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Dynamic Nonlinearity and Nonlinear Single-Degree-
of-Freedom Model for Cable Net Glazing

Ruo-Qiang Feng, M.ASCE1; Jihong Ye2; Guirong Yan3; and Jin-Ming Ge4

Abstract: The nonlinear vibration differential equation and vibration frequency of cable net glazing subject to earthquake loading was deter-
mined, and a geometrically nonlinear single-degree-of-freedom model for cable net glazing was developed. The nonlinear response spectra
were established, and nonlinear time history analysis with finite element (FE) models was conducted to verify them. The nonlinear vibration
differential equation and frequency obtained as described in this paper provide a basis for the nonlinear single-degree-of-freedom model for
cable net glazing. The analytical formula for the nonlinear frequency with a simplified expression is highly precise and convenient for use
in engineering practice. For larger-amplitude seismic waves, the difference between the linear and nonlinear response spectra aremore obvious.
As the natural period of cable net glazing is always less than 2 s, the linear response spectra in the Chinese code for the seismic design of build-
ings can be used in the seismic design of cable net glazing as an approximation rather than the nonlinear response spectra of cable net glazing.
DOI: 10.1061/(ASCE)EM.1943-7889.0000575. © 2013 American Society of Civil Engineers.

CE Database subject headings: Cables; Seismic design; Vibration; Earthquake loads; Coating.

Author keywords: Point-supported glazing system; Geometric nonlinearity; Cable structure; Response spectra; Seismic design.

Introduction

Cable net glazing is becoming increasingly appealing because of its
translucence, lightness, and energy savings. It is attractive from both
an architectural and a climatic point of view, as shown in Fig. 1. The
earliest research in the design of cable net glazing was conducted by
Schlaich (2004), Schlaich et al. (2005), Schober and Scheider (2004),
and Feng et al. (2009). Those designs are widely used in airport
passenger terminals, exhibition centers, gymnasia, and hotel halls.

The technological and morphological aspects of the connection
joints of cable net glazing were first addressed by Vyzantiadou and
Avdelas (2004). The construction details of the point-fixed connection
joints were analyzed byBrodniansky andAroch (2001) and by Saitoh
et al. (2001). Themechanical behavior of the glass panels was studied
by Feng et al. (2007, 2012). Feng et al. (2007, 2009) investigated the
effect of the stiffness of the glass panels on the static and dynamic
performance of cable net glazing. A shaking table test of cable net

glazing was conducted by Feng et al. (2010) to investigate the
connection between cable and glass panels in earthquakes.

However, very little research has been conducted on the geo-
metric nonlinearity and nonlinear seismic performance of cable net
glazing. While cable net glazing is a structurally important part of a
building, the loss of glass panels because of seismic activity cannot
be neglected. In the Michoacán, Mexico, earthquake in 1985, ac-
cording to the disaster statistics, 63 of the 263 total glass panels were
broken. In the Northridge, California, earthquake in 1994, 40–60%
of glass panelswere broken (Pantelides et al. 1996). In addition to the
direct losses caused by the earthquake, secondary losses included
injuries and deaths caused by the fallen glass panels.

Cable net glazing is a plane structure that does not have a nega-
tive Gauss curvature and thus has a relatively lower stiffness in the
direction perpendicular to the plane of the cable net. The permissible
deflection of cable net glazing is normally 1/50 of the span, but for
some special cases, it may be 1/40 of the span in technical spec-
ification for cable structures of China JGJ257–2012 (Ministry of
Construction 2012), which indicates that it is important to consider
geometric nonlinearity in the analysis of cable net glazing. The
frequencies of a cable net depend on its displacement. The vibrating
displacement of a cable net changes when it is subjected to seismic
loads, and the frequencies of the cable net also change (Feng et al.
2009). The response spectrum method in the seismic design code
(Ministry of Construction 2010) of China for linear and elastic
structures thus has some limitations with respect to the seismic
design of nonlinear cable net glazing, and the geometric nonlinear
response spectra for cable net glazingmust be studied. In theChinese
technical code for glass curtain wall engineering by Ministry of
Construction (2003) of China, the seismic force on glass panels is
five times the maximum seismic force on buildings, but this seismic
design method for glass panels is not applicable to cable net glazing,
and it greatly increases the seismic force on cable net glazing
(Ministry of Construction 2010).

In this study, the nonlinear static equilibrium equation and the
nonlinear vibration differential equation of cable net glazing subject
to dynamic loads were determined, and the static and dynamic
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geometric nonlinearity of cable net glazing was examined. A geo-
metrically nonlinear single-degree-of-freedom model for cable net
glazing was developed, and a nonlinear time history analysis was
conducted with an FE model to verify the nonlinear single-degree-
of-freedom model. The nonlinear single-degree-of-freedom model
was then used to determine the nonlinear seismic response of cable
net glazing subject to seismic waves with the time history method.
The linear and nonlinear acceleration and displacement spectra
were compared. Finally, on the basis of nonlinear spectra, the seis-
mic response of cable net glazing was analyzed by the mode de-
composition response spectra method.

Nonlinear Static Equilibrium Equation of Cable Net
Glazing Based on Membrane Theory

Membrane theory by Krishna (1978) is adopted to determine the
nonlinear static equilibrium equation of a cable net, and the cable net
is modeled in the form of an isotropic continuous membrane. The
analytical expressions of the nonlinear static equilibrium equation
can be obtained with good precision using membrane theory by
Irivne (1992).

