
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Chemical and Biochemical Engineering Faculty 
Research & Creative Works 

Linda and Bipin Doshi Department of Chemical 
and Biochemical Engineering 

01 Jan 2008 

A Comparison of Alternating Minimization and Expectation A Comparison of Alternating Minimization and Expectation 

Maximization Algorithms for Single Source Gamma Ray Maximization Algorithms for Single Source Gamma Ray 

Tomography Tomography 

R. Varma 

S. Bhusarapu 

J. A. O'Sullivan 

M. (Muthanna) H. Al-Dahhan 
Missouri University of Science and Technology, aldahhanm@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/che_bioeng_facwork 

 Part of the Biochemical and Biomolecular Engineering Commons 

Recommended Citation Recommended Citation 
R. Varma et al., "A Comparison of Alternating Minimization and Expectation Maximization Algorithms for 
Single Source Gamma Ray Tomography," Measurement Science and Technology, vol. 19, no. 1, article no. 
015506, IOP Publishing, Jan 2008. 
The definitive version is available at https://doi.org/10.1088/0957-0233/19/1/015506 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Chemical and Biochemical Engineering Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/che_bioeng_facwork
https://scholarsmine.mst.edu/che_bioeng_facwork
https://scholarsmine.mst.edu/che_bioeng
https://scholarsmine.mst.edu/che_bioeng
https://scholarsmine.mst.edu/che_bioeng_facwork?utm_source=scholarsmine.mst.edu%2Fche_bioeng_facwork%2F1289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/241?utm_source=scholarsmine.mst.edu%2Fche_bioeng_facwork%2F1289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1088/0957-0233/19/1/015506
mailto:scholarsmine@mst.edu


Measurement Science and Technology

A comparison of alternating minimization and
expectation maximization algorithms for single
source gamma ray tomography
To cite this article: R Varma et al 2008 Meas. Sci. Technol. 19 015506

 

View the article online for updates and enhancements.

You may also like
Development of a system for magnetic
particle imaging using neodymium
magnets and gradiometer
Kenya Murase, Samu Hiratsuka, Ruixiao
Song et al.

-

Predictive risk estimation for the
expectation maximization algorithm with
Poisson data
Paolo Massa and Federico Benvenuto

-

ML-EM algorithm for dose estimation using
PET in proton therapy
Takamitsu Masuda, Teiji Nishio, Jun
Kataoka et al.

-

This content was downloaded from IP address 131.151.26.204 on 10/04/2023 at 18:32

https://doi.org/10.1088/0957-0233/19/1/015506
/article/10.7567/JJAP.53.067001
/article/10.7567/JJAP.53.067001
/article/10.7567/JJAP.53.067001
/article/10.1088/1361-6420/abe950
/article/10.1088/1361-6420/abe950
/article/10.1088/1361-6420/abe950
/article/10.1088/1361-6560/ab3276
/article/10.1088/1361-6560/ab3276


IOP PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY

Meas. Sci. Technol. 19 (2008) 015506 (13pp) doi:10.1088/0957-0233/19/1/015506

A comparison of alternating minimization
and expectation maximization algorithms
for single source gamma ray tomography
R Varma1, S Bhusarapu2, J A O’Sullivan3 and M H Al-Dahhan1,4

1 Chemical Reaction Engineering Laboratory, Department of Energy, Environment and Chemical
Engineering, Campus Box 1198, 1 Brookings Drive, Washington University,
St Louis, MO 63130, USA
2 Harper International Corporation, West Drullard Avenue, Lancaster, NY 14086, USA
3 Electronic Systems and Signals Research Laboratory, Department of Electrical and Systems
Engineering, 1 Brookings Drive, Washington University, St Louis, MO 63130-4899, USA

E-mail: varma@wustl.edu, sbhusarapu@harperintl.com, jao@wustl.edu and muthanna@che.wustl.edu

Received 5 March 2007, in final form 28 September 2007
Published 30 November 2007
Online at stacks.iop.org/MST/19/015506

Abstract
Lange and Carson (1984 J. Comput. Assist. Tomogr. 8 306–16) defined image reconstruction
for transmission tomography as a maximum likelihood estimation problem and derived an
expectation maximization (EM) algorithm to obtain the maximum likelihood image estimate.
However, in the maximization step or M-step of the EM algorithm, an approximation is made
in the solution which can affect the image quality, particularly in the case of domains with high
attenuating material. O’Sullivan and Benac (2007 IEEE Trans. Med. Imaging 26 283–97)
reformulated the maximum likelihood problem as a double minimization of an I-divergence to
obtain a family of image reconstruction algorithms, called the alternating minimization (AM)
algorithm. The AM algorithm increases the log-likelihood function while minimizing the
I-divergence. In this work, we implement the AM algorithm for image reconstruction in
gamma ray tomography for industrial applications. Experimental gamma ray transmission
data obtained with a fan beam geometry gamma ray scanner, and simulated transmission data
based on a synthetic phantom, with two phases (water and air) were considered in this study.
Image reconstruction was carried out with these data using the AM and the EM algorithms to
determine and quantitatively compare the holdup distribution images of the two phases in the
phantoms. When compared to the EM algorithm, the AM algorithm shows qualitative and
quantitative improvement in the holdup distribution images of the two phases for both the
experimental and the simulated gamma ray transmission data.

Keywords: alternating minimization, expectation maximization, computed tomography,
I-divergence, image reconstruction, log likelihood, multiphase systems, two phase flow

(Some figures in this article are in colour only in the electronic version)

Notation used

d(y) Photon counts received by detector y
E[•] Mean of the given function
g(y : µ) Mean value of photon counts received for a given y

and µ

4 Corresponding author.

h(y|x) Length of the segment of projection y in pixel x
(cm)

I Number of photon counts generated by simulation
I (a‖b) I-divergence of quantities a and b
M(y|x) Conditioned expected values of photons that enter

pixel x along projection y
n Number of samples of count data used to estimate

the mean counts for each projection
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N(y|x) Conditioned expected values of photons that
survive and leave pixel x along projection y

pX(y|x) Probability of a complete data set
x Index for pixel in image space
X(y|x) Random number of photons entering a pixel x along

projection y
y Index for projection or source detector pair

Greek

ε(x) Holdup fraction of any given phase
λ Source intensity (counts)
µ̂(x) Attenuation values estimated by algorithm for a

given pixel x (cm−1)
µPhantom(x) Attenuation value of a simulated phantom for

which transmission data are generated (cm−1)

Subscripts

l System filled with liquid
g System filled with gas
l − g System filled with liquid and gas
l−g−s System filled with liquid, gas and solid

1. Introduction

Computed tomography has been successfully used in the
medical field for radiology diagnostics. Recently, its use
has been expanded to process engineering for industrial
applications, in particular for visualizing the flow field in
multiphase flow systems (Kumar and Duduković 1997).
One key area of research addresses the improvement of
image reconstruction algorithms. Several authors have made
contributions to the theory of reconstructive tomography, and
an early overview of such algorithms was presented by Snyder
and Cox (1977).

