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PHYSICAL REVIEW B VOLUME 14, NUMBER 4 15 AUGUST 1976

Surface electromagnetic waves with damping. I. Isotropic media*

G. S. Kovener, t R. W. Alexander, Jr., and R. J. Bell
Graduate Center for Materials Research and Physics Department, University of Missouri-Rolla, Rolla, Missouri 65401

(Received 2 February 1976)

Surface-electromagnetic-wave dispersion curves are usually calculated using a simple equation derived from
Maxwell's equations and boundary conditions. When complex dielectric functions are used for the two media,

the component of the propagation vector along the surface, k„, becomes infinite as the frequency approaches
the surface polariton frequency co, if co is considered complex and k„ is real. On the other hand, if k„ is

considered complex and co real, the dispersion curves bend back toward smaller k„as co approaches co, . We
have previously demonstrated that both types of behavior can be obtained from attenuated-total-reflection
measurements of silver. We now extend this result to other materials and show that dispersion curves alone

present an inadequate summary of the data.

I. INTRODUCTION

There ha, s been considerable discussion of the
dispersion curves of surface electromagnetic
waves (SEW) when absorption is included. ' "
Without absorption, that is, with the imagina, ry
part of the dielectric function «, (~) neglected, the
dispersion curves show k,„becoming infinite at
the surface wave frequency, co,. The surface
wave frequency satisfies «, (ru, ) = —1, where «, (~)
is the real part of the complex dielectric function
«(w) = «, (&u)+i«2(&o). The real part of the component
of the propagation vector parallel to the surface is
k,„. If «, (cu) 40, then a plot of &v versus k,„does
not have a singularity at ~, and the dispersion
curve bends back toward smaller k,„as ~, is ap-
proached. In his early measurements of the SEW
dispersion curve on silver using attenuated total
reflection (ATR), Otto' found the experimental
dispersion curve did not bend back. However,
Arakawa, Williams, Hamm, and Ritchie' found
that the SEW dispersion curve for silver did bend
back. They a.iso had used ATR to mea, sure the
dispersion curve. The purpose of this paper is
to show that both ATR measurements can be
understood using the usual Fresnel equations" so
tha, t the two differing results are not contradic-
tory. '

We begin Sec. II by reviewing the theory to
establish our notation and then show the utility of
presenting the calculations for the ATR reflec-
tivity in terms of a surface in a three-dimensional
space. The experimental results are then dis-
cussed in terms of this ATR surface and shown to
be consistent with each other. Section III demon-
strates the general utility of the ATR surface for
understanding experimental results. The effects
of finite beam divergence are also considered.
Finally in Sec. IV we briefly discuss the problem
of relating the experimental results to calculated

dispersion curves and indicate that an interesting
problem remains to be solved.

II. DISPERSION CURVES WITH DAMPING

Dispersion curves for elementary excitations
are usually treated in the absence of damping, and
inclusion of damping considerably complicates
the situation. ' ' This has been pointed out for
bulk excitations in a review article by Barker and
I.oudon. Much of the discussion has been in the
context of Raman scattering. In this paper we
shall restrict ourselves to surface electromagnetic
waves on isotropic media and postpone a discus-
sion of anisotropic media. " We show that there is
an ambiguity in what is meant by the dispersion
curves when damping is present, and further that
care must be exercised in relating the minima in

reflectivity observed using ATR techniques to the
dispersion curves.

To simplify our discussion, we shall consider
SEW on an infinite half space, z (0, with the z )0
half space being vacuum. Then the dispersion
curves for SEW are the solutions to"

k„= ((u/c)(«((u)/[«(a)) + 1]P ',
where «(&u) = «, (v)+ i«, (&u) is the dielectric function
of the medium and k„ is the component of the prop-
agation vector along the surface. Usually «, (&u)

is considered to vanish, and then k„ is purely real
for those frequencies for which SEW exist, i.e. ,
those frequencies for which «, (u)( —1. In the
absence of damping, k, —~ at the surface wave
frequency m, where «, (&u,) = —1.