The assumptions in this paper are as follows:
1. The cable net is assumed to be a continuous isotropic tension-

only membrane,
2. Only the out-of-plane nodal displacements of the cable net are

considered, and the in-plane nodal displacements are neglected,
and

3. The displacement shape of the cable net subject to uni-
formly distributed loads is assumed to be a symmetric func-
tion, namely w1ðx, yÞ5 sin½pðx=LxÞ�sin½pðz=LzÞ�.

where the coordinate system is shown in Fig. 2, the horizontal di-
rection is assumed to be the x direction, the wind direction is the
y direction, the vertical direction is the z direction, and the origin of
the coordinates is the left corner of the cable net glazing.

When the central nodal displacement of the structure is uc, any
nodal displacement is

u ¼ uc sin

�
p

�
x
Lx

��
sin

�
p

�
z
Lz

��
(1)

Subject to uniformly distributed loads, the static equilibrium equa-
tion of any node in the cable net is

�
Hx þ hx

� ∂2u
∂x2

þ
�
Hz þ hz

� ∂2u
∂z2

¼ 2P0 (2)

where Hx and Hz 5 unit-distance horizontal components of the ini-
tial cable pretension in the x and z directions, hx and hz 5 unit-
distance horizontal components of the cable tension increment in the
x and z directions, and P0 5 uniform-distributed load.

The expressions for hx and hz are

hx ¼ EAxDLx=Lx (3)

hz ¼ EAzDLz=Lz (4)

where Ax and Az 5 unit-distance cross-sectional areas of the cables
in the x and z directions, and E 5 Young’s modulus of the cable.

The elongation of the cable is

DLx ¼ 1
2

ðLx
0

�
∂y
∂x

�2
dx ¼ u2c sin

2
�
pz
Lz

��
ð4LxÞ (5)

Fig. 1. Time Warner Center in New York; (a) outside view; (b) inside
view

Fig. 2. Model of a cable net facade
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DLz ¼ 1
2

ðLz
0

�
∂y
∂z

�2

dz ¼ u2c sin
2
�
px
Lx

��
ð4LzÞ (6)

By substitution of Eqs. (3)–(6) into Eq. (1), one obtains

Hx
∂2u
∂x2

þ Hz
∂2u
∂z2

þ EAx
p2u2c
4L2x

sin2
�
pz
Lz

�
∂2u
∂x2

þ EAz
p2u2c
4L2z

sin2
�
px
Lx

�
∂2u
∂z2

¼ 2P0 (7)

Eq. (7) is the nodal displacement in the cable net. When the left and
right sides of Eq. (7) are integrated in the field of integration of the
whole cable net, the structural equilibrium equation of the cable net
can be obtained after simplification as 

Hx

L2x
þ Hz

L2z

!
uc þ

 
EAx

p2

6L4x
þ EAz

p2

6L4z

!
u3c ¼ P0

4
(8)

where the linear part of the structural stiffness is

a ¼
 
Hx

L2x
þ Hz

L2z

!
(9)

and the nonlinear part of the structural stiffness is

b ¼
 
EAx

p2

6L4x
þ EAz

p2

6L4z

!
u2c (10)

When the structural span is determined, Eq. (9) shows that the initial
linear part of the structural stiffness of the cable net is decided only
by the cable pretension. Eq. (10) shows that the nonlinear part of
the structural stiffness is decided by the cable axial rigidity and
structural displacement, and it also shows that cable net glazing
is a stiffness-hardening structure. The nonlinear coefficient l is
defined as the ratio between the nonlinear part and the linear part
of the structural stiffness, and the expressions for l is

l ¼ b
a
¼
	
EAx



p2=6L4x

�þ EAz


p2=6L4z

��
u2c

Hx=L2x þ Hz=L2z
(11)

Example 1 is presented to illustrate the role of the nonlinear co-
efficient l. The analysis model is shown in Fig. 2. The size of the
model is 153 15 m with the glass mesh being 1:53 1:5 m, and the
concentrated nodal mass is 146.25 kg (for a thickness of midhollow
armored glass of 8 mm1 8 Air mm1 8 mm). The cable preten-
sions Hx and Hz are 20 kN, the areas of the cables in the x and
z directions are 202:3E2 6 m2, and the Young’s modulus of the
cables is 1:3E11 N=m2. The maximum central nodal displacement
under the action of mean wind load is 1=150 of the span of the cable
net.

As the cable axial rigidity and structural displacement increase,
the nonlinear coefficient l increased. Assuming that Ax 5Az and
Lx 5 Lz, the initial cable strain isa5Hx=EAx. Eq. (11) can be further
simplified as

l ¼ p2u2c
6aL2x

(12)

As shown in Eq. (12), the nonlinear coefficient l is decided by the
initial strain a and the square of the dimensionless deformation

uc=Lx. The curve of the nonlinear coefficient l and the dimensionless
deformation uc=Lx with three types of initial cable strain are shown
in Fig. 2. As shown in Fig. 3, when the dimensionless displacement
is less than or equal to 1/250, the nonlinear coefficient l is less than
3%; when the dimensionless displacement is 1/50, the nonlinear
coefficient is more than 26%. These results demonstrate that the
nonlinear part of the structural stiffness plays an important role and
should be considered.

Nonlinear Vibration Differential Equation of Cable Net
Glazing Based on Membrane Theory

Membrane theory by Krishna (1978) is also employed to determine
the nonlinear vibration equation of a cable net subject to seismic
loading.

