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Abstract

Trickle bed reactors are widely used in many process industries. The catalyst particles are often incompletely wetted especially in

the trickling flow regime and hence to design these reactors, the effectiveness factor of partially wetted catalyst needs to be calculated

accurately. Numerical solutions by traditional methods are time consuming and not very accurate, especially for some commonly

used complex catalyst shapes such as trilobes, quadrilobes etc. The paper presents a novel numerical solution for these problems

based on the method of fundamental solutions. The advantage of the method is that it involves only boundary collocation and can

be applied to catalysts of any shape. Further the method provides an accurate estimate of the gradient of the concentration profiles

and this information can be related directly to the effectiveness factor. This accuracy of the method is demonstrated for two

dimensional (2-D) and axisymmetric problems for a linear kinetics. Illustrative results are presented for some complex shapes under

partial wetting conditions.

# 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Trickle bed reactors which are packed beds of catalyst

with co-current downflow of gas and liquid, are used

extensively in petroleum, petrochemical, chemical, bio-

chemical and waste treatment processes. An example in

petroleum industry is refining industry, in operations

such as hydrotreating, hydrodesulfurization, and hydro-

demetalization. In trickle reactors, the catalyst surface

can be covered by both gas and liquid phases and this

phenomenon is known as partial wetting. The partial

wetting has many implications and needs to be analyzed

in detail for an accurate design of these reactors. The

incomplete wetting of the catalyst surface affects the

conversion and also selectivities of the desired products

when multiple reactions are involved. In particular, the

effectiveness factor depends on the extent of wetting of

the catalyst surface. Partial wetting can increase or

decrease the reaction rates depending upon the phase of

the limiting reactant. Incomplete wetting of the catalyst

can also result in depletion of the ‘supposedly’ abundant

liquid reactant in the interior of the catalyst. Under

extreme conditions for exothermic reactions one can

have dryout of the catalyst interior and the phenomena

is known as partial internal wetting. A number of

studies have addressed various aspects of the problem

(Mills & Dudukovic, 1979; Morita & Smith, 1978;

Ramachandran & Smith, 1979; Herskowitz, 1981; Mills,

Lai, Dudukovic & Ramachandran, 1988; Zimmerman &

Ng, 1986; Ring & Missen, 1986; Tan, 1988; Al-Dahhan

& Dudukovic, 1995; Tsamatsoulis & Papayannakos,

1996; Iliuta, Larachi & Grandjean, 1999; Nigam, Iliuta

& Larachi, 2002).

Under milder exothermic conditions, the internal

pores can be assumed to be completely filled with liquid

and this represents a vast majority of industrial opera-

tions. The problem of calculation of the effectiveness

factor then reduces to a numerical solution of the

governing reaction�/diffusion equations with non-uni-
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form boundary conditions. These boundary conditions

reflect the local conditions of the surface of the catalyst.

Traditionally, the surface is split into a dry and wet

zone, but more complicated external environments are

possible. For example, even on the wetted perimeter one

can have two regimes consisting of a stagnant liquid film

and an actively flowing film. As a result, different mass

transfer coefficients need to be imposed over the

boundary. Rajashekharam, Jaganathan and Chaudhari

(1998) modeled the hydrogenation of 2,4-dinitrotoluene

considering the partial wetting and stagnant liquid

holdup effects. In other words, they used a three-zone

model for the external surface: one zone is dry, the other

is flowing liquid and the third is stagnant liquid, with

different mass transfer coefficients for each zone. In a

similar way, Ravindra, Rao and Rao (1997) indicate

that even when the catalyst is completely covered by

liquid, pendular rings are formed at the contact points

of the particle and the liquid flows down as thin films on

the remaining surface between the pendular rings. These

studies indicate the need for a detailed solution to the

effect of partial wetting over the catalyst, in order to

compute the effectiveness factor.

Rigorous solutions for the effectiveness factors be-

come important in many other contexts. For example, in

process such as deep hydrodesulfurization of diesel, the

objective is to remove the sulfur species present in the

feedstock at levels below 50 parts per million by weight

(ppm by wt.). The petroleum fraction has many sulfur

compounds with different reactivities, and diffusivities.

As a result, there are different effectiveness factors for

each sulfur compound and, the use of a single (lumped)

effectiveness factor is not suitable.