In the presence of damping, «, (&u) e 0, Eq. (1)
becomes complex and if ~ is chosen to be real,
then k„ is complex. The real pa, rt of k„describes
the propagation wave vector and the imagina. ry
part of k„describes the spatial damping in a man-
ner frequently encountered in optics. " The real
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part k,„ofk„ is used to plot the dispersion curve.
In this case, however, the dispersion curves bend
back toward smaller k,„as ~ approaches ~„
rather than k, becoming infinite at this frequency. '
This difference in behavior is illustrated in Fig. 1,
where the dielectric function for silver" has been
used. The dashed line is for &, =0 and the solid
line for &, WO. For the moment, ignore the curves
above M .

Now consider what is measured in an ATB ex-
periment. Two slightly differing methods have
been employed. Otto measured the ATR reflec-
tivity with the angle of incidence fixed and incident
photon energy varied. ' Arakawa and co-workers, '
on the other hand, fixed the incident photon fre-
quency and varied the angle of incidence 8. In
either case, the minimum in the reflectivity is
associated with excitation of the surface electro-
magnetic wave, and 0,„ is found from the momen-
tum conservation equation

k,„=((u „/c)np sin8, ,

I I

2Q
k (i(lcm~)

FIG. 1. Dispersion curves for a 340-A silver film on
a CaF2 prism. Solid curve, obtained from cross section
of the ATE reflectance surface for fixed frequencies.
This solid curve al.so results from solving Eq. (1) using
complex 4„and ~ (( ). Dash-dot line, from cross sections
for fixed angl. e. This dash-dot curve also results from
solving Eq. (1) with ~ (~) purely real or with cu complex
and 4 real. . Crosses are experimental points of Arakawa
et al. (Ref. 7) who fixed the frequency and varied the
angle.

The prism refractive index is n&, and for the mo-
ment, we assume the gap between the prism and
the sample is sufficiently large that the effect of
the prism on the surface electromagnetic waves
is negligible. The incident photon frequency and
angle of incidence at the ref lectivity minimum are
co „and 8 „. It has been found that the dispersion
curves [a plot ot &u „vs k,„ from Eq. (2)] are not
the same for the two methods of measurement. In
Fig. 1 are plotted the dispersion curves for silver-
air measured by Otto using the first method and
by Arakawa et al. using the second method. Note
that in these experiments, the silver film itself
served as the gap between the prism and the sil-
ver-air interface as shown in the inset of Fig. 1.
Otto's measured dispersion curve has no bend
back, while Arakawa's does show bend back. And
in fact, Otto's measurements agree with the dis-
persion curve calculated neglecting damping,
while Arakawa's data agree with the curve cal-
culated with &, 40. The curves in Fig. 1 were
calculated using the optical constants from John-
son and Christy. '

How is this apparent contradiction to be re-
solved'P We will now show that both measure-
ments are in agreement with Fresnel's equations.
However, we are unable to demonstrate why
Otto's method yields dispersion curves agreeing
with those calculated with &, =0, while Arakawa's
method produces curves agreeing with those cal-
culated with &, WO.

To show that the two measurements discussed
above are in reality consistent with each other, the
ATB ref lectivity was calculated as a function of
both the incident photon energy and the angle of
incidence. Fresnel's equations for a layered sys-
tem as given by Wolter" were used with the ex-
perimental geometry as shown in the inset of Fig.
2. No correction was applied for reflection at the
prism entrance and exit faces. The refractive
codex of the CBF, prism was 1.434 and the film
was 340 A thick. The range of ~ was 3.0-4.25 eV,
with the range of incident angles from 45' to 75'.
The optical consi. ants of the silver film were taken
from Johnson and Christy. "

Plotting the calculated ref lectivity as a function
of both incident photon energy and angle of inci-
dence gives the surface shown in Fig. 2. There
are two valleys in this reflectance surface. The
lower energy valley is due to surface plasmons,
while the other valley is due to a bulk plasmon
[w, (~) = 0]. If the experiment is done by fixing the
angle and scanning the frequency, the ATR spec-
trum is a cross-section line going from left to right.
Alternatively, if the frequency is fixed and the
angle scanned, the ATR spectrum is a cross-section
line going from bottom to top. Some representa-
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tive cross sections are shown in Figs. 3(a) and 3(b).
The frequencies of successive cross- section
minima are converted to momenta using the ATR
equation [Eq. (3)] and then plotted in Fig. 1. The
dashed line is the result obtained for fixed angle
cross sections and the solid line for fixed fre-
quency cross sections. It is evident that the
dashed curve approaches an asymptote while the
solid line bends back. The crosses are the data
points of Arakawa 8S QE. , and the slight dlsclep-
ancy near 3.7 eV is due to sample differences
between Johnson and Christy and Arakawa et aE.
ln this region, the real part of e(&o) approaches
-1, and the ATR ref lectivity minima are sensitive
to small variations in e(&o).

