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A B S T R A C T   

The phosphate ore production is steadily increasing due to its high demand for agriculture, medicine, and others. 
Ore extraction generates a considerable quantity of waste rocks that are generally stocked in piles. The current 
research aims to investigate the characterization of phosphate mine waste rocks (PMWR) generated in Benguerir, 
Morocco mine site. As a part of a wide project aiming to recycle those stockpiles, sensor-based ore sorting will be 
employed to separate the different lithologies. As a prior investigation before implementing this technology, two 
samples of 25 tons from the destoning and screening PMWR piles were sampled and submitted to manual sorting. 
The latter operation revealed the presence of different lithologies including indured phosphate, different types of 
siliceous, carbonate, phosphorus, and marly rock types. Those waste rocks were characterized physically, 
chemically, and mineralogically. Their potential uses for recycling or upcycling was investigated and addressed. 
About 25% of indured phosphate was found, which can be first recovered by ore sorting. This reserve of residual 
phosphate could be recovered using beneficiation methods. The flintstone, phosphated flintstone, and dolomitic 
limestone exhibit good physical and mechanical properties that meet the requirements to produce concrete. The 
silexite and siliceous marls have a low density and could be used as lightweight aggregate for non-structural 
concrete blocks production. The investigation on tender marls corroborates the literature and their suitability 
as alternative binders or as supplementary cementitious materials. Those marls could be used as well as lime 
binder for repairing historical buildings or as hydraulic lime binder for road construction. PMWR valorization as 
road construction materials was already proved. However, studying this remediation pathway after the recovery 
of phosphate and other lithologies by ore sorting is highly recommended. The recycling of those by-products will 
decrease the natural resources consumption in the civil engineering field alongside with resolving their envi-
ronmental problems.   

1. Introduction 

The demand on phosphorus is increasing due to its highly added 
value for agriculture, medicine, etc. (Gharabaghi et al., 2010; Moham-
madkhani et al., 2011). According to the last statistics released in 
January 2021, the US Geological Survey’s estimated the phosphate ore 
production in 2020 of 223 million metric tons where: China (90), 
Morocco (37), the United States (24) are the top three (Mineral com-
modity summaries, 2021). Despite China is the leader in phosphate ore 
production, the estimated worldwide reserves are located in Morocco 
(70%), China (4.5%), Egypt (3.9%), followed the rest of the world 

(21%). Sedimentary phosphate in Moroccan context came from the 
decomposition of sea animals, since about 75 million years (My). The 
main phosphate fields in Morocco are in four large basins: Oulad 
Abdoun Basin, Gantour Basin, Meskala Basin, and Oued Eddahab Basin 
as presented in the Fig. 1. Phosphatogenesis took place during the 
geological period between the Maastrichtian (Late Cretaceous) and 
Lutetian (Middle Eocene) (Armand Boujou, 1976). The phosphatic series 
in the Gantour Basin is produced based on the collected data from 
exploitation operation and borehole recognition. Its start by Maas-
trechtian (66.0–72.1 My) and end by Lutetian (41.2–47.8 My) (Anjjar 
et al., 2018; Ihbach et al., 2020). Sandy phosphate, phosphatic marls, 
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phosphatic limestones, and clay sandstone constitute the main layers of 
the Maastrechtian (Late epoch). The Danien (61.6–66.0 My) and Tha-
netian (56.0–59.2 My) from Paleocene epoch, are mainly composed by 
an alternate of the phosphatic limestones, sandy phosphate, and phos-
phatic marls with the presence of flint and phosphated flint (Phos-flint). 
The Ypresian (47.8–56.0 My) as lower Eocene epoch is elaborated by 
phosphatic marls with intercalation of silicified marls, phosphatic 
limestones, and silexite. The base of Ypresian is marked by the imper-
meable Ypresian clay. The end of the phosphatic series is marked by the 
Lutetian. Which characterized by marly-siliceous limestones known as 
Thersitae limestones and the presence of the clayed layers (Boujou, 
1976; El Bamiki et al., 2021; El Haddi et al., 2014). 

OCP-SA, the holding in charge of phosphorus extraction in Morocco, 
adopt a combination of different processing units including destoning, 
screening, washing and then flotation to maximize the extracted phos-
phate ore. This last as sandy phosphate layers are intercalated between 
waste rock levels including marlstone, limestone, etc. (Mouflih, 2015). 
Thus, the value chain of phosphate extraction generates different 
by-products i.e., destoning, screening, and washing waste rocks. The 
production of those by-products is susceptible to increase with the in-
crease of the phosphate production. Idrissi et al. (2021), have investi-
gated the properties of nine different wastes from phosphate ore mine. 
Their study suggested that those materials are rich of different minerals 
such as cristobalite, dolomite, and calcite. Therefore, they could be 
valorized in several applications to generate additional revenue. More 
recently, Taha et al. (2021) have proposed several solutions to achieve a 
sustainable mining while maintaining circularity. The main identified 
circularity opportunities were the residual phosphorus recovery along-
side with other critical minerals and metals. Also, considering the 
phosphate mine waste rocks (PMWR) as alternative resources and raw 
materials especially for civil engineering. 

In Morocco, the open-pit phosphate mines extract the sedimentary 
phosphate using the discontinuous panel extraction process. During this 
operation, the overburden and intercalation layers are extracted and 

stored in piles. The sandy phosphate is extracted using bulldozers and 
transported to treatment and beneficiation plants. However, some of the 
intercalation layers are also extracted with phosphate due to impreci-
sion of the extraction equipment and the geometric definition of the 
phosphate layers. To separate the sandy phosphate from the waste rocks, 
the extracted mixture is subject to crushing and sizing. The resulting fine 
sandy phosphate is transported to treatment and beneficiation plants 
while coarse rocks are discarded as waste rocks in PMWR piles. 