In the petroleum industry, one often uses complex

catalyst shapes to provide high surface to volume ratios

and higher effectiveness factors (Sie, 1993) for the same

catalyst loading and to minimize the pressure drop in

the reactors when large amounts of catalyst are used

(Harold, 1993). Examples of such catalysts are trilobes,

quadrilobes, hollow cylinder etc. as shown in Fig. 1,

which are extensively used in hydrodesulfurization and

hydrodemetallization operations. Such catalysts can be

used to increase the selectivities in a reaction network

when the desired product is formed in an intermediate

step. When the shape of catalyst is complex (e.g. Fig. 1),

one cannot determine the effectiveness factor analyti-

cally even for a first-order reaction for the case when the

surface of the catalyst is completely wetted by the liquid.

The effect of partial wetting is even more important for

these shape in view of the added number of contact

points where pendular rings can form.
Consequently, to find accurate estimates of the

effectiveness factor the diffusion-reaction equation in

the catalyst particle needs to be solved numerically, with

appropriate boundary conditions imposed over the

surface of the catalyst. Many authors have used a

variety of numerical schemes to solve the diffusion-

reaction equation in a partially wetted catalyst particle.

Mills and Dudukovic (1979) used dual and triple

collocation solutions for partially wetted cylinders and

spheres. For irregular geometries, the diffusion-reaction

equation can be solved by the finite element method.

Moreover iterative solution techniques can be used for

non-linear reactions. Zhu and Hofmann (1997) used

finite differences to evaluate effectiveness factors for

Langmuir�/Hinshelwood kinetics in regular geometries.

However, for irregular geometries the values of concen-

tration gradient, which is often the quantity of interest

for evaluation of the effectiveness factor, can be in

considerable error due to poor derivative estimates at

sharp corners. The main drawback of using traditional

numerical schemes such as finite elements or finite

differences is that one has to discretize the entire domain

of interest, which is a challenging computational task in

itself, owing to the complexity of the geometry. Recently

a number of mesh generation softwares have been

developed which partly alleviate the problem. However,

a mesh free method is still attractive especially for three

dimensional (3-D) problems. Hence, the boundary

element method has emerged as an alternative grid

free computational technique to solve linear and non-

linear diffusion-reaction equations. The use of the

boundary element method for solving the diffusion-

reaction problem has been demonstrated by Ramachan-

dran (1991). The extension of this method to a network

of multiple linear reactions has been demonstrated by

Karur and Ramachandran (1994) where the accuracy of

the method for two dimensional (2-D) problems was

shown. The method has the advantage that only a

boundary discretization is needed thus permitting com-

plex geometries to be handled easily. However, the

method suffers from the drawback related to the

evaluation of singular integrals, which can be time

consuming for irregular geometries and 3-D problems.

Fig. 1. Commercial complex catalyst shapes.
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More recently, the method of fundamental solution

(MFS), which belongs to the class of boundary methods,

has shown to be a promising grid-free computational

technique for solving linear partial differential equations
in complex geometries with non-uniform boundary

conditions. The ease and the accuracy of the MFS has

been demonstrated for a number of different types of

problems (such as potential field calculations, acoustics,

Stokes flow etc. (for instance, see Johnston & Fair-

weather, 1984; Karageorghis & Fairweather, 1987;

Chen, 1995). The method is useful for the solution of

the catalyst effectiveness factors in trickle beds but the
use of the method in this context has not been

demonstrated.

The focus of this work is to demonstrate the

implementation of the MFS to compute effectiveness

factor for different shapes of partially wetted catalyst for

a simple first order reaction. Many reactions in the

industry can be approximated as first order reactions,

for example, the hydrodesulfurization and hydrodenito-
genation of petroleum cuts. MFS is most efficient for

first order reactions since it involves only boundary

collocation as shown later in this paper. The applic-

ability of MFS for non-linear reactions has been shown

in recent studies (Balakrishnan, 2000) but the current

paper focuses only on linear kinetics.

The structure of the paper is as follows; Section 2

presents the model equations. The method of funda-
mental solution is presented for two and 3-D geometries

in Section 3. Section 4 presents some illustrative results

and also shows the effect of particle shape and wetting

configurations. Section 5 shows a modification of the

method for axisymetric 3-D geometries and shows how

the method can be coupled to local hydrodynamic

information. The next Section 6 provides the summary

and conclusions.