Algebraic algorithms such as Fourier/convolution
techniques when applied to determine the phase holdup
distribution in two phase systems either assume the systems
to be azimuthally symmetric in distribution or consider
the gamma ray transmission process to be deterministic
thereby completely ignoring the stochastic nature of the data
(Bieberle and Hampel 2006). Expectation maximization
(EM) (Lange and Carson 1984) and alternating minimization
(AM) (O’Sullivan and Benac 2007) algorithms account for
the stochastic nature of the gamma ray transmission across
the domain of interest. This makes these algorithms more
favorable for image reconstruction to determine the phase
holdup distribution.

The EM algorithm has been extensively used to process
gamma ray tomography data to image holdup distribution in
various two phase systems. Some of its applications include
imaging, gas holdup in a gas liquid bubble column (Kumar
et al 1997), solids holdup in a liquid–solid riser (Roy et al
1997), liquid flow distribution in structured packing (Roy
et al 2004) and monolith reactor (Roy and Al-Dahhan 2005),
and gas holdup in stirred tanks (Khopkar et al 2005). This
study applies the AM algorithm proposed for transmission

tomography by O’Sullivan and Benac (2007) for the case
of single energy gamma ray tomography for imaging phase
holdup distribution in two phase systems. Phantoms used
for this study are designed to represent multiphase systems
studied with EM. Both the AM and EM algorithms are applied
to the phantoms. The holdup distribution results obtained
with the AM algorithm are quantitatively compared with those
obtained with the EM algorithm as proposed by Lange and
Carson (1984), for simulated and experimental gamma ray
transmission data from phantoms containing two phases. In
addition, the holdup distribution images using the filter back
projection (FBP) method as proposed by Kak and Slaney
(1988) have been included for qualitative comparison with
the images obtained with the AM and EM algorithms. The
FBP is a noniterative technique and does not account for the
stochastic nature of gamma ray photon emission.

2. The algorithms

Since the objective of this study is to primarily compare the
AM and the EM algorithms, these algorithms have been briefly
discussed and outlined for the purpose of continuity and for
the benefit of the uninitiated reader. Since the FBP method is
well established, it has not been discussed here. For further
information, the reader is encouraged to read the relevant
references cited.

2.1. Expectation maximization algorithm

Lange and Carson (1984) defined the image reconstruction for
tomography as a maximum likelihood estimation problem and
derived an EM algorithm to obtain the maximum likelihood
image estimate. In experiments where gamma ray counts
statistics is high (∼500 counts/projection), ignoring the true
statistical nature of the data may not be a serious limitation
because Poisson counting noise is only a component of the
total system noise (Lange and Carson 1984). It is precisely
in the low count experiments (<100 counts/projection)
that the EM algorithm is expected to provide the greatest
improvement in the reconstruction quality. Usually in
transmission tomography experiments with the amount of
shielding provided at the detectors’ end (to increase the
spatial resolution), the counts recorded are bound to be small
(∼100 or less counts/projection), which forces one to use
an EM algorithm. Superiority of the EM algorithms over
Fourier techniques and non-iterative algebraic methods such
as the incorporation of non-negativity constraints and objective
measure of quality of reconstruction (e.g. log-likelihood, least
squares, maximum entropy) is discussed in detail by Lange
and Carson (1984).

The EM algorithm is a general iterative technique for
computing maximum likelihood estimates in any general
scenario of measurement of statistical quantities. Application
to image reconstruction in transmission tomography is only
a specific application. Each iteration of the EM algorithm
consists of two steps: expectation (E step) and maximization
(M step). The derivation of the E and M steps for transmission

2



Meas. Sci. Technol. 19 (2008) 015506 R Varma et al

Figure 1. Schematic of the representation of a transmission
tomography domain; the boxes represent the pixels. Here S: source,
D: detector, y: projection index, x: pixel index and h(y|x) is the
segment of projection y in pixel x.

tomography is discussed in detail by Lange and Carson (1984).
Some of the key elements are highlighted here.

In the E-step, the conditional expectation of ‘entire’
or ‘complete’ data set is estimated on the basis of the
measured data (counts from the detector) and the parameter
set (attenuation values). The ‘complete’ data set represents
intensity of the photons that enter and leave each pixel in the
domain for all the projections. If for a given pixel x along
a projection y (figure 1), we define X(y|x) as the random
number of photons (or counts) that enter x and X(y|(x + 1))

the random number that survive and leave x, then this process
can be modeled as a binomial distribution with two outcomes:
survival of the photons exp(−h(y|x)µ(x)) and absorption of
the photons [1 − exp(−h(y|x)µ(x))], where h(y|x) is the
segment of projection y in pixel x. The probability of this
binomial process can be represented by (1); in other words,
(1) represents the probability of the ‘complete’ data set for
pixel x:

pX(y|(x+1)) =
(

X(y|x)

X(y|(x + 1))

)
[exp(−h(y|x)µ(x))]X(y|(x+1))

× [1 − exp(−h(y|x)µ(x))]X(y|x)−X(y|(x+1)). (1)

The first pixel along any projection y receives the photons
emitted from the gamma source. This is a Poisson process
with mean λ which represents the intensity of the source; its
probability is given by

p(X( y|1)) = λX( y|1) exp(−λ)

X (y| 1)!
. (2)

Since the pixels are independent, the likelihood function of
the entire ‘complete’ data set (for all pixels along projection y)
can be represented as the product of the individual likelihood
functions of each pixel that lies along a projection y. This
likelihood function is represented as

f (N(y) : µ) = λX(y|1) exp(−λ)

X(y|1)!