The assumptions are as follows:
Assumptions 1 and 2 are the same as in Nonlinear Static Eq-

uilibrium Equation of Cable Net Glazing Based on Membrane
Theory:
3. The first mode makes the dominant contribution to the seis-

mic response of a cable net subject to seismic loading in
the usual range of height–width ratios (0.5–2) by Feng et al.
(2009, 2010),

4. The first mode is assumed to be a symmetric function, namely,
w1ðx, zÞ5 sin½pðx=LxÞ�sin½pðz=LzÞ�.

As the first mode makes the dominant contribution to the seismic
response, the central nodal displacement of the structure iswðtÞ, and
any nodal vibrating displacement is

w1ðx, z, tÞ ¼ wðtÞsin
�
p

x
Lx

�
sin

�
p

z
Lz

�
(13)

Subject to seismic loads, any nodal displacement vibration equation
of the cable net can be derived from Newton’s second law by
Krishna (1978)

m
∂2w1

∂t2
2

�
Hx

∂2w1

∂x2
þ Hz

∂2w1

∂z2
þ hx

∂2w1

∂x2
þ hz

∂2w1

∂z2

�
þ c

∂w1

∂t
¼ mwgðtÞ::

(14)

where wgðtÞ::
is ground motion acceleration.

Fig. 3. Curve of l versus dimensionless displacement for different
initial cable strains
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The elongation of the cable is

DLx ¼ 1
2

ðLx
0

�∂w1

∂x

�2
dx (15)

DLz ¼ 1
2

ðLz
0

�
∂w1

∂z

�2

dz (16)

After substitution of Eqs. (13), (15), and (16) into Eqs. (3) and (4),
the cable tension increment is

hx ¼ p2EAxwðtÞ2 sin2
�
pz
Lz

��

4L2x
�

(17)

hz ¼ p2EAzwðtÞ2 sin2
�
px
Lx

��

4L2z
�

(18)

By substitution of Eqs. (17) and (18) into Eq. (14), one obtains

m
∂2w1

∂t2
2

�
Hx þ p2EAx

wðtÞ2
4L2x

sin2
�
pz
Lz

��
∂2w1

∂x2

2

"
Hz þ p2EAzwðtÞ2

4L2z
sin2

�
px
Lx

�#
∂2w1

∂z2
þ c

∂w1

∂t
¼ mwg



t
�::

ð19Þ
where m is the mass of a unit area of the cable net and c is the
damping.

Eq. (19) is the nodal displacement vibration equation in the cable
net.When the left and right sides of Eq. (19) are integrated in thefield
of integration of the whole cable net, the structural displacement
vibration equation of the cable net can be obtained as follows after
simplification:

mwðtÞ:: þ cw
: ðtÞ þ

"
p2Hx

L2x
þ p2Hy

L2y

þ 2
3

 
p2

L2x

p2EAx

4L2x
þ p2

L2z

p2EAz

4L2z

!
w2ðtÞ

#
wðtÞ

¼
ðLx

0

ðLz

0

m€wgðtÞdx dzp2

4LxLz
ð20Þ

Eq. (20) is the nonlinear vibration differential equation of the cable
net subject to seismic loading. The linear part of the structural
stiffness is ½ðp2Hx=L2xÞ1 ðp2Hz=L2z Þ�, while the nonlinear part is
2=3½ðp2=L2xÞðp2EAx=4L2xÞ1 ðp2=L2z Þðp2EAz=4L2z Þ�w2ðtÞ, and the
structural vibrating displacement wðtÞ is included.

Eq. (20) can be further simplified as

mwðtÞ:: þcw
: ðtÞ þ ðkl þ knÞwðtÞ ¼

ðLx

0

ðLz

0

m€wgðtÞdx dzp2

4LxLz
(21)

where kl 5 ðp2Hx=L2x 1p2Hz=L2z Þ is the linear part of the structural
stiffness in the vertical position and kn 5 2=3½ðp2=L2xÞ ðp2EAx=4L2xÞ
1 ðp2=L2z Þðp2EAz=4L2z Þ�w2ðtÞ is the nonlinear part of the structural
stiffness.

In the preceding nonlinear differential equation, Eq. (21), the
square nonlinearity is included, so Eq. (21) is the Duffing equation.

Given that b. 0 and that Eq. (21) is the hard-spring type of the
Duffing equation, the correspondingmathematical method is used to
solve the nonlinear frequency.

Derivation of the Analytic Formula of the
Nonlinear Frequency

The free vibration equation without damping of Eq. (21) is

wðtÞ:: þ awðtÞ þ bw3ðtÞ ¼ 0 (22)

wherea5ðp2Hx=L2x1p2Hy=L2yÞ=m,b52=3½ðp2=L2xÞðp2EAx= 4L2xÞ
1ðp2=L2z Þðp2EAz=4L2z Þ�=m.

The structural stiffness is k5 ½a1 bw2ðtÞ�m, and the linear
structure’s frequency vL is

v2
L ¼ k1=m ¼ a (23)

where the structural stiffness k is nonlinear and includes the struc-
tural displacement wðtÞ. It is obvious that the structural frequency
cannot be calculated by Eq. (23) and that the frequency must be
obtained by directly solving the nonlinear vibration differential
equation.

