable net is decided only
by the cable pretension. Eq. (10) shows that the nonlinear part of
the structural stiffness is decided by the cable axial rigidity and
structural displacement, and it also shows that cable net glazing
is a stiffness-hardening structure. The nonlinear coefficient A is
defined as the ratio between the nonlinear part and the linear part
of the structural stiffness, and the expressions for A is

\_b_ [ o) v EA R L
a H,/L?+ H, /L

Example 1 is presented to illustrate the role of the nonlinear co-
efficient A. The analysis model is shown in Fig. 2. The size of the
model is 15 X 15 m with the glass mesh being 1.5 X 1.5 m, and the
concentrated nodal mass is 146.25 kg (for a thickness of midhollow
armored glass of 8 mm + 8 Air mm + 8 mm). The cable preten-
sions H, and H, are 20 kN, the areas of the cables in the x and
zdirections are 202.3E — 6 m2, and the Young’s modulus of the
cables is 1.3E11 N/m?. The maximum central nodal displacement
under the action of mean wind load is 1/150 of the span of the cable
net.

As the cable axial rigidity and structural displacement increase,
the nonlinear coefficient A increased. Assuming that A, = A, and
L, = L,, theinitial cable strainis « = H,/EA,.Eq. (11) can be further
simplified as

2.2

_ mug
- 2
6alLZ

(12)

As shown in Eq. (12), the nonlinear coefficient A is decided by the
initial strain « and the square of the dimensionless deformation

u. /L. The curve of the nonlinear coefficient A and the dimensionless
deformation u,../L, with three types of initial cable strain are shown
in Fig. 2. As shown in Fig. 3, when the dimensionless displacement
is less than or equal to 1/250, the nonlinear coefficient A is less than
3%; when the dimensionless displacement is 1/50, the nonlinear
coefficient is more than 26%. These results demonstrate that the
nonlinear part of the structural stiffness plays an important role and
should be considered.

Nonlinear Vibration Differential Equation of Cable Net
Glazing Based on Membrane Theory

Membrane theory by Krishna (1978) is also employed to determine
the nonlinear vibration equation of a cable net subject to seismic
loading.

The assumptions are as follows:

Assumptions 1 and 2 are the same as in Nonlinear Static Eqg-
uilibrium Equation of Cable Net Glazing Based on Membrane
Theory:

3. The first mode makes the dominant contribution to the seis-
mic response of a cable net subject to seismic loading in
the usual range of height—width ratios (0.5-2) by Feng et al.
(2009, 2010),

4. The first mode is assumed to be a symmetric function, namely,
¢1(x,2) = sin[m(x/Ly)]sin[m(z/L)].

As the first mode makes the dominant contribution to the seismic
response, the central nodal displacement of the structure is w(t), and
any nodal vibrating displacement is

wi(x,z,t) = w(t)sin (77 Lix) sin (77' L%) (13)

Subject to seismic loads, any nodal displacement vibration equation
of the cable net can be derived from Newton’s second law by
Krishna (1978)

azwl aw1 0W1 aw1 a2w1 ow W1
— | Hy H, iy h; —
"o ( o2 Mg T TSy ey

= mwg(1)
(14)

where w,(r) is ground motion acceleration.

0.45

0.40 Cable strain o.|
--- 0.0025
—0.002

0.351
0.30
0.25]
0.20]
0.15]
0.104

Nonlinear coefficienti

0.05

0.00 — T T T
0.000 0.004 0.008 0.012 0.016 0.020

Dimentionless displacement uv/]

Fig. 3. Curve of A versus dimensionless displacement for different
initial cable strains
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The elongation of the cable is

Lx
_ 1 (ow1\?
Afozj( 0x) dx (15)
0
Lza )
_1[{om
AL172J< az> d (16)
0

After substitution of Egs. (13), (15), and (16) into Eqgs. (3) and (4),
the cable tension increment is

hy = mEAw(1)? sin’ (zz)/(4L§) a7

Z

R, = mEA w(t)* sin’ (zx>/(4L§) (18)

‘X

By substitution of Egs. (17) and (18) into Eq. (14), one obtains

2 2 2
mWL {HﬁszA wo) inz(ﬂ)}—a Wi

o2 412 L )| o2

25A 2
—  TEAW()’ 5 (mx\ | Pwi | o g
- Hﬁ-TSln i Tzz-l-c?:mwg(t)

(19)

where m is the mass of a unit area of the cable net and c is the
damping.