Attempts were done to recycle those different by-products of phos-
phate extraction to be used in the civil engineering field. Extracted from 
phosphate interlayers, red clays were used to synthesis lightweight 
aggregate (0.80–0.95 g/cm3) that achieved in concrete ~77 MPa at 28- 
d compressive strength (fc28) (Bayoussef et al., 2020). Also they are used 
to produce alkali activated material of 39 MPa fc28 (Moukannaa et al., 
2020), and even used as a supplementary cementitious material (SCMs), 
after treatment, up to 20 wt% which results 22 MPa fc28 (Bahhou et al., 
2021a). Calcined tender marls were used as a compound of binary sys-
tem and proved to be used as SCMs up to 40 wt% (Safhi et al., 2022a, 
2022b). From the same provenance, yellow clays were tested for geo-
polymers manufacturing that generated 25 MPa fc28 (Mabroum et al., 
2020). Dolomitic limestone and flintstone were crushed and recycled as 
aggregates for the production of 25 MPa fc28 ordinary concrete (El 
Machi et al., 2020, 2021). Furthermore, washing waste tailings were 
tested to develop a geopolymer mortar (Dabbebi et al., 2018). A man-
ufactured geopolymer based on phosphate sludge (60 wt%) and meta-
kaolin (40 wt%) has achieved a compressive strength of 40 MPa 
(Moukannaa et al., 2019). Calcined marls at 750 ◦C was used to 
manufacture geopolymers of 38 MPa fc120 (Mabroum et al., 2021). 
Mixed waste rocks were successfully used for road construction (Amrani 
et al., 2019, 2020b). The conducted studies revealed that Moroccan 
PMWR could be used as a mineral resource and raw materials. 

The management of the PMWR is a major concern regarding their 
environment footprint and the urban planning of the region. In a sus-
tainable development point of view, and for reducing the negative 

Fig. 1. Location of phosphate basins in Morocco including the one of Benguerir mine site and it stratigraphic log, adapted from (El Haddi, 2014; Ihbach et al., 2020); 
Legend of the lithologic column: 1) Limestone, 2) Flintstone, 3) Marley-silicious limestone, 4) Clay, 5) Uncemented phosphate, 6) Marley limestone, 7) Phosphatic limestone, 8) 
Phosphatic marl, 9) Marl. 
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impact of mining, this paper aims to characterize the screening and 
destoning PMWR piles of the Benguerir, Morocco mine site and thus 
propose potential reuses of each lithology. The study revealed the ex-
istence of 25% of indured phosphate which could be used as a new 
reserve. Also, the study characterizes new lithologies that were not 
studied before. The recovery of those by-products will be with a great 
environmental and economic interests. 

2. Materials and methods 

2.1. Open pit mine of Benguerir, Morocco 

The Gantour deposit is one of the eight Morocco’s phosphate deposits 
and the Benguerir mine is located at the center of that deposit. The 
intercalation layers are composed of siliceous, carbonate, marly, and 
phosphatic rocks (Boujou, 1976). In fact, the stratigraphic log of the 
panel seven on the Northern Benguerir mine shows that the lithologies 
of the intercalation layers are dolomitic limestones, phosphatic lime-
stones, marly and carbonate phosphate, and flintstone beds (Anjjar 
et al., 2018). To stock the PMWR in the vicinity of the mine, the Ben-
guerir mine has two different piles: the destoning PMWR of 90–150 mm 
(32◦ 15′ 33.8”N, 7◦ 51′ 22.3”W) and the screening PMWR of 30–90 mm 
(32◦ 14′ 09.6”N, 7◦ 51′ 54.0”W). The 600 m length with a height of 60 m 
piles with top-down configuration are formed by the same rocks as the 
intercalation layers of the mine and the particle size of the rocks vary 
from fine to coarser fraction. These piles are characterized by high 
heterogeneity (large blocks to fine particles) and high segregation effect 
of the particles due to the disposition method. 

3D modeling constitutes an efficient tool for decision-making of the 
mine designers and operators in mining industry. It serves to conduct 
industrial development to define priorities and improve production 
performance. A 3D modeling for PMWR piles was conducted to estimate 
their precise volume. To achieve this goal, a Professional drone equip-
ped by GPS RTK was used to collect data points with high ground res-
olution (2.75 m/Px), flight altitude of 100 m, camera with high 
resolution 16 Mpx, and 70% overlap of images. The collected data was 
processed using Lidar module of the Global Mapper software for data 
cleaning to optimize the database size. Then, the cleaned data was 
exported to Datamine RM software to create the 3D modeling (Fig. 2). 
The analyses showed that the PMWR screening piles are about 7.43 Mm3 

and those of destoning are about 7.63 Mm3. Considering an approxi-
mative density of 1.60 kg/m3, the tonnage is around 11.89 and 12.18 Mt 
for screening and destoning PMWR piles, respectively. In other manuals, 
the coarse fraction (>30 mm) for potential uses constitutes around 
45–50% of the PMWR piles. Based on that proportion, the tonnage of the 
coarse material is about 5.65 and 5.79 Mt for screening and destoning 

PMWR piles, respectively. 
The PMWR was produced with three quality that are i) overburden 

and extraction waste rock dumps, ii) PMWR destoning piles and iii) 
PMWR screening piles. Around 0.8–1.0 Mt/yr of extracted PMWR are 
disposed in the destoning and screening piles. Stripping ratio in the 
context of Benguerir site is around 3:1, for one ton of phosphate rocks 
production, three tons of waste rocks were produced (Taha et al., 2021). 

2.2. Materials sampling and manual-sorting 

The PMWR piles are characterized by high heterogeneity due to the 
segregation effect (Amrani et al., 2019). The top-down disposal consists 
of discharging PMWR over an advancing face (Zevgolis, 2018). The fine 
materials are disposed on the crest and the coarse materials move to the 
bottom (Blight, 2009). The adopted sampling method in the PMWR piles 
takes in consideration the segregation effect by collecting a composite 
sample with real grain size distribution from the top, middle and the 
base of the piles. Tweeny five tons of destoning and screening PMWR 
piles was sampled (Fig. 3). For this, different samples were collected 
from the bottom, middle and the top of the piles to have a homogeneous 
representative sample. A manual-sorting was conducted on the coarse 
fraction of those samples (>30 mm) based on the surface texture, the 
color, and the general aspect of rocks under the supervision of geolo-
gists. The Fig. 3.c presents the manual sorting of the screening PMWR. 