Integral Algorithm of Nonlinear Frequency

The structural acceleration w
::
can be changed as follows by Nayfeh

and Mook (1979) and Dechao and Yufeng (2004)

w
:: ¼ dw

:

dt
¼ dw

:

dw
dw
dt

¼ dw
:

dw
w
: ¼ 1

2
dðw: Þ2
dw

(24)

So Eq. (24) can be written as

1
2
dðw: Þ2
dw

þ awþ bw3 ¼ 0 (25)

Because the structural velocity in the amplitude position is zero,
integrating Eq. (25) yields

1
2
w2: ¼

ðA
w



awþ bw3�dw (26)

where A is the amplitude.
According to Eq. (26), one can obtain the expression of the

velocity in any position

w
: ¼ dw

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ðA
w

ðawþ bw3Þdw

vuuut (27)

Eq. (27) can be written as

dt ¼ dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ðA
w



awþ bw3�dw

vuuut
(28)

Thus the structural vibration period is
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T ¼
ðT
0

dt ¼ 4
ðA
0

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ðA
w



awþ bw3�dw

vuuut
(29)

Eq. (29) can be simplified as

T ¼ 4
ðA
0

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðA22w2Þ þ b

2



A42w4�r (30)

Eq. (30) is the accurate integral algorithm of the nonlinear frequency
v5 2p=T , but it cannot be simplified continuously. It can be solved
only by the numerical method, which is not convenient for use.
Therefore, the harmonic balance method is used to determine the
simplified expression of the nonlinear frequency, which fits well in
a strongly nonlinear system by Dechao and Yufeng (2004).

Harmonic Balance Method

Because there are cubic nonlinear parts in the nonlinear differential
equation, the assumed displacement solution should include the
first-order harmonic components and constant

w ¼ A cosvt (31)

Substitution of Eq. (31) into Eq. (22) yields�
aþ 3bA2

4
2v2

�
A cosvt þ bA3 cos 3vt

4
¼ 0 (32)

Whencos 3vt is neglected and only cos vt is considered, the analytic
formula for the structural nonlinear frequency can be obtained

v ¼ vL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3b

4a
A2

r
¼ vLðeþ 1Þ (33)

where vL is the linear frequency of the structure. The coefficient of
the nonlinear frequency e is

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3b

4a
A2

r
2 1 (34)

The structural amplitude is included in Eq. (34), and the coefficient
of the nonlinear frequency e displays the effect of the geometric
nonlinearity on the nonlinear frequency.

Curves of the coefficient e versus the ratio of the amplitude to the
span for three types of cable strain are shown in Fig. 4. When the
amplitude is less than 1/250 of the span, the coefficient of the nonlinear
frequency is negligible. The coefficient e increases at an increasing rate
as the structural amplitude increases.When the amplitude is 1/50 of the
span, the coefficient is less than 16%, and the dynamic geometric
nonlinearity is less than the static geometric nonlinearity.

Verification of the Analytic Formula of the
Nonlinear Frequency

To verify the accuracy of the analytical formula for the nonlinear
frequency given byEq. (33), the nonlinear frequency results obtained
from the integral algorithm method [Eq. (30)], the analytic formula
[Eq. (33)], and the nonlinear FEM time historymethod are compared.
In the nonlinear FEM time history method, the initial displacement

with a known amplitude is applied to the cable net, and then the cable
net vibrates freelywithout damping. Thus the nonlinear frequency can
be calculated directly from the time history displacement curve.

The analysis model is shown in Fig. 2. The size of the model is
153 15 m with the glass mesh being 1:53 1:5 m, and the concen-
trated nodal mass is 146.25 kg (for a thickness of midhollow armored
glass of 8 mm1 8 Air mm1 8 mm). The cable pretension Hx and
Hz are 20 kN, the areas of the cables in the x and z directions are
202:3E2 6 m2, theYoung’s modulus of the cables is 1:3E11 N=m2.
The maximum central nodal displacement under the action of the
mean wind load is 1=150 of the span of the cable net.

Eq. (21) is the Duffing equation, and in the undamped free vi-
bration of Eq. (22), there is not only the harmonic component v, but
also 3v, 5v, and other high-order harmonic components by Kwan
(2000). The preceding characteristic can be observed in the central
nodal FEM time history displacement of the cable net, as shown in
Fig. 4. However, the high-order harmonic components contribute
a very small proportion and can be neglected. Fig. 5 shows that the
larger the amplitude, the larger the nonlinear frequency.

The results from the three methods, given in Table 1, are very
close. All of the errors are less than 0.9%. Thus, the analytical formula
for the nonlinear frequency of Eq. (33) is considered to satisfy the
precision requirement.

Nonlinear Elastic Single-Degree-of-Freedom Model

Figs. 3 and 6 show that the static and dynamic nonlinearity of cable
net glazing needs to be considered, so the response spectrummethod
in the seismic design code by Ministry of Construction (2010) of
China for linear and elastic structures has some limitations for the
seismic design of nonlinear cable net glazing, and the geometric
nonlinear response spectra for cable net glazingmust be studied. The
results of the shaking table test by Feng et al. (2009) showed that
the first mode is dominant in the seismic displacement response
of cable net glazing subject to seismic loads. Thus, the geometric
nonlinearity of the structure is reflected in the first mode of cable net
glazing. Because other modes play smaller roles in the displacement
response, the other modes are less nonlinear. Therefore, only the
nonlinear seismic response spectra of the first mode need be ad-
dressed. The nonlinear elastic single-degree-of-freedom model and
the response spectra studied in this paper refer to the nonlinear re-
sponse spectra of the first mode of cable net glazing. The nonlinear
elastic single-degree-of-freedom model needs to be determined first.

As shown in Eq. (21), the nonlinear part of the structural stiffness
includes the structural displacement, so the structural stiffness is

Fig. 4. Curves of the coefficient e of the nonlinear frequency versus
amplitude-span ratios
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concerned with the structural displacement and hardened system. The
multiple degrees of freedomof cable net glazing can be simplified to the
nonlinear elastic single-degree-of-freedom system, as shown in Fig. 7.