2. Model equations

2.1. Diffusion-reaction equation for a first order reaction

The system is governed by the diffusion-reaction

equation, to be solved over a domain V in 2-D (R2) or

3-D (R3) with enclosing boundary G . For an isothermal,
irreversible first order reaction, assuming that the

catalyst has complete internal wetting (Mills & Dudu-

kovic, 1979) and in steady state the equation could be

written as follows:

De9
2C�kC (1)

where, C is the concentration in the pores of the
catalyst; De, the effective diffusivity for fully wetted

catalyst; k , the first order rate constant; and 92 is the

Laplacian.

The general boundary condition is that of the Robin

form and can be stated as follows:

p�
@C

@n
�

km

De

(Cb�C) (2)

Here ‘‘p ’’ is the normal gradient; ‘‘n’’ represents the unit

outward normal from any point on the catalyst surface;

km, the local mass transfer coefficient at that point; Cb,

the concentration outside the diffusion boundary layer

and C is the local concentration on the catalyst surface
at that point. For the case of a partially wetted catalyst,

different portions of the surface would have different

values of mass transfer coefficient depending upon the

local degree of wetting at that point. In other words, km

varies along the boundary. Even for fully wetted case km

may not be constant due to uneven liquid film thickness

in the boundary. It is this non-uniformity in the

boundary condition together with the complex geometry
that makes the problem a computationally challenging

one.

Eq. (2) covers both cases where the limiting reactant is

present in either the gas phase or the liquid phase. This

is achieved by assigning different values for km and the

relevant subcases are presented below for completeness.

2.1.1. Limiting reactant in the gas phase

Over the dry portion of the catalyst, the transport is

relatively rapid and hence Dirichlet boundary condition

can be directly used for these portion (C�/Cb). The

value of C is set as Cb for these portions where Cb is

now equilibrium solubility corresponding to the gas
phase concentration. Over the wetted portion, where

Robin boundary condition is applied, the gaseous

species has to diffuse through the gas�/liquid as well as

the liquid�/solid films and hence the value of the transfer

coefficient km is assigned an overall value given by:

1

km

�
1

kGL

�
1

kLS

(3)

where kGL is the gas to liquid mass transfer coefficient

and kLS is the liquid to solid mass transfer coefficient.

Thus Dirichlet�/Robin conditions are used for dry and

wetted regions, respectively, when the limiting reactant

is in the gas phase.

2.1.2. Limiting reactant in the liquid phase

For a catalyst pellet partially wetted by actively

flowing liquid, the value of km is set as kLS. For the

non-wetted part, the Neuman boundary condition is
applicable for the case of the non-volatile limiting

reactant in the liquid phase ð@C

@n
�0Þ: Further simplifi-

cations can be made for large values of the mass transfer

coefficient; the boundary condition simplify to the

Dirichlet boundary condition on the wetted portion,
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with Cb being now the bulk liquid concentration of the

limiting reactant (C�/Cb).

2.2. Dimensionless form

The linear diffusion-reaction equation for first order

reaction could be written in non-dimensional form as
follows:

92c�f2c (4)

where f is the Thiele modulus�//LC

ffiffiffiffiffiffi
k

De

s
; c , the

dimensionless concentration, c�
C

Cb

; and LC is the

characteristic length�//

Volume

Area
for complex geometries.

The operator 92 in Eq. (4) is now the non-dimensional

Laplacian.
For the non-volatile reactants in the liquid phase, the

general Robin boundary condition can be imposed on

the wetted surfaces when significant mass transfer

resistances are present. This boundary condition in

dimensionless form is:

Robin:
@c

@&
�h(c�1) over Wetted G1

where

&�
n

LC

and h is the local Biot number h�//

kmLC

De

which can be a

function of surface locations for a general case.
As mentioned earlier for a catalyst pellet partially

wetted by actively flowing liquid, one can impose

Dirichlet boundary condition on the surface exposed

to actively flowing liquid, for large values of mass

transfer coefficient (c�/1), and impose Neumann con-

dition on the surface exposed to the gas ð@c

@&
�0Þ:/

For gas phase limiting case we can impose the

Dirichlet boundary condition on the dry surface and

the general Robin condition for the wetted zone.

