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ABSTRACT: The potential of phytoscreening for plume delineation at
contaminated sites has promoted interest in innovative, sensitive contaminant
sampling techniques. Solid-phase microextraction (SPME) methods have been
developed, offering quick, undemanding, noninvasive sampling without the use
of solvents. In this study, time-weighted average SPME (TWA-SPME)
sampling was evaluated for in planta quantification of chlorinated solvents.
TWA-SPME was found to have increased sensitivity over headspace and
equilibrium SPME sampling. Using a variety of chlorinated solvents and a
polydimethylsiloxane/carboxen (PDMS/CAR) SPME fiber, most compounds
exhibited near linear or linear uptake over the sampling period. Smaller, less
hydrophobic compounds exhibited more nonlinearity than larger, more
hydrophobic molecules. Using a specifically designed in planta sampler, field
sampling was conducted at a site contaminated with chlorinated solvents.
Sampling with TWA-SPME produced instrument responses ranging from 5 to over 200 times higher than headspace tree core
sampling. This work demonstrates that TWA-SPME can be used for in planta detection of a broad range of chlorinated solvents
and methods can likely be applied to other volatile and semivolatile organic compounds.

■ INTRODUCTION
Recent research has shown that plants can translocate
subsurface contaminants, thereby acting as biosensors to aid
in understanding of subsurface chemistry,1−3 a process termed
phytoforensics.4 A particular phytoforensic application, phyto-
screening, employs existing trees or new phytoremediation-
based plantings as sampling points to serve in plume
delineation or monitoring. Plants are extremely efficient at
actively removing water and obtaining nutrients from the
subsurface, which simultaneously allows a range of contami-
nants to be translocated to above-ground tissues, even when
present at very low chemical potentials. Some contaminants
available for plant uptake include volatile and semivolatile
organics, petroleum hydrocarbons, metals, polycyclic aromatic
hydrocarbons, nutrients, and explosives, although chlorinated
solvents are most frequently encountered for phytoscreening
applications.5−8 Detecting these contaminants requires sensitive
methods, as a number of contaminant-specific loss mechanisms,
such as volatilization, phytodegradation, or endophytic
degradation, may reduce plant concentrations relative to
groundwater concentrations.9,10 Further understanding of
contaminant interactions in the water−soil−gas−plant con-
tinuum may lead to more effective plant tissue sampling and
analysis, thereby allowing better understanding of the under-
lying water, soil, and vapor chemistry. Phytoscreening offers

great potential for rapid site assessments because of its effective,
economical, and noninvasive nature.11−14

Concentrations of chlorinated volatile organics (cVOCs) in
tree tissues have typically been analyzed by headspace analysis
of tree core samples or by direct measurement of the
volatilization of contaminants from the transpiration stream
through the use of diffusion samplers.3,15,16 Although these
methods do provide valuable data, each has limitations. Tree
core sampling requires time for each sample to equilibrate with
the headspace (typically 24 h).1 Similar equilibration periods
apply to methods for sampling the branches or leaves of trees.17

Headspace sampling, while straightforward and solvent-less,
dilutes the contaminant concentration into the headspace
volume and is limited to highly volatile compounds, as the
majority of the semivolatile compound mass will remain in the
tissue. Optimization of headspace methods is possible (e.g.,
heating, ref 11), but is difficult to apply to in planta sampling.
Tree core analysis is also limited by sampling volume, as a tree
core effectively samples only a very small percentage of the total
tree mass. Contaminant concentrations have been shown to
vary with height and radius, therefore the results from an
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individual tree core may not accurately reflect the overall
concentration in the tree.1,2,18

Diffusion samplers, another common method, operate by
collecting contaminants volatilized from a tree’s leaves and/or
stems. Typically, the contaminants diffusing out from the
biomass are collected in a sealed collar around the trunk of the
tree or a bag placed over selected leaves of the tree.19−21