The reason for the bend back using fixed fre-
quencies can be seen qualitatively by a careful
examination of the reflectance surface. As one
selects successive fixed energy cross sections,
the spectra obtained become more and more par-
allel to the axi.s of the SE% valley near 3.7 eV.
%hen the energy is sufficiently large, the spectra
are no longer located in the minimum of this val-
ley but climb the ridge between the surface plas-
mon and bulk plasmon valleys. The curves of
Fig. 3(b) clearly illustrate this anomalous behavior.
The dispersion curve measured by Qtto for silver
agrees with the calculated dash-dot line of Fig. 1.

Thus, the same set of optical constants, with
Fresnel's equations, predict both Qtto's results

obtained by varying the incident photon frequency
with angle of incidence fixed, and Alakawa 8 re-
sults obtained by fixing incident frequency and

varying 8. This consistency is obtained despite
the large differences in the "dispersion curves"
plotted by the two investigators.

IH. APPLICATIONS

~-. +

+0.6

0.4-
lal 0.2-

I l I

(a)
0

$.0 3.25 l 375

EMERY' (eV)

I.O

0.8

The reflectance surface is an ideal way of easily
visualizing the influence of the gap spacing in
those ATH measuxements with an air gap between
the sample and prism. The gap spacing is an im-
portant factor in determining the features of the
spectra since there are two fields exponentially
decaying across the gap. Qne field due to the in-
cident light has its maximum at the prism-gap in-
terface. The other evanescent field is due to the
SE% and has its maximum value at the gap-
absorber interface. For small gaps, the SE% may
recouple back into the prism, but the effect of
gap spacing is also influenced by the value of (d

and k„. An expression for the optimum gap spacing
has been derived by Qtto"" with some approxima-

0.6

04

0.2
(b)

0 i

~5 5o 60 65

FIG. 2. The ATH reflectance of a 340-A-thick Ag film
on a Capl prism plotted as a function of the incident fre-
quency ao and the angle of incidence 0. Inset, ATH geom-
etry of a prism or semicylinder (index of refraction n& )
with a silver film and a second interface with another
medium.

FIG. 3. (a) Cross sections of the ATH, reflectance sur-
face of Fig. 2 obtained by holding the angle of incidence
fixed and varying the incident frequency. The solid line
is 8 = 52, dashed is 0=54, dashed-dot is 0= 58, and
dash-hatch is &= 60'. (b) Cross sections of the ATH, re-
flectance surface of Fig. 2 obtained by hoMing the inci-
dent frequency fixed and varying 0. The solid line is in-
cident frequency of 3.4 eV and the dash-hatch line ls 3.7
eV. Note how the minimum in I"ig. 3(a) moves toward
higher frequencies as e increases, while the last mini-
mum moves back towards smaller 0 (and hence smaller
k) ).
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TABLE I. NaCL oscillator paraIneters.

3.1975
0.0898

6 ~= 2.32

6.13
34.7

tions, but because the reflectance surface dis-
plays the response for a wide range of co and 8, it
is a more effective aid for looking at this gap de-
pendence.

NaCl was chosen for this investigation since it
has been examined experimentally by Bryksin et
aE. o In this case, the NaCl sample was separated
from the base of the prism by various air gap
spacings. The calculations were done for fre-
quencies from 150 to 250 cm ' and incident angles
from 20' to 60' in the prism (silicon, n~ = 3.418).
The reflectance surfaces were generated for sev-
eral air gap spacings: 12, 5, and 2 p,m. The
NaCl dielectric function was calculated from the
oscillator model and the parameters of Bryksin
et al."(Table I). The phonon damping was not
frequency dependent.

Figure 4 shows the reflectance surface with a
gap spacing of 5.0 p,m. The "valley*' of Fig. 5

clearly "turns" toward smaller frequencies as 8
is decreased. Note the sharp rise in ref lectivity
of the SEW minima, near the critical angle (17' for
a silicon prism).