2.3. Effectiveness factor for a first order reaction

The effectiveness factor which is the primary quantity

of interest of this work, is defined for a first order

reaction as:

h0�
g
V

kC dV

g
V

kCb dV
�
g
V

c dV

V
(5)

If the internal concentration field is determined (e.g.

in finite element method) then Eq. (5) is the appropriate

equation to use for the calculation of the effectiveness

factor. In the context of MFS, an equivalent expression

for the effectiveness factor (shown below in Eq. (6)) is in

terms of the gradient at the surface/perimeter:

h0�
De

VkCb
g
G

@C

@n
dG (6)

In non-dimensional form Eq. (6) could be written as

follows:

h0�
1

V�f2 g
G+

@c

@&
dG� (7)

where V* and G* are defined as V*�//

V

L2
C

and G*�//

G

LC

for 2-D geometries or V*�//

V

L3
C

and G*�//

G

L2
C

for 3-D

geometries.

3. The method of fundamental solution (MFS) for linear

diffusion-reaction equations

The method of fundamental solution (also called the

source superposition method) belongs to the class of

boundary methods. Here one seeks solutions, which

satisfy the differential equation exactly in the interior
but not the boundary. This results in a residual error on

the boundary. This error is made to be zero at selected

collocation points (or in a least square sense for a more

general variation of the source method). In this work we

use the boundary collocation technique to solve the

problem based on the work presented by Balakrishnan

and Ramachandran (2000). Thus the first task is to look

for the general solution to the differential equation.
These general solutions are known as the fundamental

solution to the governing partial differential equation.

These solutions are applicable at all points on an infinite

domain except at a point where the solution has a

singularity. Details are presented below.

The differential operator corresponding to the Eq. (4)

has a fundamental solution G satisfying:

92G�f2G��d(r) (8)

where �/d (r ) denotes a source of unit strength at the

origin and r is the (scaled) distance at any point from the

origin. The solution to Eq. (8) is the fundamental
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solution in two dimensions for the diffusion-reaction

problem and is given by:

G�
1

2p
K0(fr) (9)

where K0 is the modified Bessel function of the second

kind.
Similarly in three dimensions, the fundamental solu-

tion can be derived as:

G�
exp(�fr)

4pr
(10)

If the source is not located at the origin but at a point

(xi , yi) then the fundamental solution Gi is given by:

Gi�
1

2p
K0(fri) (11)

where ri is the distance between the source point (xi , yi)

and any field point in the domain or on the boundary.

Assume that the source point is located outside the

domain V , then the fundamental solution Gi satisfies
the governing Eq. (4) in the interior of the domain in an

exact sense, but not any particular set of boundary

conditions. In order to satisfy the boundary conditions

we choose a set of basis solutions and use these to

construct an approximation for ‘‘c ’’. Thus we can

reconstruct the solution ‘‘c ’’ by a set of functions Gi

obtained by placing ‘n ’ distinct source points outside V .

Such solution is represented as:

c�
Xn

i�1

aiGi (12)

where ai (i�/1 to n ) are the set of unknown coefficients

which will be determined in order to satisfy the

boundary conditions. To determine the coefficients ai �/

an we choose n field points on the domain boundary,

collocation points, and n source points outside the

domain to set up a system on n linear equations in as

many unknown (ai). Thus applying the boundary
collocation condition on Eq. (12) one obtains for 2-D

the following equation:

ck�
Xn

i�1

ai

2p
K0(frik) (13)

where ck is the specified concentration value at the k th

collocation point for a purely Dirichlet problem, and rik

is the Euclidian distance between the k th point on the

boundary and the i source point outside the domain.

When a collocation point is located on part of the
boundary where Neumann condition is imposed Eq.

(13) is replaced by the following equation which follows

by taking the normal derivative of Eq. (12).

In two dimension:

�
@ck

@&

�
x�xk

��
Xn

i�1

ai

2pr
K1(frik)

� [(xk�xi)nx�(yk�yi)ny] (14)

where K1 is the modified Bessel function of the second

kind and order 1.

Similarly, for 3-D problems we have the following
equation at the Neumann points:

�
@ck

@&

�
x�xk

��
Xn

i�1

ai

2pr3
i

� (1�fri exp(fri)

� [(xk�xi)nx�(yk�yi)ny

�(zk�zi)nz] (15)

nx , ny and nz are the component of the unit normal to

the perimeter/area in 2-D/3-D in the coordinate direc-

tions.