∏
x∈X

(
X(y|x)

X(y|(x + 1))

)

× [exp(−h(y|x)µ(x)]X(y|(x+1))

× [1 − exp(−h(y|x)µ(x)](X(y|x)−X(y|(x+1))). (3)

If the complete data set was known, then computing
the attenuation values µ(x) for every pixel would be
straightforward. However, this is not the case since only the
count data observed by the detectors representing the random
number of photons that have survived all the pixels along
a projection are available. The expectation step involves
computing the expectation of the ‘complete’ data set for a
given pixel, conditional to the observed data d(y) (measured
by detector D) given the current estimate of the attenuation
function µ̂(k)(x) as given by

E[X(y|x)|d(y), µ̂(k)(x)]. (4)

Lange and Carson (1984) show that (4) can be represented as

E[X(y|x)|d(y)] = d(y) + E[X(y|x)] − E[d(y)]. (5)

Equation (5) is used to compute M(y|x) and N(y|x), the
expected values of the photons entering and leaving given
pixel x respectively along projection y. The entities M(y|x)

and N(y|x) are the conditional expectations related to X(y|x)

and X(y|(x + 1)), respectively, by (4).
In the M-step, this conditional expectation is maximized

with respect to a parameter set. In the case of gamma ray
transmission tomography, the parameter set is the attenuation
values µ(x) of the pixels in the scanned domain and the
measured data set d(y) is the detector signal obtained for
each projection y. Equation (5) is used to determine the
conditional expectation values M(y|x) and N(y|x) for each
pixel in the image which is then summed over all projections
and then substituted in the likelihood function. The natural
logarithm of this equation is given by (6), which represents the
log likelihood of the ‘complete’ data set over all projections y:

ln[f (N(y) : µ)] =
∑
y∈Y

∑
x∈X

{N(y|x)

× ln[exp(−h(y|x)µ(x))] + (M(y|x) − N(y|x))

× ln[1 − exp(−h(y|x)µ(x))]} + R, (6)

where R represents all the terms that are not dependent on
µ(x). Maximizing (6) by setting the value of the partial
derivative with respect to µ(x) to zero yields a transcendental
equation∑
y∈Y

−N(y|x)h(y|x) +
∑
y∈Y

[M(y|x) − N(y|x)]

× h(y|x)

exp [h(y|x)µ(x)] − 1
= 0. (7)

Since (7) cannot be solved exactly due to the exponential
term, Lange and Carson (1984) suggest the Taylor-series-
based approximation to simplify the solution:

1

exp [h(y|x)µ(x)] − 1
= 1

h(y|x)µ(x)

− 1

2
+

h(y|x)µ(x)

12
+ O{[h(y|x)µ(x)]3}. (8)

3
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The authors recommend using the first three terms of (8) to
arrive at (9) in order to make a good approximation of (7):

0 = µ(x)2 ·
∑
y∈Y

[M(y|x) − N(y|x)]
h(y|x)2

12

−µ(x) ·
∑
y∈Y

[M(y|x) + N(y|x)]
h(y|x)

2

+
∑
y∈Y

[M(y|x) − N(y|x)]. (9)

Equation (9) is a quadratic equation which has a solution given
by

µ̂(x)(k+1) = B/2A −
√

B2 − 4AC/2A, (10a)

where

A =
∑
y∈Y

[M(y|x) − N(y|x)]
h(y|x)2

12
,

B =
∑
y∈Y

[M(y|x) − N(y|x)]
h(y|x)

2

C =
∑
y∈Y

[M(y|x) − N(y|x)].

(10b)

The iterative process starts with an initial guess for µ̂(x)k

(k = 0); this is used to compute the conditional expectation
values of M(y|x) and N(y|x) using d(y) based on (5).
These values are then used to determine the next estimate of
attenuation µ̂(x)k+1 based on (10). By setting k = k + 1, this
process is repeated starting from (5) till the value of µ̂(x)k+1,
which maximizes the log likelihood of the complete data set,
is reached.

The approximation for (7) given by (8), as discussed in the
previous paragraph, is valid for small values of (h(y|x)µ(x))

and is not accurate for applications involving regions of high
density, high mass attenuation µ(x)/ρ (cm2 g−1), or for coarse
pixel resolution, where the values of h(y|x) are large. This in
turn may lead to a decrease in the log-likelihood function from
one iteration to the other instead of an increase. This is a major
shortcoming for imaging applications involving industrial
multiphase flow systems as they are usually constructed with
metals or have internal structures that are also made of
metal. To improve accuracy, other authors have used modified
approaches to derive the M-step (Ollinger 1994) or the E-
step (Browne and Holmes 1992) of the EM algorithm in the
context of its application to positron emission tomography
(PET). Although these approaches can be adapted to image
reconstruction in gamma ray transmission tomography for
further improvement, the work by Lange and Carson (1984)
has been compared here to the AM algorithm as there is
precedence for its use in determining phase holdup distribution
in multiphase systems using gamma ray tomography.

2.2. Alternating minimization algorithm

The expectation maximization algorithm is a special case
of the alternating minimization (O’Sullivan and Benac
2007) algorithm, which has been extensively studied in the
applications involving x-ray-based medical imaging (Benac

2005). The AM algorithm could potentially be used for
other applications which involve either gamma ray or x-ray
transmission tomography. O’Sullivan and Benac (2007)
reformulated the maximum likelihood problem as a double
minimization of an I-divergence to obtain a family of
image reconstruction algorithms. I-divergence, introduced
by Csiszár (1991), is a measure of discrepancy between two
functions a(y) and b(y), which is given as

I (a‖b) =
∑
y∈Y

{
a(y) ln

[
a(y)

b(y)

]
− [a(y) − b(y)]

}
, (11)

where y is a finite dimensional space.
Csiszár (1991) examined a wide variety of discrepancy

measures (e.g. least squares, entropy) including the
I-divergence measure (11) between two functions a(y) and
b(y) and arrived at the following conclusion which is
relevant for the image reconstruction problem subject to non-
negativity constraints. Csiszár (1991) concluded that if the
functions involved are all real valued, having both positive and
negative values, then minimizing the least squares is the only
consistent choice, whereas if all the functions are required
to be non-negative, then minimizing the I-divergence is the
only consistent choice. This I-divergence measure was first
employed for image reconstruction by Snyder et al (1992).