The structural linear frequency in the vertical position is

v1 ¼ k1=m ¼
 
p2Hx

L2x
þ p2Hy

L2y

!,
m

When the amplitude is A, the nonlinear frequency v is given by
Eq. (33).

When the linear frequency is vl, the linear natural period is Tl.
When the nonlinear frequency isv, the nonlinear natural period is T .
Thus, the relationships among these parameters are

Tl ¼ 1
vl
, T ¼ 1

v
, vl ,v, Tl . T

where T 5mTl, m, 1, and Sa9, Sa9, SaðTÞ, and SdðTÞ are the absolute
acceleration spectra and relative displacement spectra of the nonlinear
and linear single-degree-of-freedom systems, respectively. Because
the first natural period of cable net glazing is larger than 0.1 s, the
relationship between the nonlinear and linear response spectra is

Sa9ðTÞ ¼ SaðT1Þ ¼ SaðmTlÞ$ SaðTlÞ (35)

Sd9ðTÞ ¼ SdðT1Þ ¼ SdðmTlÞ$ SdðTlÞ (36)

As shown in Eqs. (35) and (36), there may be a large difference
between the response spectra of the linear and nonlinear single-
degree-of-freedom systems. Design response spectra in the Chinese
code for seismic design are given in Fig. 8, where the horizontal axis
is the structural natural period, and the vertical axis is the structural
absolute acceleration response. SI, SII, SIII, and SIV are four types
of local site conditions. As shown in Fig. 8, when m, 1, for the
response spectra of cable net glazing, the nonlinear response spectra
can be regarded as the rightward movement of the linear response
spectra because cable net glazing is a stiffness-hardening structure;
therefore, the real working natural period of cable net glazing is less
than the initial calculation period. While the period used in calcu-
lating the response spectra was the initial period, the real response
spectra are the rightward movement of the calculating response
spectra; that is, the response spectra move toward the long period.

Fig. 5. Undamped free vibrating central displacement; (a) undamped
free vibrating central time-history displacement; (b) power spectra
density of central displacement

Table 1. Comparison of the Nonlinear Frequency Results from the Integral
Algorithm, Analytical Formula, and FEM Time History Methods

Amplitude/
span

FEM
(Hz)

Eq. (29)
(Hz)

Error
(%)

Analytical
Eq. (32) (Hz)

Error
(%)

0 1.0085 1.0127 0.411 1.0127 0.416
1=400 1.0104 1.015 0.45 1.015 0.45
1=200 1.0169 1.0218 0.48 1.0218 0.48
1=100 1.0421 1.0485 0.61 1.0485 0.61
1=50 1.1402 1.1483 0.71 1.1492 0.79
1=40 1.2083 1.2173 0.744 1.2189 0.877
1=30 1.3464 1.3535 0.53 1.3568 0.772

Fig. 6. Undamped free vibrating central nodal displacement of the cable net with different amplitudes
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As the response spectra of the nonlinear single-degree-of-freedom
system are different than those of the linear single-degree-of-freedom
system, the linear response spectra in the seismic design code have
some limitations for the seismic design of cable net glazing. The vi-
bration displacement of cable net glazing changes during an earth-
quake, so the frequencies of cable net glazing also change, and it is
very difficult to directly calculate the nonlinear response spectra of
cable net glazing according to the nonlinear frequencies. The non-
linear response spectra can be determined only by the nonlinear
single-degree-of-freedom model. Hence, the time history method
was used to calculate the nonlinear response spectra of cable net
glazing subject to seismic loads, and the nonlinear response spectra
were also compared with the linear response spectra with different
seismic waves and ground motion acceleration amplitudes.

Verification of the Nonlinear Single-Degree-of-
Freedom Model

Verification of the Nonlinear Single-Degree-of-
Freedom Model

The nonlinear single-degree-of-freedom model is given in Eq. (20).
To verify the accuracy of the assumptions associated with the
nonlinear vibration equation based on continuous membrane theory
as described earlier, the precise results of the finite element (FE)
model with the nonlinear time history method subject to seismic
loads were compared with those of the nonlinear single-degree-of-
freedom model in this paper. The time history response of the
nonlinear single-degree-of-freedom model can be calculated using
a direct numerical time integration scheme such as Newmark’s
method. The corresponding program for calculating the response of
the nonlinear single-degree-of-freedom model can be developed
with the Matlab software.

The following five FE models of cable net glazing with typical
spans and height-to-width aspect ratios were chosen: Model 1,

213 21 m; Model 2, 183 12 m; Model 3, 303 15 m; Model 4,
363 12 m; and Model 5, 423 10:5 m, with height-to-width aspect
ratios of 1, 2/3, 0.5, 1/3, and 0.25, respectively. The glass mesh is
1:53 1:5 m. Because the structural mass and seismic loads are
symmetric, the seismic responses of themodelswith height-to-width
aspect ratios 1.5 and 2/3 are the same, as are those of themodels with

Fig. 7. Single-degree-of-freedom system

Fig. 8.Design response spectra in the Chinese code for seismic design

Fig. 9. Comparison of the time history curves for midpoint dis-
placement for FE Model 1 and the nonlinear SDOF model

Fig. 10. Comparison of the time history curves for midpoint dis-
placement for FE Model 2 and the nonlinear SDOF model