For more general boundary condition of the Robin

types, the solution ck can be handled in a similar manner

with the following:

ck�
Xn

i�1

ai

�
1

h

@Gi

@&k

�Gik

�
(16)

We can use the expression of the flux to evaluate the

effectiveness factor (Eq. (6)) because it only requires

knowing the normal gradient at the boundary. This is
given by:

@c

@&
�

Xn

i�1

ai

@Gi

@j
(17)

The discretization form of the effectiveness factor (Eq.

(7)) using Gaussian quadrature is given by:

h0�
1

V�f2

Xn

k�1

Wk

@c

@&k

(18)

where Wk denotes the Gaussian weights associated with

each collocation point in the numerical integration

procedure used to find h0.

The solution procedure using the MFS is thus
extremely simple. Once chooses a set of ‘n ’ collocation

points on the boundary and a set of ‘n ’ source points

outside the domain. For each boundary point the

appropriate prescribed boundary condition is applied.

For example, Eqs. (13) and (14) or Eq. (16) applies in 2-

D depending on the whether point has a Dirichliet,

Neumann or Robin boundary conditions. The resulting

sets of n linear algebraic equations are solved for the
coefficients ai . The gradient at each point is then

available directly from Eq. (17) and the effectiveness

factor can be calculated from Eq. (18). The concentra-
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tion profiles in the interior can also be readily calculated

using the boundary fitting coefficients, ai . Thus, Eq. (12)

provides directly an empirical analytical concentration

profiles in the interior as well. This is one of the

advantage of the MFS method in contrast to the

classical boundary element method.

The accuracy depends on the location of the colloca-

tion and source points and in this work some trial and

error has been performed to adjust the distance between

them. The accuracy can be judged by the boundary

residuals. Thus the boundary values are back calculated

after calculating the coefficients ai and compared with

the prescribed values. If the sum of the residual error is

small then the calculated solutions represent an almost

exact solution to the problem. Often the fitted errors can

be within the machine single precision (10�5) resulting

in an accurate solution for any complex geometry.

In order to standardize the location of the collocation

and source points, Balakrishnan and Ramachandran

(2000) suggested the following heuristic procedure (a

more precise method based on statistical analysis of the

result is being undertaken and is not presented here).

The heuristic rule is that the source points are chosen

outside the perimeter such that the ones adjoining the

Neumann or Robin boundaries are closer to the

perimeter than those adjoining the Dirichlet boundaries.

The collocation points are placed at the roots of the

Jacobi polynomials. Such a location of the collocation

points permit avoid geometric singularities like sharp

corner and singularities at the boundary conditions, e.g.

the junction between Dirichlet and Neumann boundary

conditions. A typical placement of the collocation points

and source points by this method is shown in Fig. 2.

4. Test cases and results

In this section, we present some test cases to

demonstrate the efficacy of the MFS for evaluation of
the effectiveness factors of regular and non-regular

catalyst shapes under different wetting environments

using the above-discussed methodology. We consider

some cases with regular catalyst shapes and wetting

environments where analytical or prior numerical solu-

tions are available. This is followed by demonstration of

the method for complex catalyst shapes used in industry.

Also some results regarding the effect of wetting
configuration are presented.

Illustrative results for 2-D are now presented. The

calculations for 3-D follow similar lines, thus the same

code can be used for 2-D and 3-D. The 3-D results are

not shown here for brevity. However, many 3-D

problems can be simplified further if there exists

axisymetry. This requires a modification to the 2-D

fundamental solution. This refinement and the results
for axisymetric cases are presented in Section 5.

4.1. Square and circular geometries

In this section, we compute the values for the
effectiveness factor for two problems. For the first

problem we solve the diffusion-reaction equation at

different wetting conditions (i.e. different values of

wetting efficiency, f ) for two types of geometries, a

square slab and infinite cylinder (which can be repre-

sented as a circle in 2-D). The square and the circle cases

are solved for two values of Thiele modulus (f�/1 and

10) under liquid limiting condition, with boundary
condition of Dirichlet for the wetted surface and

Fig. 2. (a) Circle problem; (b) collocation and source points placement.
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Neumann for the dry surface. The second problem for

circle is solved for two values of Thiele modulus (f�/2

and 20), under liquid limiting condition, with boundary

condition of Robin for the wetted surface and Neumann

for the dry surface.

The results of solving these problems are presented in

Figs. 3�/5. In Fig. 3, we compare the effectiveness factors

obtained using the MFS with those obtained by Mills

and Dudukovic (1979) for a slab geometry. The wetting

configurations used for this case is shown in Fig. 3A.