Each step of minimization in the AM algorithm is claimed
to be an exact process, without any approximation as in the
case of EM (8), which represents one of its advantages over
the EM algorithm. The alternating minimization algorithm
formulated by O’Sullivan and Benac (2007) is guaranteed to
monotonically increase the log-likelihood function at every
iteration. In this work, the AM algorithm is applied for the
first time to the image phase holdup distribution using gamma
ray tomography to seek improvements in the quality of holdup
distribution images for industrial multiphase flow systems.

The image reconstruction algorithm is based on a
statistical model for the measured data, Beer’s law and
a realistic model for the known point spread function
(O’Sullivan and Benac 2007). The reconstruction problem is
formulated as an optimization (maximum likelihood) problem
in the statistical estimation theory.

A brief outline of the algorithm is described below. For
more details, the reader is encouraged to refer to O’Sullivan
and Benac (2007). If we define g(y : µ) as the mean of
the counts d(y) received by the detector (a Poisson random
number) per Beer–Lambert’s law, then

g(y : µ) = λ(y) exp

[
−

∑
x∈X

h(y|x)µ(x)

]
. (12)

In the expression for the I-divergence, the function a(y)

is taken to be the measured data represented by d(y) and
b(y) is taken to be a nonlinear model q(y) representing the
transmission of the photons. The term q(y) includes the
parameter set µ̂(x), which is to be estimated:

q(y) = λ(y) exp

[
− ∑

x∈X

h(y|x)µ̂(x)

]
.

(13)

4
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If (11) is written for this case as

I (d‖q) =
∑
y∈Y

{
d(y) ln

[
d(y)

q(y)

]
− [d(y) − q(y)]

}
, (14)

the terms g(y : µ) and q are related by the following
expression:

I (d ‖g(y : µ)) = min
q∈µ

I (d‖q). (15)

When µ = µ̂, the quantity q is equal to g. Hence, the objective
of the algorithm is to find the minima of I (d‖q) with respect
to µ̂(x). The terms in the log-likelihood function that depend
on the parameter set (attenuation values to be estimated)
are negative of the corresponding terms in the I-divergence.
Thus, minimizing the I-divergence over the parameter set
µ̂ is equivalent to maximizing the log-likelihood function.
Minimizing the I-divergence offers the unique advantage that
it has a known lower bound (equal to zero), for projection
data processed from any system. This is not the case with
maximizing the log likelihood as the upper bound is not
known. The derivation of the iterative algorithm and its proof
is discussed by O’Sullivan and Benac (2007).

Minimizing (14) as per (15) yields (16), the expression
for updating the parameter set (attenuation values):

µ̂(k+1)(x) = µ̂(k)(x) − 1

Z(x)
ln

(
b̃(x)

b̂(k)(x)

)
. (16)

The terms b̃(x) and b̂(k)(x) are the back projections of d(y)

and the current estimates of q̂(k)(y), respectively. In other
words, they are the back projections of the measured data and
the nonlinear model employed (based on Beer-Lamberts law).
Their expressions are given by

b̃(x) =
∑
y∈Y

h(y|x)d(y) (17)

b̂(k)(x) =
∑
y∈Y

h(y|x)q̂(y) (18)

q̂(k)(y) = λ(y) exp

[
−

∑
x∈X

h(y|x)µ̂(k)(x)

]
. (19)

The iterative process for computing the image goes backwards
starting from (19) to (16). An initial guess for µ(k=0)(x)

is chosen to calculate q̂(x) in (19); then q̂(x) is used to
calculate b̂(x) in (18). The back projection b̃(x) is computed
just once based on d(y). µ(k+1)(x) is updated based on (16),
and the process is started again setting k = k + 1 using the
updated values of attenuation. A non-negativity constraint is
applied on the values of attenuation. Hence at any iteration, if
µ̂(k+1)(x) < 0 it is overwritten as µ̂(k+1)(x) = 0. Z(x) in (16)
is an appropriate scaling function chosen for the xth pixel such
that the following criterion is satisfied (O’Sullivan and Benac
2007): ∑

x∈X

(
h(y|x)

Z(x)

)
� 1. (20)

For every pixel x, the length of the longest projection y passing
through it was chosen as the value of Z(x) such that (20) was

satisfied. The value of Z(x) was found to be insensitive to the
final convergence values.

The AM algorithm discussed here does not model
Compton scatter. In this study, the gamma ray used
(experimental and simulated) includes only the unattenuated
gamma ray photons. If the scatter is significant
and unavoidable in the scanner, then a more sophisticated
algorithm must be used. If the mean scatter is known for a
given case, then mathematical strategies have been discussed
by O’Sullivan and Benac (2007).

3. Data generation methodology

Transmission data from three different types of phantoms
were processed by the algorithms for comparison. The first
two cases of the phantom considered were synthetic, as in
simulated gamma ray transmission data were generated on
the basis of these phantoms and processed. In the third case,
experimental transmission data were gathered with a second
generation fan beam tomography setup and processed. The
holdup distribution images of the liquid and the gaseous phases
in the three cases of the phantom are determined and the results
are compared.

The first phantom has regions of gas (air) and liquid
(water) alone. The second phantom has regions with solid
(metal) in addition to gas (air) and liquid (water). The objective
of using the second phantom is to test for applications where
the solid phase in the system is stationary, as in the case of
gamma ray tomography applied to columns with unavoidable
internal structures, or those with structured packing or a fixed
bed (Roy and Al-Dahhan 2005). In such applications the
background scans, or calibration scans, of the column include
the solid phase; thereby only the liquid and gaseous phases are
accounted for when the dynamic system is imaged. In the third
case, experimental data were collected for a phantom with a
gaseous phase (air) and a liquid phase (air). Although the gas
and liquid phases are stationary in all the phantoms, they are
processed assuming them to be dynamic. Hence, the holdup
images obtained are meant to provide time-averaged holdup
distribution information.

3.1. Details of the phantom

3.1.1. Phantom for simulation (cases I and II). In this
study, a synthetic phantom was considered with dimensions
as indicated in figure 2.