2.3. Characterization methods 

Identification and classification of PMWR were done using a 
macroscopic inspection and a petrographic observation on thin sections 
using Leica DM2700 standard optical microscope. Chemical character-
ization was performed utilizing X-ray fluorescence (XRF) by employing 
Epsilon 4 XRF Spectrometer. The mineralogical characterization was 
performed using X-ray diffraction (XRD) by employing D2 PHASER 
diffractometer, monochromatic CuKα radiation at λ = 1.54 Å (40 kV, 40 
mA). The identification of the mineral phases was made by HighScore 
software using COD crystallography database and the quantification of 
the abundance of the identified phases was realized by powdR package 
using rockjock library from the original RockJock program R (Butler and 
Hillier, 2020; Eberl, 2003). Physical characterizations were done using 
the volumetric displacement method for the measure of the specific 
gravity according to the ASTM D6473 (2015). Helium pycnometer of 
Micromeritics: AccuPyc II 1340 was utilized to quantify the absolute 
gravity. The unconfined compressive strength (UCS) was conducted on 
phos-flint and dolomitic limestone cylinder rock specimens according to 
the ASTM D7012 (2014) standard on intact rock core specimens of one 
cylinder of 62Ø124 mm and triplicate cubes of 50 mm3. Intact rock core 

Fig. 2. 3D models for destoning (A) and screening (B) PMWR piles.  
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specimens of flint samples were not produced because the rock exhibited 
triboluminescence during the sample preparation. Gamma-ray (γ-ray) 
densitometry (GRD) was applied on a fraction of the rocks of ~1 cm 
thickness of each to estimate the linear attenuation for each sample 
which could be of a benefit for enhanced concrete radiation shielding 
that is used widely in nuclear, industry, health, and agricultural sectors. 
The in-house developed GRD consists of a sealed Cesium-137 source of 
about 190 mCi with a collimator of 1 mm opening and a collimated NaI 
scintillation detector of 1 mm opening. The sealed source and the 
collimated detector are placed in front of each other with alignment of 
their opening. The distance between the source and the detector is 
adjustable. A line beam of gamma ray passes from the source e to the 
detector through the specimen placed in the center distance between 
them. Thus, the attenuation of the gamma ray radiation line of 1 mm 
thickness that passes through the sample rock placed in the center dis-
tance between the source and the detector was calculated using Beer--
Lambert’s law of Eq. 1 (Farid et al., 2022). 

I = I0.e− μx (1)  

where I is the γ-ray intensity after attenuation (passed through the 
sample), I0 is the initial γ-ray intensity, μ is the linear attenuation co-
efficient (cm− 1), and x is the physical thickness of absorber (cm). From 
this equation, the linear attenuation μ can be estimated for each sample 
rock used in this study to assess the suitability for radiation shielding as 
concrete aggregates and binders for the potential use of PMWR. 

3. Results and discussion 

Screening PMWR have a global mixed bulk composition, and each 
single rock particle is composed of one rock type that was sorted. In fact, 
phosphate sedimentary deposits present great heterogeneity as shown in 
the stratigraphic log and in the PMWR piles with high segregation de-
gree due to the top-down pile configuration. Particularly, the panel 
phosphate extraction method leads to bulk deposition of waste rocks. 
The manual-sorting revealed the existing of eight lithologies, each has a 
different specific potential use for phosphate beneficiation or construc-
tion materials. 

3.1. Manual-sorting 

As shown in Fig. 3 C, the manual-sorting revealed that the PMWR 
screening piles are mainly composed of indured phosphate (V, 30%), 
flintstone (III, 14%), phos-flint (IV, 14%), silicious marls (II, 20%), 
dolomitic limestone (VII, 14%), silexite (I, 5%), tender marls (VI, 2%), 
and some clays. The manual sorting of the destoning PMWR revealed the 
presence of indured phosphate (25%), flintstone (25%), Phos-flint 
(25%), silicious marls (10%), dolomitic limestone (10%), and silexite 
(5%). The tender marls were not found on those late piles because of 
their fragility. Overall, the two piles are composed of the approximately 
the same lithologies with a small different proportion. The fine fraction 

(<30 mm) was not subjected to manual-sorting which found to present 
about 50–55% of the PMWR piles, respectively. 

3.2. Chemical characterization 

Table 1 summarizes the main chemical oxides composition of the 
founded lithologies. The phosphate rocks are composed of 24% P2O5 
carbonated in a matrix that contains 16% of silica. The flintstone is 
mainly composed of silica (94% of SiO2) which corroborates the findings 
of El Machi et al. (2021). A different type of flintstone was found, called 
in the following Phos-flint, contains around 35% of silica, 25% of 
phosphorus pentoxide, and carbonated (34% of CaO). The silexite is 
mainly composed of silica (80%) with a remarkable low density that 
indicates a high porosity and higher absorption. The silicious marls have 
a very similar chemical composition of the silexite. The found limestone 
has a high loss on ignition (LOI) around 38% and mainly composed of 
dolomite (24% of MgO) and calcite (28% of CaO). Tender marls have a 
high LOI (32–34%), mainly composed of MgO and CaO. 