Eq. (19) is the nodal displacement vibration equation in the cable
net. When the left and right sides of Eq. (19) are integrated in the field
of integration of the whole cable net, the structural displacement
vibration equation of the cable net can be obtained as follows after
simplification:

_ 27
’7T2Hx ™ Hy

'

2 (7?2 7EA, w2 wlEA
+3<Lz a2 tzaz YO0
X Z Z

[ mivg o (1)dx dzmr?
AL.L,

mw(t) + cw(r) +

(20)

Il
O —
(=L S ]

Eq. (20) is the nonlinear vibration differential equation of the cable
net subject to seismic loading. The linear part of the structural
stiffness is [(72H,/L?) + (m*H./L?)], while the nonlinear part is
2/3([(w?/L2) (7 EAJAL2) + (m* /%) (m*EA. /4L2)|w?(1), and the
structural vibrating displacement w(t) is included.

Eq. (20) can be further simplified as

mw(t)+ew (1) + (ki + ky) (21)

L

J mvg (t)dx dzi?
4L,L,

0

o%?

where k; = (m*H, /L2 + w*H_ /L?) is the linear part of the structural
stiffness in the vertical position and k, = 2/3[(7? /L?) (*EA,/4L?)
+ (m? /L2)(m*EA. /AL?)]w? (1) is the nonlinear part of the structural
stiffness.

In the preceding nonlinear differential equation, Eq. (21), the
square nonlinearity is included, so Eq. (21) is the Duffing equation.

Given that >0 and that Eq. (21) is the hard-spring type of the
Duffing equation, the corresponding mathematical method is used to
solve the nonlinear frequency.

Derivation of the Analytic Formula of the
Nonlinear Frequency

The free vibration equation without damping of Eq. (21) is
w(t)+ aw(t) +bw(t) = 0 (22)

wherea= (7*H, /L} + w*H,/L}) /m,b=2/3[(m* | L})(m*EA,/ 4L})
(7 /12) (EA. J412)] /.

The structural stiffness is k = [a + bw?(¢)Jm, and the linear
structure’s frequency wy, is

w} =k /m=a (23)

where the structural stiffness & is nonlinear and includes the struc-
tural displacement w(r). It is obvious that the structural frequency
cannot be calculated by Eq. (23) and that the frequency must be
obtained by directly solving the nonlinear vibration differential
equation.

Integral Algorithm of Nonlinear Frequency

The structural acceleration w can be changed as follows by Nayfeh
and Mook (1979) and Dechao and Yufeng (2004)

.2
dw _dwdw _dw . 1d(w)
v _avaw _aw ., — 27 24
dt  dwdt dw v 2 dw @4
So Eq. (24) can be written as

1d(w)° _
> dw +aw+bw? =0 (25)

Because the structural velocity in the amplitude position is zero,
integrating Eq. (25) yields

N[ —

A
W = J(aw + bw?)dw (26)

where A is the amplitude.
According to Eq. (26), one can obtain the expression of the
velocity in any position

dw
= = 27
i 27)
Eq. (27) can be written as
dt = dw (28)
A
2 [(aw + bw3)dw
W

Thus the structural vibration period is
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T A
T:Jdt:4j dw (29)
0 0

2 (aw + bw3)dw

T —_—

Eq. (29) can be simplified as

A
T = 4J dw 30)
0 \/a(A2 —w?) +§ (A* —w?)

Eq. (30) is the accurate integral algorithm of the nonlinear frequency
o = 21 /T, but it cannot be simplified continuously. It can be solved
only by the numerical method, which is not convenient for use.
Therefore, the harmonic balance method is used to determine the
simplified expression of the nonlinear frequency, which fits well in
a strongly nonlinear system by Dechao and Yufeng (2004).

Harmonic Balance Method

Because there are cubic nonlinear parts in the nonlinear differential
equation, the assumed displacement solution should include the
first-order harmonic components and constant

w = Acoswt 31

Substitution of Eq. (31) into Eq. (22) yields

2 3
<a + 4 w2>A coswr + DA (32

When cos 3wt is neglected and only cos wt is considered, the analytic
formula for the structural nonlinear frequency can be obtained

w:wm/l—i—%Az:wL(e—l—l) (33)

where w, is the linear frequency of the structure. The coefficient of
the nonlinear frequency e is

e=/1+3L42 -4 (4)
da

The structural amplitude is included in Eq. (34), and the coefficient
of the nonlinear frequency e displays the effect of the geometric
nonlinearity on the nonlinear frequency.