The results obtained by MFS show a good agreement

with those obtained by Mills and Dudukovic (1979).

The relative difference between these effectiveness

factors is less than 2%. Fig. 4 shows the corresponding

results for a cylinder. The geometry and wetting

configuration used for this computation is shown in

Fig. 4a. The results are shown for two Thiele moduli of 1

and 10 and agree well with that generated by Mills and

Dudukovic by dual series expansion method. In Fig. 5

we compare the effectiveness factors for an infinite

cylinder computed using the MFS, with those obtained

by Herskowitz (1981). The parameter values used for

this case are marked in Fig. 5 and the wetting config-

uration used is shown in Fig. 5a. The results as well

show a good agreement between the MFS and Hersko-

witz (1981) values, with relative difference less than 5%.

This indicates the usefulness of the code for the Robin

type of boundary conditions on the wetted perimeter.

4.1.1. Effect of wetting environment

The effect of wetting configuration has been studied

in this work for slab geometry, for two different Thiele

modulus (f�/1 and 10). Fig. 6 shows five different

wetting configurations for the same wetting factor (50%)

and the corresponding the results for the effectiveness

factors are reported in Table 1. We can see that for the

same wetting efficiency, the wetting configurations do

affect the effectiveness factor, with relative differences of
the order of 7 and 16%. The differences are more

pronounced at higher values of the Thiele modulus.

These trends are in agreement with Capra, Sicardi,

Gianetto and Smith (1982).

We can visualize this effect for a large Thiele modulus

as follows. The effectiveness factor for 2-D geometry is

proportional to the area of the concentration boundary

layer over the total area of the particle. If we perform a
dimensional analysis, the boundary layer concentration

has a thickness, which is order of 1/f . If the boundary

layer overlaps (such as a corner of a slab) then the

reaction area is reduced leading to a reduction in the

effectiveness factor. There is a further contribution to

the effectiveness factor from the extra transport due to

Fig. 3. (A) Comparison between the effectiveness factors obtained for a slab using MFS with those obtained by Mills and Dudukovic (1979). (B)

Wetting environment used by Mills and Dudukovic (1979) for slab.
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the higher lateral diffusion at region where there is a

change in boundary condition from wetted (Dirichlet) to

dry (Neumann) perimeter. These points are referred to

as the region of singularity (see Fig. 6A). The combina-

tion of the two factors (overlapping of the boundary

layer and singularity regions) determine the magnitude

of the effectiveness factor. The results of Table 1 can be

rationalized based on these ideas as discussed below.

Configuration 1 has the maximum effectiveness

factor, because there are four-wetted zone which con-

tribute to the boundary layer concentration; in addition,

this configuration has four singularity points, (as

indicated in Fig. 6A) when the wetted zone change to

dry zone, generating an additional lateral diffusion. For

configuration 2, the wetted zone contributes in the same

way that configuration 1 but this configuration does not

have any singularity point; as a result, the effectiveness

factor is lower as compared with configuration 1 (see

Table 1). For configuration 3 there is an overlapping in

the boundary layer zone, which means that the reaction

area has a common portion that can be only accounted

for one time, which reduce the effectiveness factor, but

this configuration has two singularity points which

increase h0. The overlapping region has a larger reduc-

tion to the effectiveness factor (reducing effect) than the

singularly points. Therefore, the effectiveness factor for

configuration 3 is lower than the configurations 2 and 1

(Table 1). Configuration 4, there is only one overlapping

in the boundary layer zone and no singularity contribu-

tions; therefore, a lower effectiveness factor is expected.

As compared with configuration 1, 2 and 3 (Table 1), the

last configuration studied in this work (configuration 5)

has two overlapping in the boundary layer zone, but

with two singularities points. This has, the lowest

effectiveness factor of all the cases. However, the

difference in configuration 4 and 5 is not significant.

The above physical interpretation provides an explana-

tion to the configurational effects reported in earlier

studies (Capra et al., 1982).

4.2. Non-regular two-dimensional geometry

In order to evaluate the effectiveness factor for

complex geometries we solve the reaction-diffusion

equation, for a first order reaction (Eq. (4)), for trilobe

and quadrilobe geometries, under different wetting

environment with liquid limiting condition, over a range

of Thiele moduli. For this problem we assume Dirichlet

boundary condition for the wetted zone (c�/1) of the

Fig. 4. (A) Comparison between the effectiveness factors obtained for an infinite cylinder using MFS with those obtained by Mills and Dudukovic

(1979). (B) Wetting environment used by Mills and Dudukovic (1979), for a cylinder.
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Fig. 5. (A) Comparison between the effectiveness factors obtained for an infinite cylinder using MFS with those obtained by Herskowitz (1981). (B)

Wetting environment used by Herskowitz (1981) for a cylinder.