3.3. Petrographic macroscopic characterization 

Table 2 summarizes the petrographical properties of the existing li-
thologies founded in the PMWR piles. The sedimentary rocks are formed 
through chemical and biochemical reactions. The macroscopic exami-
nation revealed distinctive properties of the rocks. Flint is a siliceous 
rock with smooth surface texture, conchoidal break, and a high hardi-
ness. Phosphate flint is similar to flint but contains phosphate particles. 
Dolomitic limestone is a carbonate rock of a rough surface texture that 
has a positive reaction with HCl. The indured phosphate composed of 
two types, one based on consolidated fine grains and the other with 
indured coarse grains. Both have a certain important hardness and are 
not easily friable. Regular flintstone and the phos-flint both have a 
massive surface texture and a high hardness. The silexite distinguished 
with its purplish-pink color and its lower density compared to the other 
flintstones. Silexite is a sedimentary siliceous rock with a fine texture 
formed from chemical, biochemical or volcanic interactions (Foucault 
and Raoult, 2010). The silicious marls are compact and lightweight like 
the silexite but with lesser hardness. The tender marl is fragile and 
comes in different colors. 

3.4. Mineralogical characterization 

Fig. 4 represents the XRD analysis of the main lithologies. The 
mineralogical composition shows one major peak of quartz in the 
flintstone, carbonate major peak in the limestone with minor peaks of 
quartz which corroborate the XRF analyses. Flint is a chert siliceous rock 
composed of silica oxides (94%) and quartz minerals. It occurs as nod-
ules or beds in the phosphate deposits, and the quartz can be micro-
crystalline or cryptocrystalline. Boujou (1976) investigated siliceous 
rocks of the Gantour deposit under the microscope and stated the 

Fig. 3. 25-tons samples of destoning (A) and screening (B) PMWR each, subjected to manual sorting (C).  
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dominance of microcrystalline calcedony in the mineralogical compo-
sition of flint. Dolomitic limestone is a carbonate rock composed of 
calcite and dolomite minerals. In a previous study by Idrissi et al. (2021), 
chemical characterization of a dolomitic limestone (S4) from the Ben-
guerir mine revealed the presence of SiO2 (4.6%), MgO (11%), CaO 
(36%), P2O5 (1.4%), and 46% LOI, with a corresponding mineralogical 
composition of quartz (8%), calcite (35%), and dolomite (52%). The 
chemical composition of the sample is close to the studied dolomitic 
limestone, and the mineralogical composition confirms the classification 
of this rock as dolomitic limestone. The phos-flint shows peaks of apatite 
and quartz, and the silexite is mainly composed of quartz. Sidibé (1995) 
also found that the Senegalese silexite contains 91% of flint, 6% of 
indured phosphate, 3% of fine phosphated, and clayey elements. 

The mineralogical observation on the thin sections was done by the 
optical microscopy of the major lithologies stored manually is illustrated 
in Fig. 5 and the quantification in Table 3. The indured phosphate is 
constituted by phosphate grain as fluorapatite, bioclasts and coprolites 
rich in P element. All these elements are cemented by micrite dominated 
by carbonates. The phosphate grains are presented by an ovoid/ellip-
tical morphology of a size of 100–600 μm as encapsulated in the gangue 
(Mouflih, 2015). The dolomitic limestone appears to be finely grained 
with a micritic matrix (93–95%) that bonds some quartz particles 
(5–7%). The size of the quartz particles is ranged in 10–100 μm and the 
micritic cement of 5–7 μm. The texture can be classified as finely crys-
talline micrite according to Folk (1959) and a mudstone according to 
Dunham (1962). The phos-flint are characterized by the presence of 
ovoid morphology of the phosphate grains and the abundance of cop-
rolites and bioclasts. The quartz is the main element that cements the 
phosphate grains. The size of the phosphate grain is around 100–400 
μm. Generally, the phosphate grains are encapsulated in the gangue 
minerals. The silexite is formed mainly by quartz and dolomite minerals. 
The quartz in the silexite is presented by fine grain size and the dolomite 
with size of 20–70 μm. Yellow marls and white marls contain mainly 
dolomite and calcite in micrite matrix, the only difference is that the 
latter composed of coarse grain compared to yellow marls. While the 
green marls characterized by laminated layers that contain coprolite and 
fluorapatite cemented by micrite. Several quartz lodes were observed in 
the silicious marls with a considerable presence of calcite and dolomite. 
Overall, the observations corroborate the chemical and mineralogical 
characterization. 

3.5. Gamma-ray radiation 

A Gamma ray densitometry (GRD)(consisting of γ-ray collimated 
sealed source with a single line radiation and a collimated single de-
tector facing the sealed source with alignment) was used to measure the 
linear attenuation of the samples rocks by locating each sample rock in 
the center distance between the source and the detector (Baalamurugan 
et al., 2019; Farid et al., 2022). Fig. 6 represents the estimated linear 
attenuation coefficient of the different lithologies. The waste rocks of 
phos-flint and limestone can be used as aggregate with mortar for 
enhanced concrete nuclear shielding as per the study of Farid et al. 
(2022) particularly for no segregation of a high strength 

self-consolidating concrete (HSSCC). Farid et al. (2022) used a crushed 
coarse and fine limestone aggregates of no segregation HSSCC that 
showed ~25% enhanced in γ-ray radiation shielding over the mortar 
sample. From the results of Fig. 6, waste rock of phos-flint could further 
enhance the radiation shielding of HSSCC over limestone aggregate. 

4. Potential uses of the by-products 

The wide range and variety of the PMWR properties (physio-chem-
ical and mineralogical) encourage several remediation pathways 
including the phosphate beneficiation since those PMWR are mainly 
composed of indured phosphate. The other lithologies could be recycled 
or upcycled as raw material resources for the different civil engineering 
sub-fields. In order to recycle each lithology separately an ore sorting is 
necessary. 