Curves of the coefficient e versus the ratio of the amplitude to the
span for three types of cable strain are shown in Fig. 4. When the
amplitude is less than 1/250 of the span, the coefficient of the nonlinear
frequency is negligible. The coefficient e increases at an increasing rate
as the structural amplitude increases. When the amplitude is 1/50 of the
span, the coefficient is less than 16%, and the dynamic geometric
nonlinearity is less than the static geometric nonlinearity.

Verification of the Analytic Formula of the
Nonlinear Frequency

To verity the accuracy of the analytical formula for the nonlinear
frequency given by Eq. (33), the nonlinear frequency results obtained
from the integral algorithm method [Eq. (30)], the analytic formula
[Eqg. (33)], and the nonlinear FEM time history method are compared.
In the nonlinear FEM time history method, the initial displacement

with a known amplitude is applied to the cable net, and then the cable
net vibrates freely without damping. Thus the nonlinear frequency can
be calculated directly from the time history displacement curve.

The analysis model is shown in Fig. 2. The size of the model is
15 X 15 m with the glass mesh being 1.5 X 1.5 m, and the concen-
trated nodal mass is 146.25 kg (for a thickness of midhollow armored
glass of 8§ mm + 8 Air mm + 8 mm). The cable pretension H, and
H_ are 20 kN, the areas of the cables in the x and zdirections are
202.3E — 6 m?, the Young’s modulus of the cables is 1.3E11 N/m?.
The maximum central nodal displacement under the action of the
mean wind load is 1/150 of the span of the cable net.

Eq. (21) is the Duffing equation, and in the undamped free vi-
bration of Eq. (22), there is not only the harmonic component w, but
also 3w, 5w, and other high-order harmonic components by Kwan
(2000). The preceding characteristic can be observed in the central
nodal FEM time history displacement of the cable net, as shown in
Fig. 4. However, the high-order harmonic components contribute
a very small proportion and can be neglected. Fig. 5 shows that the
larger the amplitude, the larger the nonlinear frequency.

The results from the three methods, given in Table 1, are very
close. All of the errors are less than 0.9%. Thus, the analytical formula
for the nonlinear frequency of Eq. (33) is considered to satisfy the
precision requirement.

Nonlinear Elastic Single-Degree-of-Freedom Model

Figs. 3 and 6 show that the static and dynamic nonlinearity of cable
net glazing needs to be considered, so the response spectrum method
in the seismic design code by Ministry of Construction (2010) of
China for linear and elastic structures has some limitations for the
seismic design of nonlinear cable net glazing, and the geometric
nonlinear response spectra for cable net glazing must be studied. The
results of the shaking table test by Feng et al. (2009) showed that
the first mode is dominant in the seismic displacement response
of cable net glazing subject to seismic loads. Thus, the geometric
nonlinearity of the structure is reflected in the first mode of cable net
glazing. Because other modes play smaller roles in the displacement
response, the other modes are less nonlinear. Therefore, only the
nonlinear seismic response spectra of the first mode need be ad-
dressed. The nonlinear elastic single-degree-of-freedom model and
the response spectra studied in this paper refer to the nonlinear re-
sponse spectra of the first mode of cable net glazing. The nonlinear
elastic single-degree-of-freedom model needs to be determined first.

As shown in Eq. (21), the nonlinear part of the structural stiffness
includes the structural displacement, so the structural stiffness is

0.16
Cable strain a
Gite4 0.0025
0.124 |- — 0.002
0.0015 Ve

0.10
0.08 4
0.06 4
0.04 1
0.024

0.00 T T T T
0.000 0.004 0.008 0012 0016 0.020

Dimentionless displacementA/L

Nonlinear coefficient e

Fig. 4. Curves of the coefficient e of the nonlinear frequency versus
amplitude-span ratios
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Basic frequency
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Triple basic frequency

24

Quintuple basic frequency ||

Power spectra Density

-9
0.00.51.01.520253.03.54.045505586.0 65 7.0
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(b)

Fig. 5. Undamped free vibrating central displacement; (a) undamped
free vibrating central time-history displacement; (b) power spectra
density of central displacement

Table 1. Comparison of the Nonlinear Frequency Results from the Integral
Algorithm, Analytical Formula, and FEM Time History Methods

concerned with the structural displacement and hardened system. The

multiple degrees of freedom of cable net glazing can be simplified to the

nonlinear elastic single-degree-of-freedom system, as shown in Fig. 7.
The structural linear frequency in the vertical position is

25 2H
w1 = ki fm = <77Hx+77

)/

L2 L2
When the amplitude is A, the nonlinear frequency w is given by
Eq. (33).