The diameter of the phantom, Dcol, was set to 8 in;
the other region in the phantom has dimensions that are in
proportion to the diameter. The proportionality ratios are
indicated in figure 2. In case I, the regions R1 through R4
are filled with air and the background region B is filled with
water (table 1).

This represents an ideal two-phase arrangement consisting
of liquid and gas. In case II, the regions R1 and R4 are filled
with air, the regions R2 and R3 are filled with iron and the
background region is filled with water (table 1). The shape of
the background region is the same as case I. Case II represents a
situation where columns have internal structures that are static

5
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Figure 2. Schematic of phantom for which the data were generated
by simulation. Dcol = 8 in. The details of the material in regions R1,
R2, R3 and R4 are given in table 1.

Figure 3. Schematic cross section of the phantom for which
experimental transmission data were gathered. The walls are made
of Perspex. Region R1 is air and region R2 is filled with water.

and are made of metal which usually have high attenuation
values. The holdup images are determined only for the gas
and liquid present in the case II phantom.

3.1.2. Phantom for experimental data (case III). A phantom
made of Perspex (acrylic glass) with dimensions as indicated
in figure 3 is used for case III. This phantom consists of
two concentric pipes glued to a flat plate (not shown in the
figure). The inner R1 chamber is empty (filled with air) and
the outer annular chamber R2 consists of water. This phantom
is similar to the phantom in case II (figure 2), as solid material
(walls) is present in the domain; however, the attenuation of
the Perspex material is far lower than iron or any other metal.
Hence, in essence it is a two-phase phantom (like case I)
with gas and liquid in a different spatial configuration than
case I.

Table 1. Materials used in the phantom and the attenuation values.

Material used. Attenuation values
indicated in parenthesis

Region in phantom
(figure 2) Case I Case II

B Water (0.0863 cm−1) Water (0.0863 cm−1)
R1 Air (0.0 cm−1) Air (0.0 cm−1)
R2 Air (0.0 cm−1) Iron (0.2197 cm−1)
R3 Air (0.0 cm−1) Iron (0.2197 cm−1)
R4 Air (0.0 cm−1) Air (0.0 cm−1)

3.2. Details of the gamma ray computer tomography (CT)
scanner

Figure 4 shows the schematic of the CT scanner used in this
study for gathering the experimental data for the case III
phantom. The dimension of this same scanner was used to
generate the simulated data for the phantom (cases I and II)
in figure 2. The scanner consists of a point 137Cs gamma ray
source that has a photo peak at 660 keV. The attenuation data
shown in table 1 are based on this energy of the gamma ray
photons. An equiangular fan beam arrangement of the source
and the detectors is used. The source is at the pointed end
of the fan and the detectors are at the curved end of the fan,
placed 120 cm apart. The detector arrangement consists of
nine 2 in diameter NaI(Tl) detectors of 2 in thickness. Each
of these detectors is collimated with a lead collimator that is
about 2.5 in thick and has an open aperture of dimension
1/16 in × 3/16 in. This aperture reduces the effective
exposed area of the crystal to a rectangular region of dimension
1/16 in × 3/16 in. The counts received by the detectors are
limited to what is incident on this aperture. This detector array
is moved with a motor 21 times at an angle of 0.13◦ from the
source, thereby creating 189 detector positions effectively for
each source position. The projection is modeled as a fine line
between the source and the detector as the open area of the
detectors is very small. A total of 197 source positions (also
called views) are considered; hence, gamma ray count data
for 189 × 197 (total 37 233) projections passing through the
domain are collected. The gamma ray count data recorded are
energy thresholded; hence unattenuated gamma ray photon
counts of 660 keV were recorded. The simulated data for the
phantom are generated for 189 projections per view for 197
views, based on the same geometry as the scanner described
above. An 80 × 80 pixels resolution is used to reconstruct the
image. Hence, each pixel represents an area of 2.54 mm ×
2.54 mm of the phantom. Details of the data acquisition
hardware, collimators and detectors used to collect the photon
count data are available from Roy (2006).

3.3. Gamma ray count data generation

Gamma ray count data were generated by simulation for cases
I and II of the phantom. Schaffer’s (1970) algorithm is used to
generate the counts I that are Poisson random numbers with
probability PI and mean g(y : µphantom) given by

PI = [g(y : µphantom)]I

I !
exp[g(y : µphantom)] (21)

6



Meas. Sci. Technol. 19 (2008) 015506 R Varma et al

Figure 4. Schematic of the scanner arrangement with the phantom
in the center. A gamma ray fan beam with a 25◦ angle and a detector
array with nine detectors are used (not shown). These detectors are
moved through 21 positions effectively creating 189 projections.
The region occupied by the detectors is indicated as the detector
array. The source, and the detector array, is moved along the locus
as indicated for 197 positions and projection data for each location
are gathered.

g(y : µphantom) = λ(y) exp

[
−

∑
x∈X

h(x| y)µphantom(x)

]
. (22)

This Poisson number generated for each y is set equal to d(y),
the counts received by the detector. The attenuation value
µPhantom(x) used to generate the count data is the attenuation
of the xth pixel in the phantom (figure 1) along projection y.
The algorithms (AM and EM) determine these values without
any prior information about the phantom and based purely on
the Poisson numbers.

To reduce the effect of noise and uncertainty in the data
and to get a better quality of the images, the mean value
of the counts based on multiple samples or readings for a
given projection y is often used for processing the data, as
represented by (23). Here, n represents the number of data
samples of counts for a given projection y,

d(y) = 1

n

n∑
i=1

Ii . (23)

If an infinite number of samples are collected, then (24) would
give an accurate value of the mean g(y : µphantom):

lim
n → ∞

1

n

n∑
i=1

Ii = g(y : µphantom). (24)

Hence, when (23) is used with some small finite values of n
then it can be said that an approximate estimate of the mean
g(y : µphantom) is used to process the data. To see how the
number of data samples used to arrive at the mean value of
the counts affects the AM and EM algorithms’ performance,
the mean of multiple samples (n) of I (ranging from 1 to
100) is used as estimates of g(y : µphantom) for d(y) as per

(23). It can be seen as follows: the higher the number of
samples, the less noise in the data. This procedure was also
followed with the experimental data collected with the scanner
for the case III phantom. The maximum value of n = 100 is
an optimum choice as the results discussed in section 4 show
that the maximum difference in the reduction of noise, and by
extension error, in the holdup images occurs for lower values
of n. Hence, the reduction in error from n = 1 to n = 5 is far
greater than the reduction in error from n = 50 to n = 100.
The value for n = 100 is also practical when data are collected
with the scanner, as higher values would dramatically increase
the time required to execute the scan without an increase in
accuracy commensurate with it.