The ore sorting is used to upgrade the low-grade ores using non- 
destructive sensors based on the physio-chemical properties (dos San-
tos et al., 2017). It was used successfully to concentrate different ores 
such us tungsten, diamonds, sulfides, and minerals bearing heavy rare 
earth elements (Robben and Wotruba, 2019; Veras et al., 2020). It offers 
many advantages related to the reduction of environmental footprint 
and quantity of the generated waste (Lessard et al., 2014). The feed 
sample can be separated in two products (accepted and ejected) using 
many techniques including color, X-rays, near infrared (NIR). The ore 
sorting applied for coarse phosphate separation was implemented by 
Saudi Arabia and china (Li et al., 2020; Robben and Wotruba, 2019). The 
particle size sorted using X-rays in the Umm Wu’al Phosphate Mine 
(Saudi Arabia) was between 12 and 75 mm with total capacity of 1,800 
t/h (Robben and Wotruba, 2019). The objective of the ore sorting was to 
remove the silica gangue of around 700,000 t/yr from the phosphate. 
The final product was about 2% SiO2 compared to the feed samples with 
10–30% SiO2. The X-ray sorting was also applied on the Yichang phos-
phate layer ore (China) to recover the coarse fraction 10− 30 mm (Li 
et al., 2020). The ore was upgraded from 20% to 27% P2O5. The yield 
and recovery rate were 36% and 86%, respectively. The hand sorting 
was applied in that context to identify the existent lithologies in the 
PMWR piles and to prove the separation feasibility of the coarse phos-
phate for the future installation of ore sorting machine onsite. 

4.1. Phosphate recovery 

The phosphate mine waste rock piles located in the Benguerir site are 
generated in the exploitation phase to concentrate the fine fraction 
(<30 mm) by classification operation such as destoning and screening 
(El Machi et al., 2020; Hakkou et al., 2016). The coarse fraction (>30 
mm) constitutes around 45–50% of the PMWR piles, with considerable 
amount of indured phosphate. The recovery of the residual phosphate in 
the fine fraction can be done by gravity separation as a preconcentration 
phase (Carlson et al., 2012; Kawatra and Carlson, 2013; Khan et al., 
2019; Liu et al., 2016), flotation (Aleksandrova et al., 2020; Boujlel 
et al., 2019; Elgillani and Abouzeid, 1993; Mohammadkhani et al., 
2011), leaching (Gharabaghi et al., 2010; Soltani et al., 2018; Zafar and 
Ashraf, 2007), and calcination (Al-Fariss, 1993; El-Jallad et al., 1980; 

Table 1 
Chemical properties of the founded lithologies.  

Lithologies SiO2 Al2O3 MgO CaO P2O5 Other LOI 

Tender marls White 11.3 1.13 13.7 36.4 2.35 0.8 34.4 
Yellow 18.3 3.35 18.2 24.1 0.99 3.28 31.7 
Green 16.2 2.38 11.5 34.1 7.89 2.06 25.7 

Dolomitic limestone 7.84 0.37 23.6 28.4 0.98 0.60 38.1 
Siliceous marls 74.0 1.49 4.52 7.23 1.88 0.80 10.1 
Flintstones Flintstone 93.6 0.28 0.43 1.55 1.85 0.46 1.84 

Silexite 80.1 1.03 3.70 4.54 0.70 0.81 9.14 
Phos-flint 34.8 0.00 0.42 33.6 25.0 0.76 5.52 

Phosphate rocks 15.6 0.30 4.63 42.6 23.6 0.94 12.4  
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Guo and Li, 2010). The gravity separation will concentrate the dense 
particles, the direct and/or inverse flotation will eliminate the gangue 
minerals such as carbonates and silicates, leaching will dissolve the 
gangue minerals using the weak acids, and calcination to reduce the 
carbonate component and to dry the concentrate ore. 

The recovery of the phosphated lithologies in the coarse fraction will 
be focused on the indured phosphate and phos-flint. Those lithologies 
can be recovered using the ore sorting technologies. These phosphated 
lithologies are presented with large quantities of the coarse fraction. 
This coarse fraction must be destoned at 90 mm to recover the fraction 
<90 mm for screening at 30 mm. The large rocks (+90 mm) must be 
crushed to serve as feed (30–90 mm) with the screened fraction (30–90 
mm) of the ore sorting machine. A screening of the fine fraction <30 mm 
is done on the beneficiation plant entry to remove the coarse fraction 
(>3 mm) for crushing operation. The product of the ore sorting opera-
tion such as the phosphated lithologies will be crushed to join the 
phosphate beneficiation plant with the screened fraction (<3 mm). The 
ore sorting on PMWR piles will demonstrate it efficiency to reduce the 
noneconomic rocks and to maximize the phosphate resources (Lessard 
et al., 2014; Robben and Wotruba, 2019). The other lithologies can also 
be separated using ore sorting according to the application vocations as 
illustrated in Fig. 7. 

4.2. Road construction materials 

The construction of roads is a worldwide consumer of geomaterials. 
Employment of industrial by-products in such field can beneficiate the 
conservation of non-renewable natural resources and the reduction of 
produced wastes. PMWR are good candidates for a potential alternative 
secondary raw materials use. Ahmed and Abouzeid (2009) tested the 
PMWR from Egypt to be used as a subbase aggregate in road construc-
tion. The geotechnical findings corroborate such valorization, and a 
good dry density was achieved of 1.95 g/cm3. Ahmed et al. (2014a), 
studied the Egyptian PMWR for the same use and reached 2.02 g/cm3 

dry density with an optimum moisture content of 12%. 
In fact, the feasibility of PMWR valorization from Benguerir mine as 

materials for road construction was investigated and found to be a good 
remediation pathway. Amrani et al. (2019), demonstrated that those 
PMWR have satisfying properties i.e., a specific density >26 kN/m3, Los 
Angeles abrasion in range of 45–58%, methylene blue value < 1 g/100 
g, organic matter <1% and a plasticity index <20%. All the tested 
PMWR corroborate that they possess the needed geotechnical charac-
terizations for an employment as embankments materials. Furthermore, 
environmental evaluation by leaching tests showed no risk of any con-
taminants. Later, an experimental testing of collapsible behavior of dry 
compacted PMWR in road embankment was conducted by Amrani et al. 
(2021). They found that dried PMWR can be utilized in embankment 
under total pressure <200 kPa. The same group of research studied the 
feasibility of recycling phosphate wastes (phosphogypsum and sludge) 
to enhance high-temperature rheological properties of asphalt binder 
(Amrani, 2020; Amrani et al., 2020a). The results showed that phos-
phogypsum ameliorates the mechanical performances of asphalt binder 
including its resistance against rutting more than phosphate sludge 
wastes and fly ash. Applying the ore sorting will lead to recover several 
lithologies that are candidates for potential uses (Fig. 7). Nevertheless, 
the feasibility study of those ore sorting residues is to be tested as road 
construction materials in case the content of phosphate is very low, and 
the investment revenue does not worth it. 