When the linear frequency is wj, the linear natural period is T;.
When the nonlinear frequency is w, the nonlinear natural period is 7.
Thus, the relationships among these parameters are

1

T, =—,
o]

T=L1 w<oT>T
w

where T = uT), p <1, and S, i, So(T), and S4(T) are the absolute
acceleration spectra and relative displacement spectra of the nonlinear
and linear single-degree-of-freedom systems, respectively. Because
the first natural period of cable net glazing is larger than 0.1 s, the
relationship between the nonlinear and linear response spectra is
Sz/z(T) = Sa(Tl) =

Sa(pTh) = Sa(Th) (35)

S4(T) = Sa(T1) = Sa(uTi) = Sa(Th) (36)
As shown in Egs. (35) and (36), there may be a large difference
between the response spectra of the linear and nonlinear single-
degree-of-freedom systems. Design response spectra in the Chinese
code for seismic design are given in Fig. 8, where the horizontal axis

is the structural natural period, and the vertical axis is the structural

Amplitude/ FEM Eq. (29)  Error Analytical Error absolute acceleration response. SI, SII, SIII, and SIV are four types
span (Hz) (Hz) (%) Eq. (32) (Hz) (%) of local site conditions. As shown in Fig. 8, when u <1, for the
response spectra of cable net glazing, the nonlinear response spectra
(1) 400 18(1)3451 181? gjél 181? 81;6 can be regarded as the rightward movement of the linear response
/ : ’ ’ ’ ’ spectra because cable net glazing is a stiffness-hardening structure;
1/200 1.0169 1.0218 0.48 1.0218 0.48 . . ..
therefore, the real working natural period of cable net glazing is less
1/100 1.0421 1.0485 0.61 1.0485 0.61 . . . . . .
than the initial calculation period. While the period used in calcu-
1/50 1.1402 1.1483 0.71 1.1492 0.79 . s .
lating the response spectra was the initial period, the real response
1/40 1.2083 1.2173 0.744 1.2189 0.877 . .
spectra are the rightward movement of the calculating response
1/30 1.3464 1.3535 0.53 1.3568 0.772 . .
spectra; that is, the response spectra move toward the long period.
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Fig. 6. Undamped free vibrating central nodal displacement of the cable net with different amplitudes
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As the response spectra of the nonlinear single-degree-of-freedom
system are different than those of the linear single-degree-of-freedom
system, the linear response spectra in the seismic design code have
some limitations for the seismic design of cable net glazing. The vi-
bration displacement of cable net glazing changes during an earth-
quake, so the frequencies of cable net glazing also change, and it is
very difficult to directly calculate the nonlinear response spectra of
cable net glazing according to the nonlinear frequencies. The non-
linear response spectra can be determined only by the nonlinear
single-degree-of-freedom model. Hence, the time history method
was used to calculate the nonlinear response spectra of cable net
glazing subject to seismic loads, and the nonlinear response spectra
were also compared with the linear response spectra with different
seismic waves and ground motion acceleration amplitudes.

Verification of the Nonlinear Single-Degree-of-
Freedom Model

Verification of the Nonlinear Single-Degree-of-
Freedom Model

The nonlinear single-degree-of-freedom model is given in Eq. (20).
To verify the accuracy of the assumptions associated with the
nonlinear vibration equation based on continuous membrane theory
as described earlier, the precise results of the finite element (FE)
model with the nonlinear time history method subject to seismic
loads were compared with those of the nonlinear single-degree-of-
freedom model in this paper. The time history response of the
nonlinear single-degree-of-freedom model can be calculated using
a direct numerical time integration scheme such as Newmark’s
method. The corresponding program for calculating the response of
the nonlinear single-degree-of-freedom model can be developed
with the Matlab software.