Fig. 11. Comparison of the time history curves for midpoint dis-
placement for FE Model 3 and the nonlinear SDOF model
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aspect ratios of 2 and 0.5, 3 and 1/3, and 4 and 0.25. Therefore, only
the seismic responses of the models with height-to-width aspect
ratios of 1, 2/3, 0.5, 1/3, and 0.25 are given. They are also the modes
in Validity of the Nonlinear Single-Degree-of-Freedom Model and
Verification of the Mode Decomposition Response Spectrum
Method. The seismic design site condition modeled was Beijing on
Site 1 in Group 1, and the earthquake action modeled was a rare 8-
degree intensity earthquake. Earthquakes are described as 7, 8, and 9
degrees, and the degrees do not refer toRichter scale. The degrees are
used to describe earthquake intensity in China code for seismic
design of buildings, and the corresponding amplitude of the ground
accelerations were 220, 400, and 620 gal, respectively. The pre-
dominant period of the site during the earthquake was 0.35 s.

Comparison of the time history curves of the midpoint dis-
placement of the cable net glazing subject to a Taft wave with an
acceleration amplitude of 400 gal, from the FE models and the
nonlinear single-degree-of-freedommodel, are shown in Figs. 9–13.

As Figs. 9–13 show, the time history curves of midpoint dis-
placement from the five FE models and the nonlinear single-degree-
of-freedom model are in most respects quite similar, and the largest
displacements are nearly the same. The differences between the
results from the FE models and the nonlinear single-degree-of-
freedom model are due to the effect of the high modes of the ca-
ble net glazing. Thus, the assumptions associated with the nonlinear
vibration equation based on continuous membrane theory and the

nonlinear single-degree-of-freedommodel presented in this paper is
believed to be accurate.

Validity of the Nonlinear Single-Degree-of-
Freedom Model

To validate the nonlinear single-degree-of-freedom model for cable
net glazing, the acceleration spectra of cable net glazing, for the five
models described earlier, were subjected to anOlympia (1949) wave
with an acceleration amplitude of 400 gal. The geometric non-
linearity of the five models was the same. The acceleration spectra
obtained for the five models are shown in Fig. 14. The acceleration
spectra curves for all of the FE models are coincident, which
indicates that the nonlinear single-degree-of-freedom model is
reasonable. The nonlinear response spectra are connected only with
the structural geometric nonlinearity of cable net glazing and have
nothing to do with the spans and the height-to-width aspect ratios.
Model 1 was used to calculate the response spectra of cable net
glazing subject to seismic waves.

Nonlinear Spectra of Cable Net Glazing

El Centro and Olympia (1949) seismic waves were selected to cal-
culate the response spectra of the nonlinear single-degree-of-
freedom model, and all of the earthquake records were recorded
on free fields or in the first floors of low-rise buildings.

The cable section and pretension of cable net glazing in the
examples were determined by wind loads, and the frequencies were
changed by the structural mass. The damping ratio of cable net
glazing is not given in the seismic design code and glass curtain
specification. On the basis of test results, the damping ratio was set at
0.02 in the examples by Feng et al. (2009). Because cable net glazing
is a geometrically nonlinear structure, the nonlinearity of cable net
glazing is closely related to its displacement, so both the acceleration
response spectra and displacement response spectra are discussed in
this paper. To compare the nonlinear and linear response spectra over
a wide range of frequencies, the structural natural period was ex-
tended to 10 s, which is longer than the long limitation period in the
Chinese code for the seismic design of buildings.

Comparisons of the nonlinear and linear response spectra for
the Olympia (1949) and El Centro seismic waves are shown in

Fig. 12. Comparison of the time history curves for midpoint dis-
placement for FE Model 4 and the nonlinear SDOF model

Fig. 13. Comparison of the time history curves for midpoint dis-
placement for FE Model 5 and the nonlinear SDOF model

Fig. 14. Nonlinear acceleration response spectra of all models subject
to an Olympia wave with 400 gal
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Figs. 15–20. The acceleration amplitudes of the seismic waves are
220, 400, and 620 gal, respectively, corresponding to rare earth-
quakes of 7, 8, and 9 degrees, respectively.

As shown in Figs. 15–20, when the natural period of cable net
glazing is less than 2 s, the differences between the nonlinear and
linear acceleration spectra are small. When the natural period of
cable net glazing is larger than 2 s, which increases the natural
period, the displacement of cable net glazing is larger than 1/50 of the
structural span, and the nonlinear acceleration spectra are much
larger than the linear acceleration spectra. The differences between
the linear and nonlinear acceleration spectra are far smaller than
those between the linear and nonlinear displacement spectra. The
nonlinear period decreases as the structural displacement increases,
so the nonlinear response spectra shape moves to the right compared
with the linear response spectra shape. When the amplitudes of
seismic waves are larger, the rightward movement of the response
spectra is more obvious.

On the basis of comparisons between the nonlinear and linear
response spectra for the three ground motion records analyzed, the
conclusion can be drawn that when the natural period of cable net
glazing is less than 2 s, the differences between the nonlinear and
linear response spectra are small. This conclusion is very important
because the first natural period of cable net glazing in practice is
always less than 2 s. Thus, this conclusion is meaningful in a broader
sense. The linear response spectra in the code for the seismic design

of buildings can be used in the seismic design of cable net glazing as
an approximation rather than the nonlinear response spectra of cable
net glazing.

Dominant Modes in the Mode Decomposition
Response Spectrum Method

Cable net glazing is a structure with multiple degrees of freedom,
and when the mode decomposition response spectrum method is
used in the seismic design of cable net glazing, there may be more
than one mode that contributes to the seismic response. The number
of modes that should be chosen, and which mode should be chosen,
requires a criterion for choosing the dominant modes.