4. Calculation of holdup distribution

The count data generated by simulation are processed by the
algorithms (AM and EM) which reconstruct an image that
depicts the attenuation image, µ̂l−g(x), of the scanned domain.
This attenuation value is a linear sum of the product of the
holdup fractions of the phases and their pure attenuation values
as given by (25)

µ̂l−g(x) = µ̂l(x)εl(x) + �
µg(x)εg(x). (25)

The subscripts l and g represent liquid and gas, respectively,
ε(x) represents the holdup fraction and µ̂(x) represents the
attenuation of the pure phase. The objective of using CT is to
determine the values of ε(x). The µ̂(x) values for liquid and
gas are usually determined by a background scan where the
domain purely consists of only one of the phases. In addition,
it is also known that the sum of the holdup fractions of the two
phases is unity

εl(x) + εg(x) = 1. (26)

To determine the gas holdup for the case I phantom,
equations (25) and (26) are combined with the assumption
that µ̂g(x) (representing the calibration attenuation image of
the system filled with gas) should be equal to zero, to give
(27). This assumption is reasonable as air has a negligible
contribution to the attenuation of a gamma ray photon with
661 keV energy. Hence, the gas holdup distribution image
is determined using (27), and by extension the liquid holdup
distribution image by using (28):

εg(x) = µ̂l(x) − µ̂l−g(x)

µ̂l(x)
(27)

εl(x) = 1 − µ̂l(x) − µ̂l−g(x)

µ̂l(x)
(28)

In (27) and (28), µ̂(x)l−g represents the attenuation image of
the phantom with the region B filled with water and regions R1
through R4 filled with air, and µ̂(x)l represents the attenuation
image of the phantom with regions B and R1 through R4 filled
with water.

For the cases II and III of the phantom which has solid
internals, attenuation images µ̂(x)l−g and µ(x)l in (25) are
replaced with µ̂(x)l−g−s and µ̂(x)l−s , respectively, to give

εg(x) = µ̂l−s(x) − µ̂l−g−s(x)

µ̂l−s(x)
. (29)
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The image µ̂(x)l−g−s has liquid in region B, gas in regions
R1 and R4, and solid in regions R2 and R3 of the phantom
(figure 2), and region R1 with gas and region R2 with liquid
in the case III phantom. The background scan image µ̂(x)l−s

has liquid in regions B, R1 and R4, and solid in regions R2
and R3 of the case II phantom (figure 2) and liquid in R1 and
R2 of the case III phantom (figure 3).

Similarly, to determine the liquid holdup image for the
case II of the phantom, (28) is modified substituting µ̂(x)l
with [µ̂L−S(x) − µ̂G−S(x)] to give (30). The image µ̂(x)g−s

has gas in regions B, R1 and R4, and solid in regions R2 and
R3 of the case II phantom (figure 2) and gas in R1 and R2 of
the case III phantom (figure 3)

εl(x) = 1 − [µ̂L−S(x) − µ̂G−S(x)] − µ̂l−g(x)

[µ̂L−S(x) − µ̂G−S(x)]
. (30)

The attenuation image µ(x) for different configurations
as indicated above is calculated using the AM and EM
algorithms. The holdup distribution images are determined
post-attenuation image reconstruction based on (27) through
(30), for the liquid and the gaseous phases for all three phantom
cases. Although the algorithm reconstructs the attenuation
images, the holdup distribution images obtained on its basis
are analyzed to evaluate the AM and EM algorithms. This is
done as ultimately the phase holdup images are of interest
to obtain quantitative information about the system being
scanned.

5. Results and discussion

The holdup images reconstructed based on simulated
transmission data for case I and case II phantoms and
experimental transmission data from the case III phantom are
analyzed in this section. The mean percentage error and the
standard deviation of all the pixels in a given domain with
a phantom are used as parameters to qualitatively assess the
images. The error values used in this discussion are calculated
by comparing the ideal values of holdup with the values of
holdup from the reconstructed images.

5.1. Gas holdup images

Using (27) and (29), the gas holdup images were
successfully obtained. Figures 5–7 show the gas holdup
images obtained using AM, EM and FBP algorithms
respectively.

Clearly, both the AM and EM algorithms are able to
successfully image the gas phase distribution in all three
phantoms as the gas-filled regions are captured in the image
with holdup values close to unity. There is no distortion in the
reconstructed images; the geometric shapes of the domains
(R1 through R4) for case I, R1 and R2 for case II and R1
for case III are maintained and appear just as in the phantom.
The transition in the gas holdup values at the edge of the
domain is sharper in images generated by the AM algorithm
(figure 5) as compared to those by the EM algorithm
(figure 6). The AM algorithm provides gas holdup images
with uniformity in the domains of the phantom (for all cases of

the phantom) where gas is present. These images also confirm
that (29) is correctly formulated as complicated arrangements
that have parts of the domain covered by the solid material
(figures 6(b) and (c)) in the phantoms are not misrepresented
as part of the gas holdup.

In contrast, the FBP results (figure 7) show artifacts
especially in the case III phantom. The circular domains R1
and R4 in case I and case II create a shadow in the image. The
case III phantom has circular artifacts present. Clearly, the
AM and EM gas holdup images have less error than the FBP
image.

5.2. Quantitative analysis of gas holdup

A quantitative analysis of the images is possible only when
the holdup values of all pixels in a given part of the image are
analyzed for error and standard deviation. Standard deviation
indicates the level of noise in the image. If the standard
deviation of the pixels is high, it means that the image is noisy
and a lot of freckles or grains can be seen. The most desirable
situation is the one where both the standard deviation and the
error are nil. When the standard deviation is small and the
error is high, then there is a bias in the image.