The following five FE models of cable net glazing with typical
spans and height-to-width aspect ratios were chosen: Model 1,

o) AWi (1)

c

—

777779777777”77777797777

Fig. 7. Single-degree-of-freedom system

r'?z amax

0.45¢, .. o=[0,0.2"n,(T-5T,)]

o
max]

001 T, 5T, 6.0

Fig. 8. Design response spectra in the Chinese code for seismic design

21 X 21 m; Model 2, 18 X 12 m; Model 3, 30 X 15 m; Model 4,
36 X 12 m; and Model 5, 42 X 10.5 m, with height-to-width aspect
ratios of 1, 2/3, 0.5, 1/3, and 0.25, respectively. The glass mesh is
1.5 X 1.5 m. Because the structural mass and seismic loads are
symmetric, the seismic responses of the models with height-to-width
aspectratios 1.5 and 2/3 are the same, as are those of the models with
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Fig. 9. Comparison of the time history curves for midpoint dis-
placement for FE Model 1 and the nonlinear SDOF model
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Fig. 11. Comparison of the time history curves for midpoint dis-
placement for FE Model 3 and the nonlinear SDOF model
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Fig. 13. Comparison of the time history curves for midpoint dis-
placement for FE Model 5 and the nonlinear SDOF model

aspect ratios of 2 and 0.5, 3 and 1/3, and 4 and 0.25. Therefore, only
the seismic responses of the models with height-to-width aspect
ratios of 1, 2/3, 0.5, 1/3, and 0.25 are given. They are also the modes
in Validity of the Nonlinear Single-Degree-of-Freedom Model and
Verification of the Mode Decomposition Response Spectrum
Method. The seismic design site condition modeled was Beijing on
Site 1 in Group 1, and the earthquake action modeled was a rare 8-
degree intensity earthquake. Earthquakes are described as 7, 8, and 9
degrees, and the degrees do not refer to Richter scale. The degrees are
used to describe earthquake intensity in China code for seismic
design of buildings, and the corresponding amplitude of the ground
accelerations were 220, 400, and 620 gal, respectively. The pre-
dominant period of the site during the earthquake was 0.35 s.
Comparison of the time history curves of the midpoint dis-
placement of the cable net glazing subject to a Taft wave with an
acceleration amplitude of 400 gal, from the FE models and the
nonlinear single-degree-of-freedom model, are shown in Figs. 9-13.
As Figs. 9-13 show, the time history curves of midpoint dis-
placement from the five FE models and the nonlinear single-degree-
of-freedom model are in most respects quite similar, and the largest
displacements are nearly the same. The differences between the
results from the FE models and the nonlinear single-degree-of-
freedom model are due to the effect of the high modes of the ca-
ble net glazing. Thus, the assumptions associated with the nonlinear
vibration equation based on continuous membrane theory and the
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Fig. 14. Nonlinear acceleration response spectra of all models subject
to an Olympia wave with 400 gal

nonlinear single-degree-of-freedom model presented in this paper is
believed to be accurate.

Validity of the Nonlinear Single-Degree-of-
Freedom Model

To validate the nonlinear single-degree-of-freedom model for cable
net glazing, the acceleration spectra of cable net glazing, for the five
models described earlier, were subjected to an Olympia (1949) wave
with an acceleration amplitude of 400 gal. The geometric non-
linearity of the five models was the same. The acceleration spectra
obtained for the five models are shown in Fig. 14. The acceleration
spectra curves for all of the FE models are coincident, which
indicates that the nonlinear single-degree-of-freedom model is
reasonable. The nonlinear response spectra are connected only with
the structural geometric nonlinearity of cable net glazing and have
nothing to do with the spans and the height-to-width aspect ratios.
Model 1 was used to calculate the response spectra of cable net
glazing subject to seismic waves.

Nonlinear Spectra of Cable Net Glazing

El Centro and Olympia (1949) seismic waves were selected to cal-
culate the response spectra of the nonlinear single-degree-of-
freedom model, and all of the earthquake records were recorded
on free fields or in the first floors of low-rise buildings.

The cable section and pretension of cable net glazing in the
examples were determined by wind loads, and the frequencies were
changed by the structural mass. The damping ratio of cable net
glazing is not given in the seismic design code and glass curtain
specification. On the basis of test results, the damping ratio was set at
0.02 in the examples by Feng et al. (2009). Because cable net glazing
is a geometrically nonlinear structure, the nonlinearity of cable net
glazing is closely related to its displacement, so both the acceleration
response spectra and displacement response spectra are discussed in
this paper. To compare the nonlinear and linear response spectra over
a wide range of frequencies, the structural natural period was ex-
tended to 10 s, which is longer than the long limitation period in the
Chinese code for the seismic design of buildings.