Criteria for Choosing Dominant Modes

For structures subject to dynamic loads, whether a mode is domi-
nant or not depends on two important factors. First, the frequency of
the mode should be included in the load frequency spectra; thus, the
mode can be excited, and the closer the mode frequency is to the
predominant frequency of dynamic loads, the greater the contribu-
tion of the mode is to the structural seismic response. Second, the
relationship between the spatial distribution of dynamic loads and
the vibration mode shape is very important, and the closer the spatial

Fig. 15. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an Olympia wave with 220 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra

Fig. 16. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an Olympia wave with 400 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra
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distribution of dynamic loads comes to the mode shape, the more
easily the mode can be excited.

An earthquake wave is a narrow-band random process, and the
frequencies of cable net glazing are within the range of the fre-
quencies earthquake waves. The orthogonality between the spatial
distribution of seismic loads and the vibration shape is the key factor
in decidingwhether themode can be excited or not. The seismic load
is ½M� w::gðtÞ, [M] is the structural mass matrix, and w

::
gðtÞ is the

ground motion acceleration. The mass matrix [M] gives the spatial
distribution of seismic loads, and the ground motion acceleration
w
::
gðtÞ gives the frequency content and intensity of the seismic load.

Thus, the relationship between the spatial distribution of the seismic
load and the vibration mode can be replaced by the relationship
between the mass matrix [M] and the vibration mode shape by
Wilson et al. (1982).

The modal contribution coefficient is introduced to describe the
relationship between the mass matrix and the vibration mode shape
of cable net glazing, and it is used to choose dominant modes. The
spatial pattern of the dynamic load can be expressed as shown in
Eq. (37) by Joo et al. (1989):

FðsÞ ¼ Pn
j¼1

wT
j FðsÞMwj (37)

The spatial pattern of the seismic load is the mass matrix:

FðsÞ ¼ M

The modal contribution coefficient hj, shown in Eq. (38), is the
contribution of mode j to the spatial pattern of the seismic load by
Gu et al. (2000). It describes the participation content of modes in
seismic responses:

hj ¼
FTðsÞwT

j FðsÞMwj

FTðsÞFðsÞ ¼ MTwT
j MMwj

MTM
A (38)

The sum of the modal contribution coefficients hj is equal to one.

Combination of Modal Responses

In the Chinese seismic code, the combination of the modal res-
ponses in the response spectrummethod is the square root of the sum
of the squares of the model responses (SRSS). For cable net glazing,
the modal nodal displacements and cable forces were combined by
the SRSS method. The SRSS combination method is applicable
when the structure is linear. When the structure is geometrically
nonlinear, the applicability of the SRSS combination method must

Fig. 17. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an Olympia wave with 620 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra

Fig. 18. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an El Centro wave with 220 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra
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be considered. Every modal load was applied on cable net glazing,
and a nonlinear static analysis was conducted. The load of all modes
was applied on the structure simultaneously, and the cable net was
modeled as a stiffness-hardening structure. The structural stiffness
subject to every modal load is therefore less than the real structural
stiffness subject to all modal loads. Thus, the structural seismic re-
sponse with the SRSS combination is larger than the real seismic
response of cable net glazing, and it is safer to use the SRSS com-
bination. Feng et al. (2009) have shown that in the seismic response
of cable net glazing, the first mode is dominant. Therefore, the error
of the SRSS combination method might be small. The accuracy of
the SRSS combination method was verified by the following
nonlinear time history calculation with FE models.

Verification of the Mode Decomposition Response
Spectrum Method

The five cable net glazing models described above were employed,
and their seismic responses were calculated by the response spec-
trum method. The seismic design site condition was Beijing, on Site
1 in Group 1, and the earthquake action was a rare 8-degree inten-
sity earthquake. The predominant period of the site during the

earthquake was 0.35 s. The periods and mode shapes of the five FE
models were computed using a commercial FE package, ANSYS.

The modal contribution coefficients of the first 30 modes of the
five models are shown in Table 2. The proportional contribution of
the first mode was more than 75% and played a major role. The
modal contribution coefficients of symmetric modes are larger than
those of asymmetric modes. Thus, the symmetric modes were the
mainmodes in the vibration of the cable net under seismic loads, and
the first mode was dominant.

The modal contribution to the structural displacement is shown
in Figs. 22–26. The horizontal direction was assumed to be the
x direction, the wind direction was the y direction, and the vertical
direction was the z direction. The origin of the coordinates was the
left corner of the cable net glazing. As the out-of-plane nodal dis-
placements in the y direction were far larger than those in the x and
z directions, which were in-plane nodal displacements, only the out-
of-plane displacement in the y direction was compared. The nodal
displacement along the vertical direction through themidpoint of the
cable net glazing was chosen.

There are two hypotheses when the mode decomposition response
spectrum method is used for cable net glazing. One is that the linear
spectra can be substituted for the nonlinear spectra of cable net glazing.
The other is that the structural stiffness subject to every modal load is

Fig. 19. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an El Centro wave with 400 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra

Fig. 20. Comparison of nonlinear and linear acceleration and dis-
placement response spectra subject to an El Centro wave with 620 gal;
(a) comparison of nonlinear and linear acceleration response spectra;
(b) comparison of nonlinear and linear displacement response spectra
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less than the real structural stiffness subject to all modal loads and that
the structural seismic response with SRSS combination is larger than
the real seismic response of cable net glazing. The seismic
responses corresponding to these two hypotheses will deviate from
the real seismic responses. Thus, a nonlinear time history FEmodel
was used to verify the mode decomposition response spectrum
method.