4.3. Alternative binders 

The recovery of industrial by-products as SCMs or as alternative 
binder is a great preoccupation of the scientific and industrial commu-
nity. Interests on such topic is increasing due to the environmental issues 
related to the cement production responsible of 0.73–0.99 tCO2/tCement 
(Latawiec et al., 2018). Calcined materials such as clays, sediments, and Ta
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marls proved to be a good raw material for such application (Bahhou 
et al., 2021b; Hanein et al., 2021; Safhi, 2022). Those materials are 
known as carbonated clay composed of magnesium or calcium carbon-
ates (MgCO3 and CaCO3) that decomposes to MgO and CaO, and dioxide 
carbon (CO2) after calcination. However, the reported emitted CO2 after 
calcination was 73% which is lower than those of cement (Mo et al., 
2010). Several studies and investigations were conducted on the 
hydraulicity and pozzolanicity of calcined marls. These studies showed 
that calcination of marlstone is generally in range of 650–850 ◦C, 
composed mainly of dolomite, palygorskite, and smectite among others. 
The investigated incorporation rates were ambitious, and the results 
revealed a good reactivity up to 50 wt% replacement (Akgün, 2020; 
Danner and Justnes, 2018; Justnes, 2015; Østnor and Justnes, 2014; 
Poussardin et al., 2022; Rakhimov et al., 2017; Shaaban, 2021; Soltani 
et al., 2018). 

The marls from the PMWR of Benguerir mine site were already 
investigated for such use. Bahhou et al. (2021a), investigated the 
feasibility of using yellow marls as SCM and revealed that up to 20 wt% 
substitution rates led to achieve 80% of the strength of the reference (22 
MPa at 28-d). Moreover, in their review, the authors stated that those 
materials would react in a hydraulic and pozzolanic reaction with 
25–75% of carbonate content (Bahhou et al., 2021b). Safhi et al. (2022a) 
evaluated the reactivity of the same marls from PMWR. The sieved marls 
(white, yellow, and green) were treated by calcination at 850 ◦C. The 
loss of ignition was in range of 26–34%, the equivalent alkalis in range of 
0.3–0.4% and increased to 0.8–1.5% after calcination. After treatment, 

the concentration of oxides responsible of pozzolanic properties 
(Fe2O3+SiO2+Al2O3) was in range of 18–40% which is lower than the 
chemical requirements of ASTM C618 (2019), for pozzolan. The con-
centration of carbonates was much higher (57–69% of CaO + MgO) 
which implies important hydraulic reactivity. However, the hydraulicity 
modulus was in a wide range (0.8–2.9%). The composition of those three 
marls (red marks) was plotted in a CaO–SiO2–Al2O3 ternary diagram as 
shown in Fig. 8. 

The substitution of cement with 20–100% of an optimized calcined 
marl (mixture of three marls) was evaluated (Safhi et al., 2022b). The 
authors suggested that the blended binder with 20 wt% of marls had the 
highest strengths at all curing age with a strength activity index of 
153%, 138%, and 127% at 7, 28, and 91 days, respectively. The blended 
binder with 40 wt% of marls results in a comparable compressive 
strength to that of the reference. The calcined marls alone revealed a 
good self-reactivity that achieved 10 MPa fc28 and can be used as a 
binder for repairing historical building. The use of those marls as an 
alternative binder will reduce CO2 emissions and release the stress and 
demand on natural resources. Furthermore, using red clay as a binder 
could further enhance the radiation shielding property (Fig. 6) of the 
material that is mixed with. 

4.4. Potential utilization of PMWR as alternative aggregates for concrete 

It is widely known that concrete is the most consumed construction 
materials worldwide and the aggregates occupy most of the concrete 

Fig. 4. XRD analysis of the founded lithologies: dolomitic limestone (DL), flint (F), phos-flint (PF), green marls (GM), yellow marls (YM), white marls (WM), silexite, 
silicious marls (SM), and indured phosphate. 

A.M. Safhi et al.                                                                                                                                                                                                                                



Journal of Cleaner Production 374 (2022) 134034

8

volume. Aggregate production is estimated to be 48 billion ton in 2015 
with an estimated annual growth rate of 5%, which means that its 
production could double in the next one or two decades (Xing et al., 
2022; Zhang et al., 2019). The increasing quarrying of aggregates cre-
ates pressure on the primary sources, and it is necessary to use alter-
native resources of aggregate. The use of PMWR local alternative 
aggregates will help to reduce the stress on the primary aggregates. The 
region of Benguerir produces 0.70 Mm3 of aggregates each year. On the 
other hand, the PMWR of Benguerir mine site have a total volume of 
~15 Mm3 and a total of reserve of hard rocks (~20–30% in the total 
piles) equal to ~4 Mm3. PMWR are processed using mechanical opera-
tions that are executed on quarry natural concrete aggregates. The use of 
rocks from PMWR as aggregates for concrete would additionally save 
resources in terms of extraction and pre-processing operations. Very few 
studies have investigated the use of phosphate wastes aggregates for 
concrete. From Sebaeya in Egypt, phosphate wastes were used as coarse 
aggregates for concrete production, and produced a 24 MPa fc28 on 150 

mm3 specimens (Ahmed and Abouzeid, 2011) and 20 MPa fc28 on 100 
mm3 specimens (Ahmed et al., 2014b). From the phosphate PMWR of 
Benguerir, “flint” was used as coarse aggregates to produce ordinary 
concrete and substitutes completely the natural coarse aggregates (El 
Machi et al., 2021). In this study PMWR contains three hard rocks: 
flintstone, phos-flint, dolomitic limestone. The screening PMWR possess 
a maximum dimension equal to 150 mm. The three rocks were crushed 
using a laboratory jaw crusher to produce concrete coarse aggregates 
respecting the n◦7 mesh of ASTM C33 (2018) standard. The 
physio-mechanical properties of the rocks and produced aggregates 
were tested. Potential, limitations, and strategies were discussed to 
valorize these rocks as aggregates for concrete. Table 4 presents the 
properties of rocks (Fig. 9), and Table 5 presents the properties of pro-
duced coarse aggregates. 