Negative pressure is maintained in the collection device
through a pump. The pumped air is drawn through an
adsorptive material, such as activated carbon, for collection of
contaminants. The method requires relatively long sampling
times, portable equipment (pump), and aggressive desorption
with a thermal desorber or solvents in the analytical or sample
preparation steps. This sampling method is also subject to
background contamination.
Solid-phase microextraction (SPME) has been applied to a

wide range of environmental media for an array of analytic
applications,22−24 including in planta analysis to measure
compounds in plants. A variety of compounds have been
investigated, such as herbicides,25 as well as numerous volatiles
and semivolatiles.26 The solvent-less extraction technique
directly interfaces with a gas chromatograph (GC) to combine
sample extraction and desorption. The technology uses a thin
layer of high-sorption material, creating a sampler with a high
surface to volume ratio for rapid kinetics. Detection limits can
be low, although fiber kinetics may be affected by temperature,
pressure, humidity, barriers to diffusion, boundary layer
thickness, competitive adsorption, and sorption capacity.27−29

Chemical properties that govern the interaction of compounds
with the polymer coating include volatility, polarity, molecular
weight, and structure.
SPME fibers can be operated in two broad regimes:

equilibrium or kinetic. In the equilibrium regime, calibration
requires partition coefficients that accurately describe analyte
partitioning during sampling.30 SPME equilibrium sampling of
tree tissue for VOCs using the absorptive PDMS coating has
been recently described.14,24 Unfortunately, for highly volatile
analytes it remains difficult to obtain sufficient detection limits
with this approach due to the rather limited PDMS to air
partitioning coefficients. Much lower detection limits are
possible when using adsorptive, rather than absorptive, SPME
coatings, but these coatings are difficult to apply to well-defined
equilibrium sampling. In the kinetic regime, calibration requires
knowledge of uptake rates that can be strongly affected by
sampling conditions, such as air mixing/boundary layers,
humidity, and temperature. Passive samplers are increasingly
preloaded with performance reference compounds (PRC) to
deduce uptake rates from the release kinetics of the PRCs.31

Although this approach works well for absorptive sampling
when rate-limited by mass transfer through the air, it is much
more difficult to apply for adsorptive sampling of highly volatile
analytes.
For such volatile analytes, reproducible uptake kinetics can

be accomplished by including a diffusion barrier to achieve
time-weighted average (TWA) sampling. The purpose is to
combine a characterized, rate-limiting diffusion step with a
“zero sink” sampling phase to ensure meaningful sampling rates
and avoid back diffusion. This method of sampling has been
widely applied to PAHs,32 BTEX,27,33 semivolatile organ-
ics,33−35 volatile sulfur compounds,28 C5−C11 n-alkanes,29 and
formaldehyde.36,37 In TWA-SPME, the fiber is retracted into
the needle to limit mass transfer such that Fick’s first law
applies to diffusion through the needle cross-section (Figure

1).29,33,37−40 The measured average concentration in the media
(C̅) is dependent on needle cross-sectional area (A), diffusion

path length (Z), sampling time (t), analyte diffusivity in air or
water (D), and the analyte mass extracted (n), as shown in eq
1.32

̅ =C
nZ

ADt (1)

Three important assumptions are made in writing eq 1.33 First,
the concentration at the sampler face must equal the
concentration in the bulk phase (i.e., well-mixed system).
Second, the sampler must respond proportionally to ambient
concentrations (i.e., rapid response time). Third, the fiber must
remain a “zero sink” for the analyte during the extraction
process. If the fiber concentration becomes greater than 5% of
the equilibrium fiber concentration, the response over time will
be nonlinear due to decreasing analyte flux.41

This study evaluates the effectiveness of TWA-SPME for
qualitative and quantitative analysis of several chlorinated
solvents commonly found in contaminated groundwater. In
addition, the use of TWA-SPME for in planta sampling is
demonstrated. For in planta sampling, TWA-SPME analysis can
sample a larger portion of the tree in a potentially quantifiable
way, as mass transfer can be limited by the needle, not by
diffusion through the tree. Coupled with a portable GC, in
planta SPME-TWA can improve phytoscreening by yielding
groundwater information onsite, allowing adaptive sampling
plans that are better able to locate concentrated areas of
contamination.

■ MATERIALS AND METHODS
Two SPME fibers were used in the analyses: a 100-μm
polydimethylsiloxane (PDMS) fiber and an 80-μm composite
PDMS/Carboxen (PDMS/CAR) fiber (Supelco, Bellefonte,
PA). A Supelco SPME fiber holder was used to handle the
fibers and set the retraction lengths. Prior to sampling, all
SPME fibers were conditioned in the GC injection port by fully
exposing them for 10 min at 250 °C.
The compounds used in this study included three classes of

chlorinated solvents: chloromethanes, chloroethanes, and
chloroethenes. Within each compound class, three compounds
were chosen for study because of their physical properties and
likelihood of contamination in the environment. The
compounds studied were dichloromethane (DCM), chloroform
(CF), carbon tetrachloride (CT), 1,2-dichloroethane (DCA),
1,1,2-trichloroethane (TCA), 1,1,2,2-tetrachloroethane
(TetCA), cis-1,2-dichloroethene (cDCE), trichloroethene
(TCE), and tetrachloroethene (PCE). All compounds were
acquired from Fisher Scientific and were reagent grade or
higher purity.