When themodedecomposition response spectrummethodwasused
to calculate the seismic response of the five models, the corresponding
acceleration response spectra subject to different seismic waves were
used. The acceleration response spectra subject to a Taft wavewith 400
gal are shown in Fig. 21. Two types of combinations of modes were
used. In combination 1, only the first mode was considered. Combi-
nation 2 considered only the first two symmetric modes.

Comparisons of displacements from the nonlinear time history
analysis and the mode decomposition response spectrum method

Table 2. Comparison of Maximum Cable Forces according to the Nonlinear Time History Method and Mode Decomposition Response Spectrum Methods

Mode participation
coefficient

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Model 1 0.846 0.0 0.0 0.0 0.088 0.0 0.0 0.0 0.0 0.0 0.009 0.0 0.0 0.005 0.027
0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Model 2 0.789 0.0 0.0 0.080 0.000 0.0 0.000 0.070 0.0 0.0 0.023 0.007 0.0 0.00 0.00
0.000 0.0 0.0 0.000 0.008 0.0 0.014 0.000 0.0 0.0 0.000 0.000 0.001 0.000 0.000

Model 3 0.761 0.0 0.082 0.000 0.000 0.0 0.000 0.027 0.0 0.074 0.000 0.000 0.000 0.008 0.013
0.000 0.0 0.000 0.003 0.000 0.0 0.000 0.000 0.0 0.00 0.000 0.006 0.001 0.000 0.019

Model 4 0.761 0.0 0.083 0.000 0.028 0.0 0.000 0.000 0.0 0.00 0.013 0.000 0.000 0.000 0.067
0.000 0.0 0.009 0.006 0.000 0.0 0.000 0.003 0.0 0.000 0.004 0.001 0.000 0.000 0.000

Model 5 0.767 0.0 0.084 0.000 0.029 0.0 0.000 0.014 0.0 0.000 0.000 0.000 0.000 0.008 0.000
0.000 0.0 0.000 0.005 0.063 0.0 0.007 0.000 0.0 0.000 0.002 0.000 0.003 0.000 0.000

Fig. 21.Nonlinear acceleration response spectra subject to a Taft wave
with 400 gal

Fig. 22. Comparison of displacement of Model 1

Fig. 23. Comparison of displacement of Model 2

Fig. 24. Comparison of displacement of Model 3
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subject to a Taft wave are shown in Figs. 22–26. The out-of-plane
nodal displacement along the vertical direction through the midpoint
of cable net glazing was chosen. As Figs. 22–26 show, the dis-
placement errors were all less than 6%. As the height-to-width aspect
ratio increased, the error of combination one increased. The error of
the nodal displacement at the edge of the cable net glazing was far
larger than the error of the midpoint displacement. When the height-
to-width aspect ratio was equal to 0.5, the displacement error was less
than11%.When the height-to-width aspect ratiowas equal to0.25, the
error of the nodal displacement at the edge of the cable net glazingwas
27%, which indicates that the higher-order modes play a role in the
structural seismic response. The error of the nodal displacement at the
edge of the cable net glazing in combination 2 was less than 10%.

The maximum cable forces for the five models by the three
methods are given in Table 3. The pretension in the cable forces was

excluded. As shown in Table 3, the differences in the cable forces
in the three methods for the five models were small. As shown in
Eqs. 4–5, the increase in the cable force is proportional to the in-
crease in the square of the displacement derivative.When the rotation
angle (equivalent to the displacement derivative) of the cable net that
is caused by the displacement is very small, the variation amplitude
of the cable tension is far less than that of the displacement.

Based on the analysis of the seismic responses of the five models
by the three methods, the following conclusions can be drawn. The
mode decomposition response spectrum method is applicable to
calculation of the seismic response of cable net glazing, and the first
mode is dominant in the seismic response of cable net glazing. When
the height-to-width aspect ratio is between 0.5 and 2, the first mode is
sufficient for calculation of the seismic response of cable net glazing.
When the height-to-width aspect ratio is not between 0.5 and 2, thefirst
mode is accurate only in the largest displacement. If all the responses of
the cable net glazing are needed, themodal contribution coefficient can
be used to choose the dominant modes for cable net glazing precisely.
Use of the first two symmetric modes is an approximate method.

Conclusions

1. The continuousmembrane theory is used to construct the static
equilibrium equation and the nonlinear vibration differential
equation of cable net glazing subject to earthquakes, and the
harmonic balance method is used to solve the analytic formula
of the nonlinear frequency. The analytic formula of the non-
linear frequency is simple, highly precise, and convenient for
use in engineering practice. The static and dynamic geometric
nonlinearity of cable net glazing is discussed in detail.

2. The nonlinear vibration differential equation and nonlinear
frequency presented in this paper form the basis of the non-
linear single-degree-of-freedom model for cable net glazing.
The nonlinear response spectra were determined using the
nonlinear single-degree-of-freedom model.

3. The nonlinear natural period decreases as the structural dis-
placement increases. Thus, the nonlinear response spectra
shape moves to the right compared with the linear response
spectra shape. When the amplitudes of the seismic waves are
larger, the rightwardmovement of the response spectra ismore
obvious.

4. Because the first natural period of cable net glazing is always
less than 2 s in practice, the linear response spectra in the code
for the seismic design of buildings can be used in the seismic
design of cable net glazing as a reasonable approximation, in
place of the nonlinear response spectra of cable net glazing.
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