Fig. 6. (A) Different wetting configuration, for a slab. (B) Different boundary layer for a slab geometry.
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particle and Neumann boundary condition for the dry

zone ð@c

@&
�0Þ:/

For these geometries there are no results available in

the literature for comparison of the accuracy of MFS.

Therefore, we solve the problem using two different

numerical methods, the first is the MFS, and the second

method is the finite element method using the software

FEMLAB
†. The results of the two problems are pre-

sented in Figs. 7 and 8. It is obvious there is not

significant deviation between the values of the effective-

ness factors obtained by the two methods (the relative

difference less than 5%). The finite element method

requires a domain discretization and is more difficult to

use. The gradients are not directly obtained in the finite

element method and this can contribute an additional

source of error. Also for large Thiele modulus, the finite

element method requires a fine meshing of the boundary

layer and the accuracy is less for these cases compared

with MFS. Also the speed of calculation depend on the

Thiele modulus when finite elements are used in view of

fine meshes needed in the boundary layer but is

independent of Thiele modulus for MFS since only

boundary collocation is used. Computation times using

MFS are lower by about one third for 2-D problems and

is expected to be even lower for 3-D problems.
Fig. 9 presents the effectiveness factors, for cylinder,

trilobes and quadrilobes geometries, under liquid limit-

ing condition for various wetting environments, com-

puted by the MFS. These are compared with the

generalized solution in this figure. The generalized

solution is defined as the analytical solution of the

effectiveness factor for slab geometry. We can see that

for higher Thiele modulus the use of the generalized

solution gives a good approximation for the effective-

ness factors for a cylinder, as was showed by Mills and

Dudukovic (1979), even for complex geometries such as

the trilobe and quadrilobe, with relative error of 10%.

The reason for this is the fact that the diffusion

boundary layer is thin for higher values of Thiele

modulus and the curvature effects are not significant.

Hence a slab model (the basis of generalized Thiele

modulus) is a good approximation to these cases. Fig. 9

also shows the effect of the geometry on the effectiveness

factor. It is clear that for the same Thiele modulus,

Table 1

Effectiveness factor, for different wetting configurations shown in Fig.

6

Configuration Effectiveness factor h0

f�/1 f�/10

Configuration 1 0.9433 0.2204

Configuration 2 0.9242 0.2000

Configuration 3 0.9098 0.1977

Configuration 4 0.8821 0.1873

Configuration 5 0.8761 0.1851

The wetting efficiency is 50% for each case.

Fig. 7. Comparison between the effectiveness factors obtained for a trilobe using MFS with those obtained using finite element method under liquid

limiting conditions.
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higher effectiveness factor is obtained using slab geo-

metries. However, the differences in cylinder, trilobe and

quadrilobe geometries are not significant. The differ-

ences are, however, significant for lower Thiele modulus

as seen in Fig. 9 for f�/1 and for these cases MFS

method is preferable.

5. 3-D axisymmetric bodies

For a simple catalyst shape such as finite cylinders

and spheres, which are axisymmetric one can consider

the wetting also axisymetric. This greatly simplifies the

problem since we can use an axisymetric fundamental

Fig. 8. Comparison between the effectiveness factors obtained for a quadrilobe using MFS with those obtained using finite element method under

liquid limiting conditions.

Fig. 9. Comparison between the effectiveness factors obtained for different geometries using MFS and those obtained by generalized Thiele modulus

at various wetting environment under liquid limiting.
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solution, which reduces the dimensionality of the

problem. A 3-D axisymmetric body can be constructed

by rotation of a generating perimeter placed in a 2-D

plane (the generating plane); see Fig. 10 for an illustra-
tion.