Figure 1. Schematic of TWA-SPME, showing Fickian diffusion
through the needle and the idealized concentration gradient in the
sampler. The fiber is retracted a distance Z into the needle.
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All samples were analyzed by an Agilent 6890N GC with
μECD detection. The GC inlet was set at 250 °C with a 0.75-
mm diameter inlet liner for SPME samples. The GC was
operated in constant pressure mode with an average carrier gas
(nitrogen) velocity of 30 cm/s. Oven temperatures varied by
compound class: 30 °C (isothermal) for chloromethanes; 30
°C for 1.5 min, 20 °C/min to 100 °C for chloroethanes; and 50
°C for 2 min, 20 °C/min to 100 °C for chloroethenes. All runs
were 6 min in duration using an HP-5 column (30 m × 0.32
mm × 0.25 μm).
Extraction Method Sensitivity. Sensitivity of the SPME

methods was evaluated against headspace sampling. Standard
solutions were prepared using silicone oil as the solvent (Acros
Organics, Geel, Belgium). The silicone oil was then applied as a
passive dosing phase for the buffering of analyte concentrations
in the headspace. The buffered concentrations allowed for
longer sampling times without depleting the headspace.24

All extraction techniques were tested at four concentrations:
1, 10, 50, and 100 mg/L of PCE and TCE in silicone oil.
Headspace sampling was performed using a 0.25-mL injection,
while the PDMS fiber was exposed to the vial headspace for 5
min to reach equilibrium.14,23 TWA-SPME sampling utilized
the PDMS/CAR fiber at a retraction distance of 0.5 cm and
extraction times of 10 min, 1 h, and 2 h. All sampling was
performed at 30 °C.
TWA Linearity. To use TWA-SPME in the field

quantitatively, method linearity for chlorinated solvents was
tested using the 80-μm PDMS/CAR SPME fiber. This
composite fiber is a good candidate for TWA-SPME, as it has
a higher affinity for small VOCs than a PDMS fiber.42,43

Sampling was conducted by exposing the fiber to the headspace
above spiked silicone oil for a specified duration with the fiber
retracted a known distance into the needle housing. Sampling
times were 0.5, 2, 5, 15, 30, 60, and 120 min for each retraction
length (0.5, 1.0, and 1.5 cm) and each compound class.
Samples were prepared by placing approximately 1 mL of

spiked solution into 22-mL glass vials capped with Teflon-lined
septa. Neat chlorinated solvents were added to silicone oil to
give a stock solution for each compound class. These solutions
were then diluted 100-fold in silicone oil to arrive at the
experimental concentrations, as shown in Table SI1. Before
sampling, the vial was rotated to allow the sample to coat the
sides of the vial, increasing mass transfer to the headspace.
During sampling, the vial, holder, and fiber remained
motionless and at room temperature on the lab bench.
Immediately after sampling, fibers were analyzed by GC.
For consistency, a single fiber, vial, and spiked solution

sampled each contaminant class, which increased the potential
for depletion of the solution as contaminant mass was removed

by each sampling event. Equilibrium sampling was conducted in
duplicate before and after each TWA-SPME experiment to
verify that the sample headspace was not substantially depleted
during TWA-SPME sampling and to obtain a measurement of
headspace concentration. Equilibrium sampling was conducted
by fully exposing a PDMS SPME fiber in the headspace for 4
min. Analysis was performed using the GC methods described
above.
To examine linearity, linear regression was performed in SAS

using PROC REG (SAS Institute, Cary, NC). Equation 1 was
rearranged such that TWA peak area (PA) normalized by
equilibrium sampling PA was regressed against sampling time
divided by retraction distance (eq 2).