The results of the characterization were compared to properties of 
natural coarse aggregates that are presented in NF EN 12620, ASTM C33 
and ACI 211.1R-96 standards to produce ordinary concrete. F and PF 

Fig. 5. Mineralogical observation ( × 50 magnification) of PMWR lithologies. Legend: M: micrite, F: fluorapatite, C: calcite, D: dolomite, Cp: coprolite, Q: quartz.  

Table 3 
Quantification of the mineral phases using RockJock program R.  

Lithologies Palygorskite Dolomite Apatite Calcite Quartz 

Tender marls White 38.6 35.9 12.3 10.4 2.79 
Yellow 47.9 33.5 5.66 8.20 4.69 
Green 49.1 15.8 22.1 10.7 2.79 

Dolomitic limestone – 67.7 7.18 16.5 8.55 
Siliceous marls – 48.8 – – 51.2 
Flintstones Flintstone – 1.94 1.20 1.78 95.1 

Silexite – 37.6 – – 62.4 
Phos-flint – 3.91 38.3 10.3 47.5 

Indured Phosphate – 30.4 47.7 13.0 8.81  
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and DL conform to the specifications to use as coarse aggregates for 
concrete, and they seem adequate candidates to produce ordinary 
concrete. 

Aggregates are an inert filler in concrete to reduce the cost, but they 
have a major influence on many properties of fresh, hardened and 
durability of concrete (Alexander and Mindess, 2010). The presence of 
deleterious substances, the alkali-aggregate reaction (AAR), and the 
porosity of aggregates are a major concern for concrete. Chert and finely 
grained dolomite or finely grained limestone aggregates are widely 
known to be potentially reactive with the alkaline pore solution of 
concrete (Rønning et al., 2021). The effect of apatite on the AAR has not 
been reported previously. 

The recycling of mining by-products presents several technological 
challenges (Taha et al., 2021). The valorization of PMWR as alternative 
aggregates for concrete needs a sorting to separate the different rocks. 
The preparation of aggregates needs to be efficient to produce aggre-
gates with adequate properties. The produced concrete need to present 
mechanical and durability performances similar to natural aggregates. 

Mining wastes have been successfully valorized as coarse aggregates for 
ordinary concrete (André et al., 2014; Kumar et al., 2016; Ostrowski 
et al., 2020), it is also recommended to produce concrete with higher 
performance (Rana et al., 2016). In addition, utilizing flint, phos-flint 
and limestone as aggregates enhance the radiation shielding property 
with phos-flint provides more enhanced shielding (Fig. 6) that is 
important for a wide range of peaceful applications of nuclear technol-
ogy from industry to health and agricultural sectors. 

4.5. Potential use of lightweight aggregates 

Silexite and silicious marls found to have similar properties including 
the low density and could be used as lightweight aggregate (LWA) for 
lightweight concrete production. Nevertheless, the latter has pros and 
cons i.e., higher porosity and higher absorption, thus it results poor 
resistance. However, these properties are beneficial to reduce the total 
dead load of the structure, while relatively lowering thermal conduc-
tivity and increasing fire resistance with good sound absorption 
(Agrawal et al., 2021). Several studies encourage to use natural LWA to 
produce concrete for blocs due to their thermal and sound insulation 
properties. In this study, the thermal properties of four samples of 
silexite (about 82⨯42⨯10 mm) were tested. The findings result in an 
average thermal conductivity of 0.894 ± 0.113 W/m.K and an average 
thermal diffusivity of 0.153 ± 0.039 mm2/s. 

Silexite disposal in Senegal was mainly recovered as road construc-
tion material in foundation layer. Sidibé (1995) worked on recycling 
0/40 mm silexite disposal, while BA (2008) conducted a geotechnical 
identification of 0/315 mm crushed silexite. Mbengue et al. (2019) have 
studied the performance of the same granular fraction in a seat layer. 
The results were conclusive and certifying a good potential use in the 
foundation layer. A California bearing ratio (CBR) index of 149 with a 
density of 2.01 meeting the specifications needed for its use in bedding. 
Cisse et al. (1999) Studied four compacted concretes made from fine 
aggregates exclusively using 0–3 mm filled sands produced from the 
crushing of limestone, sandstone, silexite, and basalt. The study presents 
a promising result depending on the type of addition and the road 
classification. 

A 100 kg sample of silexite and silicious marls from the screening 
PMWR was crushed in a jaw crusher to have a dmax less than 14 mm. 
About 39% and 61% of fine (0/5 mm) and coarse aggregates (5/125 

mm) was generated, respectively. The Table 6 summarizes the physical 
and geotechnical properties of those materials alongside with those 

Fig. 6. Calculated linear attenuation coefficient of the different lithologies.  

Fig. 7. Phosphate recovery and valorization of waste rocks from the PMWR piles.  
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properties of similar materials from the literature. It can be noticed that 
the silexite have a low specific density and lower apparent density 
compared to that of the other aggregate discussed in the previous section 
(4.4). Like the flintstone, the crushing of the silexite led to a high flak-
iness coefficient of 25–33%. The coarse aggregates had a good hardness 
property (LA < 30). 