Consider a source point (ri , zi) located in the

generating plane and a variable point (r , z ) on the

surface or interior of the catalyst. Then the fundamental

solution for the axisymetric case is obtained by integrat-

ing the fundamental solution to the 3-D diffusion-

reaction equation in the azimuthal (u ) direction over

the range of 0�/2p (Karageorghis & Fairweather, 1999).
Thus the axisymetric fundamental solution is given by:

Gi�g
2p

0

exp(�fri)

4pri

du (19)

Eq. (19) corresponds to the fundamental solution to a

ring source around the catalyst where ri is defined as:

ri �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

i �r2�(zi�z)2�2rri cos u

q
(20)

The normal gradient of the fundamental solution is

given by:

@Gi

@&
�g

2p

0

exp(�fr0)(1 � fr0)

4pr3
i

� [(ri cos u�r)nr�(zi�z)nz]du (21)

with Gi and
@Gi

@&
defined as above. Note that the

axisymetric fundamental solution cannot be obtained

in closed form unlike the 2-D and 3-D equations

presented earlier. The solution is now an integral along
u (Eq. (19)) and is evaluated by Simpson rule.

For axisymetric bodies we can define the effectiveness

factor as follows:

h0�
2p

V�f2

Xn

i�1

Wiri

@c

@ni

(22)

where ri is the distance between the collocation points

and the revolution plane.

5.1. Results for axisymetric geometry

Results for a sphere are presented using the axisym-

metric fundamental solution. A sphere can be obtained

by rotation of a semicircle in 2-D as shown in the Fig.

10. Collocation points are placed on the semicircle and

source points on a larger semicircle (Fig. 10). Note that
the points should not be placed on the axis of symmetry.

For this problem we computed the effectiveness factor

at different values of wetting efficiency, f , for a sphere,

under liquid limiting condition, using boundary condi-

tion of Dirichlet for the wetted surface and Neumann

for the dry surface for different Thiele moduli. The

results of these problems are presented in Fig. 11. The

figure shows that for sphere geometry, the solution
using MFS fit very well the solution for the effectiveness

factor presented by Mills and Dudukovic (1979) with

relative difference less than 8%.

In order to show the effect of the different mass

transfer coefficient along the surface, we consider the

case for a fully wetted sphere (radius�/1) with a two

different Thiele modulus (1 and 10), where the mass

transfer coefficient is not uniform, and varies with the
angle C (non-uniform Robin boundary condition). We

assume that the mass transfer coefficient is maximum at

the North pole of the sphere, and is minimum at the

South pole. The values of the Biot number used have a

maximum of 1 at the North pole and 0.1 minimum at

the South pole. We compare the effectiveness factor

computed using this configuration, with these computed

using the average Biot number of 0.55. The values of the
effectiveness factor using varying Biot number are 0.59

and 0.0155 for Thiele modulus of 1 and 10, respectively.

The effectiveness factors using the average value of

Fig. 10. Axisymetric problem for a sphere.
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Thiele modulus are 0.60 and 0.0157, respectively. As we

can see the there is not significant difference (B/3%)

between the effectiveness factor using an average value

of Biot number, and the effectiveness factor computed

using a detailed Biot number variation. This result

indicates that we can use an average values of Biot

number in order to compute effectiveness factor. This

finding cannot, however, be generalized to non-first
order reaction, which will be examined in a separate

study.

6. Conclusion remarks and future extensions

The primary objective of this work is to demonstrate

the use of the source method also known as the MFS for

evaluation of the effectiveness factors for a first order

reaction in complex catalyst geometries under different

wetting environments encountered typically in trickle

bed reactors. The accuracy of the method has been

validated using existing numerical solutions for regular

catalyst shapes and the efficacy of the method for
complex catalyst shapes has been demonstrated under

a plethora of wetting conditions. The simplicity of the

method provides for rapid evaluation of effectiveness

factors for linear reaction without considerable compu-

tational effort in both 2-D and 3-D. The grid-free nature

of the scheme completely circumvents the efforts of grid

generation required for complex catalyst geometries

when using other methods. Though the method has
been only demonstrated to be applicable for a first order

reaction, an analogous method based on a matrix of

particular solutions can be developed for non-linear

reactions. Another approach for non-linear reactions is

that of quasilinearization over subdomains demon-

strated by Kasab, Karur and Ramachandran (1995)

for moderate Thiele moduli, wherein bounds on the

effectiveness factor can be determined within respectable

limits. The advantage of such as approach is that the

method still requires only discretization of the perimeter

(or the boundary in 3-D) and permits rapid evaluation
of the effectiveness factor. The extensions to non-linear

reactions by quasilinearization and for multiple reac-

tions will be reported in a future communication.
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