∝
̅

= ⎜ ⎟
⎛
⎝

⎞
⎠

n
C

DA
t
Z

PA
PA

TWA

EQ (2)

To ensure homoscedasticity, both quantities were log10
transformed. The resulting linear equation was fitted by the
procedure, where M is a parameter with a value of unity if the
two quantities are linearly related (eq 3).

̅
= · +⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

n
C

M
t
Z

DAlog log log ( )10 10 10 (3)

TWA-SPME was considered linear for the analyte if the 95%
confidence interval of M included unity.

Field Sampling. Field sampling was conducted at the
Kellwood Site (OU2) of the Riverfront Superfund Site in New
Haven, Missouri. Previously, the subsurface PCE contamination
at the Riverfront Superfund Site (OU1) and at the Kellwood
Site was characterized using tree core sampling.2,44

Tree cores were taken using a 5-mm increment borer as
described previously.1 Cores were immediately transferred to a
22-mL vial and capped with Teflon-lined septa. The samples
were stored for 24 h at room temperature before analysis to
allow equilibration between the vial headspace and the tree
tissue. Tree cores were analyzed by sampling the headspace
with a 0.1-mL syringe followed by direct injection into the GC.
In planta sampling of the tree using the PDMS/CAR SPME

fiber was performed in the tree void space after the core had
been removed. A SPME in planta sampler was designed and
constructed to create a volume of sealed headspace for SPME
sampling. Several other design considerations included that the
sampler be constructed of an inert material, be rugged and
reusable, and support the SPME fiber to prevent contact with
the tree.
A total of six tree cores were taken from five individual trees

at the Kellwood site. All trees were poplars, with heights
between 3 and 20 m. Following the collection of tree cores, the

Figure 2. Left: In planta sampler and SPME sampling port during sampling at the Kellwood Site. Right: Half-section view of SPME sampling port.
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in planta sampler was inserted into the tree core void space.
Figure 2 shows a photograph taken at the Kellwood Site
demonstrating in planta SPME sampling and a schematic of the
sampler. A fiber retraction distance of 0.5 cm was set prior to
insertion into the in planta sampler, with the exception of tree 5
near the plume boundary, where the fiber was fully exposed.
The sampling time began when the SPME device was inserted
into the in planta sampler and continued for approximately 70
min. After sampling was complete, the SPME devices were
removed from the in planta samplers and capped with a Teflon
cap, shown to reduce analyte losses during transportation (see
ref 45 and Supporting Information for details).
SPME fibers were transported to the Missouri S&T campus

for analysis, approximately 1−2 h after sampling. Analysis was
conducted using the GC method for chloroethenes, described
above. After analysis, each fiber was dosed with a chloroethenes
standard to check for fiber damage during field sampling or
transport. Fiber integrity was confirmed by comparing GC
results with previous analyses under similar conditions.

■ RESULTS AND DISCUSSION
Extraction Method Sensitivity. TWA-SPME with a

PDMS/CAR fiber yielded higher GC response than equili-
brium SPME-PDMS or headspace sampling. For TCE and
PCE, the 1-h and 2-h TWA sample responses exceeded the
response of the PDMS fiber and headspace sampling. The
response curves are shown in Figure 3 and Figure 4. A 10-min

TWA sample was most comparable to headspace and
equilibrium SPME sampling. This large response of TWA-
SPME analysis illustrates the advantage of the method,
especially over headspace analysis, although longer extraction
times are required. Although not shown here, SPME can also
decrease peak width, allowing better peak separation and lower
detection limits for these chlorinated solvents.14

TWA Linearity. The response of the PDMS/CAR fiber was
generally found to be linear or near linear for many of the
compounds. The linearity parameter, M, was within a
confidence interval of unity for chloroform and carbon
tetrachloride (see Figure 5). All other compounds exhibited
nonlinearity, with M values less than unity, indicating
decreasing uptake rates with time. Decreasing uptake rates
imply a violation of “zero sink” conditions over the measure-

ment period. The “zero sink” condition is most likely to be
violated when mass loading is high as a result of high molecular
diffusivities, low fiber affinity, long sampling times, or small
retraction distances. This is most evident when comparing
chloromethanes, as DCM has the highest diffusivity and lowest
fiber affinity, resulting in nonlinear behavior (see Figure 6).
Further discussion of linearity can be found in the Supporting
Information.
To estimate the upper limit of the linear region of TWA-