Comparisons of the nonlinear and linear response spectra for
the Olympia (1949) and El Centro seismic waves are shown in
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Fig. 15. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an Olympia wave with 220 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra

Figs. 15-20. The acceleration amplitudes of the seismic waves are
220, 400, and 620 gal, respectively, corresponding to rare earth-
quakes of 7, 8, and 9 degrees, respectively.

As shown in Figs. 15-20, when the natural period of cable net
glazing is less than 2 s, the differences between the nonlinear and
linear acceleration spectra are small. When the natural period of
cable net glazing is larger than 2 s, which increases the natural
period, the displacement of cable net glazing is larger than 1/50 of the
structural span, and the nonlinear acceleration spectra are much
larger than the linear acceleration spectra. The differences between
the linear and nonlinear acceleration spectra are far smaller than
those between the linear and nonlinear displacement spectra. The
nonlinear period decreases as the structural displacement increases,
so the nonlinear response spectra shape moves to the right compared
with the linear response spectra shape. When the amplitudes of
seismic waves are larger, the rightward movement of the response
spectra is more obvious.

On the basis of comparisons between the nonlinear and linear
response spectra for the three ground motion records analyzed, the
conclusion can be drawn that when the natural period of cable net
glazing is less than 2 s, the differences between the nonlinear and
linear response spectra are small. This conclusion is very important
because the first natural period of cable net glazing in practice is
always less than 2 s. Thus, this conclusion is meaningful in a broader
sense. The linear response spectra in the code for the seismic design
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Fig. 16. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an Olympia wave with 400 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra

of buildings can be used in the seismic design of cable net glazing as
an approximation rather than the nonlinear response spectra of cable
net glazing.

Dominant Modes in the Mode Decomposition
Response Spectrum Method

Cable net glazing is a structure with multiple degrees of freedom,
and when the mode decomposition response spectrum method is
used in the seismic design of cable net glazing, there may be more
than one mode that contributes to the seismic response. The number
of modes that should be chosen, and which mode should be chosen,
requires a criterion for choosing the dominant modes.

Criteria for Choosing Dominant Modes

For structures subject to dynamic loads, whether a mode is domi-
nant or not depends on two important factors. First, the frequency of
the mode should be included in the load frequency spectra; thus, the
mode can be excited, and the closer the mode frequency is to the
predominant frequency of dynamic loads, the greater the contribu-
tion of the mode is to the structural seismic response. Second, the
relationship between the spatial distribution of dynamic loads and
the vibration mode shape is very important, and the closer the spatial
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Fig. 17. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an Olympia wave with 620 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra

distribution of dynamic loads comes to the mode shape, the more
easily the mode can be excited.

An earthquake wave is a narrow-band random process, and the
frequencies of cable net glazing are within the range of the fre-
quencies earthquake waves. The orthogonality between the spatial
distribution of seismic loads and the vibration shape is the key factor
in deciding whether the mode can be excited or not. The seismic load
is [M] Vi, (t), [M] is the structural mass matrix, and w,(7) is the
ground motion acceleration. The mass matrix [M] gives the spatial
distribution of seismic loads, and the ground motion acceleration
We(f) gives the frequency content and intensity of the seismic load.
Thus, the relationship between the spatial distribution of the seismic
load and the vibration mode can be replaced by the relationship
between the mass matrix [M] and the vibration mode shape by
Wilson et al. (1982).

The modal contribution coefficient is introduced to describe the
relationship between the mass matrix and the vibration mode shape
of cable net glazing, and it is used to choose dominant modes. The
spatial pattern of the dynamic load can be expressed as shown in
Eq. (37) by Joo et al. (1989):

F(s) = 3. ¢/ F(s)Me; 37
=1
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Fig. 18. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an El Centro wave with 220 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra

The spatial pattern of the seismic load is the mass matrix:

F(s)=M

The modal contribution coefficient #;, shown in Eq. (38), is the
contribution of mode j to the spatial pattern of the seismic load by
Gu et al. (2000). It describes the participation content of modes in
seismic responses:

FT(s)g] F(s)Mg; M" o/ MM¢; s
FT()F(s) MM

hj = (38)

The sum of the modal contribution coefficients 7; is equal to one.