Figure 8 shows the mean percentage error and figure 9
shows the standard deviation in the gas holdup values for
the three cases of the phantom obtained using both the AM
and the EM algorithms. Clearly, the error values in figure 8
show that the AM algorithm performs better than the EM
algorithm for any condition of the number of data samples
or iterations covered in all the phantoms. When transmission
data with low levels of noise (n = 100 in (22)) are used, the
EM algorithm still gives higher error than the AM algorithm;
this is more prominent in the case III phantom. For the case II
phantom (figure 8(b)), the difference in error between the two
algorithms is almost an order of magnitude. This indicates that
in the presence of high attenuation material, the AM algorithm
gives a more accurate estimate of gas holdup.

The standard deviation of the pixels from the regions
of a phantom where gas is present has trends similar to the
error values for any given number of iterations and number
of transmission data samples for the projections (based on
(23)). The values are lower for the results obtained from
the AM algorithm as compared to the EM algorithm. As
the iterations progress, the standard deviation values stabilize.
This indicates that the gas holdup images have less noise in the
image. At this point, it is important to determine the standard
deviation of the gas holdup in the pixels from the region of
the phantom that does not have gas. Ideally, the holdup values
and standard deviation in this region should be zero. However,
small values are observed.

Figure 10 shows the standard deviation values of the gas
holdup in these regions. Again, for all the cases the AM
algorithm gives values that are smaller than the EM; hence the
noise in the image in these regions is much less.

5.3. Liquid holdup

The liquid holdup images were successfully obtained by using
(28) for the case I phantom and (30) for cases II and III.
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(a) (b) (c)

Figure 5. Gas holdup images obtained with the AM algorithm (after 1000 iterations with n = 50). The color bar represents the color code
used for representing gas holdup values in the images: (a) gas holdup based on (27) for the case I phantom (figure 2), (b) gas holdup based
on (29) for the case II phantom (figure 2) and (c) gas holdup based on (29) for the case III phantom (figure 3).

(a) (b) (c)

Figure 6. Gas holdup images obtained with the EM algorithm (after 1000 iterations with n = 50). The color bar represents the color code
used for representing liquid holdup values in the images. (a) Gas holdup based on (27) for the case I phantom (figure 2), (b) gas holdup
based on (28) for the case II phantom (figure 2) and (c) gas holdup based on (29) for the case III phantom (figure 3).

(b) (c)(a)

Figure 7. Gas holdup images obtained using the FBP (with n = 50). The color bar represents the color code used for representing liquid
holdup values in the images. (a) Gas holdup based on (27) for the case I phantom (figure 2), (b) gas holdup based on (28) for the case II
phantom (figure 2) and (c) gas holdup based on (29) for the case III phantom (figure 3).

Figures 11–13 show the liquid holdup images obtained using
AM, EM and FBP algorithms respectively. Clearly, the
liquid phase is separated successfully in these images. The
results from the AM and EM algorithms show that there is no
distortion in the images; the shapes of the region with liquid
in the phantoms are successfully captured. The regions of the
case II and III phantoms that have solids are not misrepresented

as liquid holdup in the images. As in the case of the gas holdup
images, the liquid holdup images have sharper transitions at
the edge of the domain when the AM algorithm is used. The
effectiveness of the AM algorithm in this aspect can clearly
be seen in the case III phantom where actual experimental
transmission data are used, by comparing figures 11(c) and
12(c).

9



Meas. Sci. Technol. 19 (2008) 015506 R Varma et al

(a) (b) (c)

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

=

=
=

=

=

=

=

=

=

=

=

=

=

=

=

Figure 8. Mean percentage error in gas holdup for results obtained with AM and EM algorithms for projection data with n = 1 through n =
100 (in (23)). (a) Error in gas holdup value for pixels of regions R1, R2, R3 and R4 (figure 2) of the case I phantom; (b) error in gas holdup
value for pixels in regions R1 and R2 for the case II phantom (figure 2) and (c) error in gas holdup value for pixels from the region R1 of the
case III phantom (figure 3).
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Figure 9. Standard deviation of gas holdup for results obtained with AM and EM algorithms for projection data with n = 1 through n = 100
(from (23)). (a) Standard deviation of gas holdup in pixels of regions R1, R2, R3 and R4 (figure 2) of the case I phantom; (b) standard
deviation of gas holdup in pixels of regions R1 and R2 for the case II phantom (figure 2) and (c) standard deviation of gas holdup in pixels of
region R1 of the case III phantom (figure 3).
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Figure 10. Standard deviation values of gas holdup from the results obtained in regions of the phantoms where ideally the gas holdup is
zero. The values obtained with AM and EM algorithms for projection data with n = 1 through n = 100 are shown. (a) Standard deviation of
gas holdup in pixels of region B (figure 2) of the case I phantom, (b) standard deviation of gas holdup in pixels of regions B, R3 and R4 for
the case II phantom (figure 2) and (c) standard deviation of gas holdup in pixels of region R2 of the case III phantom (figure 3).

In cases I and II the phantom is pixilated such that only one
phase is present in any pixel. In the case III phantom, it is not
possible to control this and the pixel along the curved boundary
of the R2 domain (figure 3) tends to smudge. In spite of this,
the AM algorithm gives better results than the EM algorithm
as the edges of the liquid region appear to be blurred. For the
case II phantom, the liquid holdup image obtained with the
EM algorithm (figure 12(b)) has freckles, and hence has more
noise, compared to the one obtained with the AM algorithm
(figure 11(b)). Also the holdup in the region occupied by the

high attenuation material (R3 and R4 in figure 3) in the EM
algorithm image is slightly above zero. Both these aspects
are attributed to the presence of the high attenuation material
present in the domain.

The FBP holdup images show artifacts similar to the gas
holdup images. There is a shadow created by the circular
gas holdup regions of the domain. For the case II phantom,
the metallic regions R2 and R3 created the most pronounced
artifacts. The circular shape of domains R3 and R4 is lost,
and most of this region appears as part of the liquid holdup
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(c)(b)(a)

Figure 11. Liquid holdup images obtained with the AM algorithm (after 1000 iterations with n = 50). The color bar represents the color
code used for representing liquid holdup values in the images: (a) liquid holdup based on (28) for the case I phantom (figure 2), (b) liquid
holdup based on (30) for the case II phantom (figure 2) and (c) liquid holdup based on (30) for the case III phantom (figure 3).