SPME for each compound, high mass transfer (i.e., high t/z)
samples were removed from the regression until the confidence
interval included unity. Although fewer observations increase
the confidence intervals, the findings provide some insight into
the nonlinear behavior. The corresponding upper t/z values are
plotted in Figure 5, although upper linearity limits were not
determined for CF or CT as the samples were linear for all test
conditions. Within each class of compounds, the linearity limit
generally decreased with decreasing molecular size. Nonlinear
behavior was likely due to violation of “zero sink” conditions,
resulting from higher diffusivities of these small molecules and
lower capacity of the fiber for these compounds. In theory, the
linearity limit can be determined from eq 1, as parameters are
known or estimable. However, in practice, determining the
equilibrium concentration is complicated by competitive

Figure 3. PCE: Effect of extraction method on GC response. Error
bars denote maximum and minimum values (n = 3).

Figure 4. TCE: Effect of extraction method on GC response. Error
bars denote maximum and minimum values (n = 3).

Figure 5. Linearity and upper linearity limit of TWA-SPME analysis
for cVOCs. Compounds are listed from left to right in order of
increasing molecular mass. Error bars on the linearity parameter
denote the 95% confidence interval.
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adsorption. In addition, estimating the analyte concentration in
the sample may be difficult. If quantitative analysis is desired,
linearity should be examined in a representative matrix, as a
carefully chosen matrix will help ensure all assumptions of
TWA-SPME are upheld.
Equilibrium sampling was conducted before and after each

TWA-SPME data set to test for sample depletion. Results of
the equilibrium sampling were calculated as relative percent
differences (RPD), with an average RPD of −7% indicating an
acceptably small loss of analytes over the sampling period.
In Planta TWA-SPME Sampling. Results of the field tree

core and TWA-SPME sampling are shown in Figure 7. For each

tree core analyzed, the corresponding SPME sample showed
higher detection. Sampling with the TWA-SPME method
resulted in GC responses a minimum of 6 times higher for TCE
and 5 times higher for PCE when detected. On average, GC
responses increased by 1.1 log10 units for TCE and 1.5 log10
units for PCE. For PCE in tree 2, the upper response limit of
the detector was exceeded during SPME sampling. In multiple
previous samplings, tree 5 had not resulted in PCE or TCE
detection using headspace analysis. In this tree, full exposure of
the PDMS-CAR fiber resulted in clear detection of PCE.
The concentrations of PCE and TCE measured by TWA-

SPME were correlated with the measurements made by the
headspace method (see Figure 8). While the slope of the fit is
greater than unity, the 95% confidence interval of the parameter
estimates is large given the small data set, so further
interpretation of the data is difficult. Despite these limitations,
these data do imply that TWA-SPME is an appropriate method

for measuring cVOCs in trees. Previous research has established
semiquantitative links between tree contaminant concentrations
and groundwater contaminant concentrations,46−48 although
numerous factors can affect the correlation. The applicability of
phytoscreening can be limited by subsurface heterogeneities,
rooting depth, microbial degradation, azimuthal variations in
tree contaminant concentration, infiltration of surface water,
and seasonal changes in evapotranspiration.2,11,18,48−50

The consistently higher responses of TCE and PCE by
TWA-SPME sampling relative to tree coring indicate that
TWA-SPME is a potentially superior sampling technique to
headspace tree core sampling for cVOCs, likely allowing lower
detection limits. However, application of TWA-SPME for
semivolatiles may be complicated by low analyte volatility and
competitive adsorption of numerous semivolatile plant
compounds, as competing analytes make violation of the
“zero sink” assumption more probable. TWA-SPME is capable
of detecting a wide range of volatile hydrophobic compounds
with a single sample, although quantitative analysis may be
limited with some compounds and sampling conditions. The
method can detect nonpolar metabolites in planta, as evidenced
by the detection of PCE along with its likely daughter product,
TCE. Coupled with a portable GC, the method could be used
to obtain real-time subsurface information during site
investigations. In addition, repeated sampling of the same
tree is possible without additional damage, which may be a
useful way to perform long-term in planta monitoring. All of
these benefits make TWA-SPME an attractive tool for cVOC
passive sampling applications such as phytoscreening.
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Figure 6. Linearity of TWA-SPME analysis for chloromethanes with Z
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Figure 7. Field sampling results for PCE and TCE.

Figure 8. Method comparison for field sampling (95% parameter
confidence intervals are indicated in parentheses).
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