The fine aggregate (FA) were used in a mortar mix design with the 
calcined marls with a ratio of FA:CM of 1:3 according to the EN 196-1 
(AFNOR, 2016). The water-to-binder was 0.8, and an additional water 

for the absorption of FA was considered. Nine cylindrical specimens of 
75Ø150 mm were prepared, casted in sealed molds, and left in it (in-
ternal curing) until the age of testing. The UCS was tested on triplicate 
samples at each curing age. The samples achieved a UCS of 1.04 ± 0.06 
MPa, 3.09 ± 0.43 MPa, and 4.94 ± 0.56 MPa at 7, 28, 90 days of curing 
age, respectively. The apparent volumetric mass of the tested cylinders 
was 1684 ± 48 kg/m3. Despite the achieved low compressive strength, 
this preliminary study showed that achieving lightweight concrete 
blocks using the LWA from PMWR is possible. 

The one should keep in mind that many siliceous rocks are alkali- 
reactive, hence the importance of testing silexite. Silexite could be 
potentially reactive material due to opal and chalcedony present in the 
material. Sidibé (1995) tested the potential reactivity to cement alkalis 
comparing silexite, limestone and sandstone aggregates according with 
the ASTM C289− 71 standard to assess the potential AAR of aggregates 
by a chemical method (withdrawn in 2016). The results show that 

Fig. 8. Composition of three marls (red marks) superimposed on mainly used 
SCMs, adapted from Safhi et al. (2021). For the relevance of the diagram the 
Σ(CaO + SiO2+Al2O3) is in range of 70–72%. 

Table 4 
Physio-mechanical characterization of the three rocks.  

Rock type/Properties Flintstone Phos-flint Dolomitic limestone 

Absolute gravity, t/m3 2.61 2.76 2.87 

UCS, MPa Cubes Not tested 208 ± 27 167 ± 48 
Cylinder Not tested 70 >120 

Hardness, Mohs scale 7 61/2 6  

Fig. 9. Some pictures of the compressive strength test specimens.  

Table 5 
Characterization of aggregates compared to different specifications.  

Property Standard Values 
range 

Flintstone Phos- 
flint 

Dolomitic 
limestone 

Specific 
density, t/ 
m3 

ASTM 
C33 

2.3–2.9 2.59 2.59 2.60 

ACI 
211.1 

2.5–3.0 

NF EN 
12620 

2.0–3.0 

Water 
Absorption, 
% 

ASTM 
C33 

0.5–4.0 1.7 2.7 2.9 

ACI 
211.1 

0.2–4.0 

Bulk density, 
t/m3 

ASTM 
C33 

1.28–1.92 1.30 1.30 1.43 

Water content, 
% 

ASTM 
C33 

0–2.0 0.5 0.8 0.3 

Los Angeles 
value, % (NF 
EN 1097-2) 

ACI 
211.1 

25–50 21 30 26 

NF EN 
12620 

– (21%) 
LA25 

(30%) 
LA30 

(26%) 
LA30 

Micro-Deval 
value, %(NF 
EN 1097-1) 

NF EN 
12620 

– (5%) 
MDE10 

(9%) 
MDE10 

(15%) 
MDE15 

Flakiness 
index, % 
(NF EN 933- 
3) 

NF EN 
12620 

– (32%) 
FI35 

(26%) 
FI35 

(23%) FI35  
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silexite maybe alkali-reactive while limestone and sandstone are 
non-alkali-reactive. 

5. Conclusions, recommendations, and perspectives 

This paper characterized the PMWR of Benguerir mine site and 
suggested several recovery pathways for those materials. Valorization of 
those by-products would have a great environmental impact on the 
urban planning. The following conclusions could be drawn:  

• Phosphate recovery: The phosphate waste rock piles contain 
around 45–50% of the coarse material (>30 mm) that can be sepa-
rated by screening for ore sorting. The recovered indured phosphate 
constituting around 25% of the PMWR can be valorized by joining 
the conventional mineral processing with the fine fraction (<30 
mm). 

• Road construction materials: Valorization of the PMWR as con-
struction road material was already tested and proved for the sub- 
layer foundation. However, after recovery of the indured phos-
phate by ore sorting alongside with flint, phos-flint, and dolomitic 
limestone, the rest of this process will lead to a new disposal. 
Investigating the recycling of this rest is required.  

• Concrete aggregates: Flint, phos-flint, and dolomitic limestone 
from PMWR have good properties to be used as aggregates. However, 
these lithologies could present several difficulties in terms of dele-
terious substances presence, the chemical stability, and the shape for 
use as concrete aggregates. The research perspective of this charac-
terization study would consist of the production of regular coarse 
aggregates and the recovery of sands. The study of the AAR of ag-
gregates and concrete production is to be investigated. The study of 
the effect of those aggregates on the properties of ordinary and high- 
performance concretes is recommended.  

• Alternative binders: The tender marls from the PMWR have an 
interesting hydraulicity and medium pozzolanicity reaction that 
qualifies them to be used as alternative binder. Previous studies 
revealed that upcycling tender marls as alternative binder would 
have a great ecological impact by reducing the CO2 footprint. The 
calcined marls alone could be used as repairing binder for historical 
buildings and monuments, nevertheless, more testing is to be done 
such as drying shrinkage, water absorption, etc. Moreover, the 
calcined marls could be used as an eco-friendly hydraulic road lime 
binder which can be used in mine site itself for the road’s 
construction.  

• Lightweight aggregate: The silexite and silicious marls have a 
considerable lightweight density to be used for the production of 

lightweight concrete blocks. The preliminary mix design with 
calcined marls and the thermal conductivity properties confirmed 
such a feasibility. The studied aggregates are suspected to be reactive 
to alkali-silica reaction. Study of reactivity proves to be an essential 
element of the potential valorization. 
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(Maastrichtien-Lutétien Maroc) : Sédimentologie, Minéralogie, Géochimie et 
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