(c)(b)(a)

Figure 12. Liquid holdup images obtained with the EM algorithm (after 1000 iterations with n = 50). The color bar represents the color
code used for representing liquid holdup values in the images: (a) liquid holdup based on (28) for the case I phantom (figure 2), (b) liquid
holdup based on (30) for the case II phantom and (c) liquid holdup based on (30) for the case III phantom.

(a) (b) (c)

Figure 13. Liquid holdup images obtained using the FBP method (with n = 50). The color bar represents the color code used for
representing liquid holdup values in the images: (a) liquid holdup based on (28) for the case I phantom (figure 2), (b) liquid holdup based on
(30) for the case II phantom and (c) liquid holdup based on (30) for the case III phantom.

distribution (figure 13(b)). The high attenuation domain
severely affects the FBP results.

5.4. Quantitative analysis of liquid holdup

Figure 14 shows the mean percentage error in estimating
the liquid holdup values in the region of the phantoms filled
with the liquid. Clearly, for all three phantom cases the AM
algorithm performs better universally than the EM algorithm.
For the case II phantom, there is an order of magnitude

difference in the error between the holdup value results from
both the algorithms.

Also, the error does not stabilize or reduce for data with
higher noise levels (lower values of n as per (23)) when the
EM algorithm is used for this phantom case. It should be noted
that the liquid domains in the phantoms of cases I and II are
physically similar. This clearly shows that the holdup image of
a phase that does not have a high attenuation is affected by parts
of the domain that have high attenuating material or phase.
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Figure 14. Mean percentage error in liquid holdup for results obtained with AM and EM algorithms for projection data with n = 1 through
n = 100. (a) Error in liquid holdup for pixels of region B (figure 2) of the case I phantom, (b) error in liquid holdup value for region B for
the case II phantom (figure 2) and (c) error in the liquid holdup value in region R2 of the case III phantom (figure 3).
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Figure 15. Standard deviation in liquid holdup for results obtained with AM and EM algorithms for projection data with n = 1 through n =
100. (a) Standard deviation in liquid holdup of pixels of region B (figure 2) of the case I phantom, (b) standard deviation in liquid holdup of
region B for the case II phantom (figure 2) and (c) standard deviation in liquid holdup of region R2 of the case III phantom (figure 3).
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Figure 16. Standard deviation values of liquid holdup results obtained in regions of the phantoms where liquid holdup is ideally zero. The
values obtained with AM and EM algorithms for projection data with n = 1 through n = 100 are shown. (a) Standard deviation of liquid
holdup in pixels of regions R1, R2, R3 and R4 (figure 2) of the case I phantom; (b) standard deviation of liquid holdup in pixels of region
R1, R2, R3 and R4 for the case II phantom (figure 2) and (c) standard deviation of gas holdup in pixels of the region R1 of the case III
phantom (figure 3).

The AM algorithm provides images with better quality in such
applications as compared to the EM algorithm.

Figure 15 shows the standard deviation of the liquid
holdup from the pixels that are from the region of the phantom
that have the liquid phase.

The results from the AM algorithm have a lower standard
deviation compared to the EM algorithm for any value of the
iterations or the number of data samples per projection (as
per (23)). This trend is true for all the phantoms studied.
This indicates that the noise levels in the images obtained
using the AM algorithm are much lower than what is seen in

results from the EM algorithm. For the case II phantom, the
standard deviation values of the results from the EM algorithm
are an order of magnitude different compared to the AM,
reconfirming what was seen for the same case in figure 14.

The standard deviation and percentage error for
transmission data with lower n values are found to increase
with the increase in the number of iterations for both the liquid
and gas holdup images. This phenomenon is known to occur
with EM (Snyder et al 1987) and AM (Benac 2005) algorithms
due to the random nature of the data. This happens even as the
solution converges toward a maximum log-likelihood estimate.
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Snyder et al (1987) have suggested strategies that overcome
this problem which have not been implemented here as it is
out of the scope of this study. The images reconstructed using
the AM algorithm exhibit this behavior to a far less extent at
lower iterations compared to the EM algorithm.

Figure 16 shows the standard deviation values of liquid
holdups from pixels from the regions of the phantoms that do
not have the liquid in them. Ideally, these values should be
zero and by extension the standard deviation of this should
be zero. However, some small finite values of holdup are
obtained. Here again the results from the AM algorithm show
values of standard derivations that are much lower than the EM
algorithm for all cases, as the noise level in the images is lower
with the use of the AM algorithm. The reduction in values of
standard deviation by the AM algorithm is more prominent in
the case II phantom where a high attenuation material (solid)
is present in the domain.

6. Conclusions

The AM algorithm was successfully implemented for the case
of single energy gamma ray tomography to determine phase
holdup images for two phase systems for phantoms with
different configurations. The performance of the algorithm
was compared by putting the effect of some critical parameters,
such as the noise level in the data and the number of
iterations used to reconstruct the image, in perspective. A
systematic quantitative analysis of the holdup distribution
images generated using the AM and EM algorithms was
carried out for three phantom cases. The AM and EM
images were compared to the FBP images. The AM algorithm
proposed by O’Sullivan and Benac (2007) performs better than
the EM algorithm proposed by Lange and Carson (1984) when
used for gamma ray tomography to determine holdup images
in two phase systems. The holdup images obtained with the
FBP are less accurate than the AM and EM results. The results
show an overall improvement in the quality of the image in
terms of the noise and accuracy of the estimated values when
the AM algorithm is used. For data with high noise the AM
algorithm gives less error when compared to EM and FBP
algorithms, and it requires fewer iterations to reach a given
level of accuracy. For applications that involve the use of
highly attenuating material the AM algorithm is more stable
and produces holdup images that have a greater degree of
accuracy and lower levels of noise. This is true for both parts
of the domain that have the high attenuation material (metals)
and parts that do not have it, like the surrounding areas (liquid
and gas).

The differences in the performance of the two stochastic
algorithms could be attributed to the simplification introduced
in the M-step of the EM algorithm as indicated in (8) to
estimate (7). In spite of using three terms of (8) (shown in
(9)) for the EM algorithm, as recommended by Lange and
Carson (1984) for maximum accuracy in the results, it does
not match the performance of the AM algorithm; the AM
algorithm performs better. Hence, the AM algorithm is a
better choice for image reconstruction for determining the
holdup distribution images in multiphase systems involving
two-phase flow.
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