Combination of Modal Responses

In the Chinese seismic code, the combination of the modal res-
ponses in the response spectrum method is the square root of the sum
of the squares of the model responses (SRSS). For cable net glazing,
the modal nodal displacements and cable forces were combined by
the SRSS method. The SRSS combination method is applicable
when the structure is linear. When the structure is geometrically
nonlinear, the applicability of the SRSS combination method must
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Fig. 19. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an El Centro wave with 400 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra

be considered. Every modal load was applied on cable net glazing,
and a nonlinear static analysis was conducted. The load of all modes
was applied on the structure simultaneously, and the cable net was
modeled as a stiffness-hardening structure. The structural stiffness
subject to every modal load is therefore less than the real structural
stiffness subject to all modal loads. Thus, the structural seismic re-
sponse with the SRSS combination is larger than the real seismic
response of cable net glazing, and it is safer to use the SRSS com-
bination. Feng et al. (2009) have shown that in the seismic response
of cable net glazing, the first mode is dominant. Therefore, the error
of the SRSS combination method might be small. The accuracy of
the SRSS combination method was verified by the following
nonlinear time history calculation with FE models.

Verification of the Mode Decomposition Response
Spectrum Method

The five cable net glazing models described above were employed,
and their seismic responses were calculated by the response spec-
trum method. The seismic design site condition was Beijing, on Site
1 in Group 1, and the earthquake action was a rare 8-degree inten-
sity earthquake. The predominant period of the site during the
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Fig. 20. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an El Centro wave with 620 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra

earthquake was 0.35 s. The periods and mode shapes of the five FE
models were computed using a commercial FE package, ANSYS.

The modal contribution coefficients of the first 30 modes of the
five models are shown in Table 2. The proportional contribution of
the first mode was more than 75% and played a major role. The
modal contribution coefficients of symmetric modes are larger than
those of asymmetric modes. Thus, the symmetric modes were the
main modes in the vibration of the cable net under seismic loads, and
the first mode was dominant.

The modal contribution to the structural displacement is shown
in Figs. 22-26. The horizontal direction was assumed to be the
x direction, the wind direction was the ydirection, and the vertical
direction was the z direction. The origin of the coordinates was the
left corner of the cable net glazing. As the out-of-plane nodal dis-
placements in the y direction were far larger than those in the x and
zdirections, which were in-plane nodal displacements, only the out-
of-plane displacement in the y direction was compared. The nodal
displacement along the vertical direction through the midpoint of the
cable net glazing was chosen.

There are two hypotheses when the mode decomposition response
spectrum method is used for cable net glazing. One is that the linear
spectra can be substituted for the nonlinear spectra of cable net glazing.
The other is that the structural stiffness subject to every modal load is

1456 / JOURNAL OF ENGINEERING MECHANICS © ASCE / OCTOBER 2013

J. Eng. Mech., 2013, 139(10): 1446-1459



Downloaded from ascelibrary.org by Missouri University of Science and Technology on 04/12/23. Copyright ASCE. For personal use only; all rights reserved.

Table 2. Comparison of Maximum Cable Forces according to the Nonlinear Time History Method and Mode Decomposition Response Spectrum Methods

Mode participation Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
coefficient 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Model 1 0.846 00 00 0.0 0.088 00 00 0.0 0.0 0.0 0.009 0.0 0.0 0.005  0.027
0.0 00 00 0.0 0.0 0.0 0.003 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Model 2 0.789 00 0.0 0.080 0.000 0.0 0.000 0.070 0.0 0.0 0.023  0.007 0.0 0.00 0.00
0.000 00 00 0.000 0.008 00 0014 0000 00 00 0.000 0.000 0.001 0.000 0.000
Model 3 0.761 00 0082 0000 0000 00 0000 0.027 0.0 0.074 0.000 0.000 0.000 0.008 0.013
0.000 0.0 0.000 0.003 0000 00 0.000 0.000 0.0 0.00 0.000 0.006 0.001 0.000 0.019
Model 4 0.761 00 0.083 0000 0028 00 0.000 0.000 0.0 0.00 0.013  0.000 0.000 0.000 0.067
0.000 0.0 0009 0006 0000 00 0.000 0.003 0.0 0.000 0.004 0.001 0.000 0.000 0.000
Model 5 0.767 00 0.084 0000 0029 00 0.000 0.014 0.0 0.000 0.000 0.000 0.000 0.008 0.000

0.000 0.0 0000 0005 0063 00 0.007 0.000 0.0 0.000 0.002 0.000 0.003 0.000 0.000
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Fig. 22. Comparison of displacement of Model 1

‘When the mode decomposition response spectrum method was used
to calculate the seismic response of the five models, the corresponding

less than the real structural stiffness subject to all modal loads and that
the structural seismic response with SRSS combination is larger than
the real seismic response of cable net glazing. The seismic
responses corresponding to these two hypotheses will deviate from
the real seismic responses. Thus, a nonlinear time history FE model
was used to verify the mode decomposition response spectrum
method.

acceleration response spectra subject to different seismic waves were
used. The acceleration response spectra subject to a Taft wave with 400
gal are shown in Fig. 21. Two types of combinations of modes were
used. In combination 1, only the first mode was considered. Combi-
nation 2 considered only the first two symmetric modes.
Comparisons of displacements from the nonlinear time history
analysis and the mode decomposition response spectrum method
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Table 3. Comparison of Maximum Cable Forces According to the
Nonlinear Time History Method and Mode Decomposition Response
Spectrum Methods

Maximum cable
tension (kN) Model 1 Model 2 Model 3 Model 4 Model 5

First mode 4.774 6.911 11.758  6.750 8.833
First two symmetric 4.781 6.913 11932  6.756 8.849
modes

Time history analysis  4.834 6916  12.141  6.757 8.850

subject to a Taft wave are shown in Figs. 22-26. The out-of-plane
nodal displacement along the vertical direction through the midpoint
of cable net glazing was chosen. As Figs. 22-26 show, the dis-
placement errors were all less than 6%. As the height-to-width aspect
ratio increased, the error of combination one increased. The error of
the nodal displacement at the edge of the cable net glazing was far
larger than the error of the midpoint displacement. When the height-
to-width aspect ratio was equal to 0.5, the displacement error was less
than 11%. When the height-to-width aspect ratio was equal to 0.25, the
error of the nodal displacement at the edge of the cable net glazing was
27%, which indicates that the higher-order modes play a role in the
structural seismic response. The error of the nodal displacement at the
edge of the cable net glazing in combination 2 was less than 10%.
The maximum cable forces for the five models by the three
methods are given in Table 3. The pretension in the cable forces was

excluded. As shown in Table 3, the differences in the cable forces
in the three methods for the five models were small. As shown in
Egs. 4-5, the increase in the cable force is proportional to the in-
crease in the square of the displacement derivative. When the rotation
angle (equivalent to the displacement derivative) of the cable net that
is caused by the displacement is very small, the variation amplitude
of the cable tension is far less than that of the displacement.
Based on the analysis of the seismic responses of the five models
by the three methods, the following conclusions can be drawn. The
mode decomposition response spectrum method is applicable to
calculation of the seismic response of cable net glazing, and the first
mode is dominant in the seismic response of cable net glazing. When
the height-to-width aspect ratio is between 0.5 and 2, the first mode is
sufficient for calculation of the seismic response of cable net glazing.
When the height-to-width aspect ratio is not between 0.5 and 2, the first
mode is accurate only in the largest displacement. If all the responses of
the cable net glazing are needed, the modal contribution coefficient can
be used to choose the dominant modes for cable net glazing precisely.
Use of the first two symmetric modes is an approximate method.

Conclusions

1. The continuous membrane theory is used to construct the static
equilibrium equation and the nonlinear vibration differential
equation of cable net glazing subject to earthquakes, and the
harmonic balance method is used to solve the analytic formula
of the nonlinear frequency. The analytic formula of the non-
linear frequency is simple, highly precise, and convenient for
use in engineering practice. The static and dynamic geometric
nonlinearity of cable net glazing is discussed in detail.

2. The nonlinear vibration differential equation and nonlinear
frequency presented in this paper form the basis of the non-
linear single-degree-of-freedom model for cable net glazing.
The nonlinear response spectra were determined using the
nonlinear single-degree-of-freedom model.

3. The nonlinear natural period decreases as the structural dis-
placement increases. Thus, the nonlinear response spectra
shape moves to the right compared with the linear response
spectra shape. When the amplitudes of the seismic waves are
larger, the rightward movement of the response spectra is more
obvious.

4. Because the first natural period of cable net glazing is always
less than 2 s in practice, the linear response spectra in the code
for the seismic design of buildings can be used in the seismic
design of cable net glazing as a reasonable approximation, in
place of the nonlinear response spectra of cable net glazing.
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