The dispersion curves resulting from the minima
are shown in Fig. 5. (To compute these minima a
smaller grid was used than that of Fig. 4.) The
solid curves B and C are obtained from minima
with frequency fixed; dashed curves B and C are
obtained with incident angle fixed. Curve B is
with a 5.0 p, m gap and curve C with a 2.0 p.m gap.
The triangles correspond to a gap of 12.0 pm and

for clarity are not connected with a smooth curve.
The crosses are the experimental points obtained
from Bryksm et al. ' The value of the gap spacing
they used is not given, but we estimate from the
reflectance spectra given in their article that
d- 10-11 pm. The solid line A is obtained from
Eq. (1) with 1m[&(u&)] = 0 and the dashed line A

using a complex e(&u) and the real part of k„.
The reflectance minima curve approaches the

calculated dispersion curve Eq. (1) at small k

only for large gap spacings. This is expected
since the SE% wil. l strongly couple back to the
prism via the evanescent field of the SE% at small

E

~150

LL, 100

0
0 1.0 20 50

k (10 Cm)

FIG. 4. ATR reflectance surface of NaCl with a 5.0
p, m air gap spacing. The frequencies along the lower
axis are 150-250 cm '. The incident angles along the
upper axis are 20 to 60 .

FIG. 5. Dispersion curves of NaCL obtained from the
ATR reflectance surface minima. The inset is a detailed
view. The solid lines B and C are plotted from the cross
sections with frequency fixed; the dashed curves B and
C are plotted from cross sections with incident angle
fixed. Curve B is from the reflectance surface of Fig.
5 with a 5.0 pm gap spacing. The triangles correspond
to a 12.0 pm gap. Curve A is the dispersion relation Eq.
(1) with E g) complex (soled line) and ~ (~) purely real
(dashed line). The crosses are experimental points of
Bryksin et al. 2 The straight line is the free space photon
dispersion line.
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gaps. Indefinitely large gaps cannot be used since
the ref lectivity minimum is substantially reduced
at larger angles for large gaps. " However, for
all gap spacings, the fixed angle minima (dashed
curves) approach the asymptote of Eq. (1) for
sufficiently large k, but the experimental data ap-
pear to approach an asymptote of lower frequency,
as noted by Bryksin. %e attempted to improve
the fit by considering a finite beam as discussed
in the next section, but no appreciable change was
noted in the reflectance minima curves.

It is therefore certain that the discrepancy in
frequencies is not due to recoupling across the

gap or finite beam divergence. Because the pur-
pose of this paper is to demonstrate the reflec-
tance surface technique, we have not attempted
different damping parameters or frequency de-
pendent damping parameters in an attempt to re-
concile the difference. The ability of the reflec-
tance surfaces to easily represent all facets of the

gap spacing is obvious.
The full width half-maximum (FWHM) of the

ATH spectra is of interest because it is an indica-
tion of the damping of the SEW and thereby the
absorbing material. We have found that a
straightforward measurement of FWHM and its
conversion to the material damping parameter
does not include all the parameters which deter-
mine the FWHM. One can decide from an exam-
ination of the reflectance surface that the F%HM
is also controlled by the gap spacing and the inci-
dent angle in a manner that is difficult to perceive
with other analytical techniques. That is, the
ATH cross sections measured do not cross the
valleys at right angles, and this increases the
observed width of the spectra, . Once again, we
will select an example to demonstrate this.

InSb has been studied extensively using the
grating technique"'" and the ATH technique. '""
Although no appreciable difference is apparent
between calculated and measured SEW dispersion
curves, the ATH linewidth of the upper branch is
larger by two to three times the width expected
from the bulk electronic damping constant w. We
will include the finite beam divergence using an
integrated spectra approach in an attempt to re-
duce this linewidth discrepancy.

The free- carrier concentration in InSb produces
strong plasmon-phonon coupling for electron con-

centrations on the order of 10 cm . In addition,
the conduction band is nonparabolic, so the ef-
fective mass m~ is a function of the concentra-
tion. " For a carrier concentration of 2.0 x 10"
cm ' there are two frequency regions for SEW:
one below ~~, and one between ~» and ~. The
InSb parameters used to calculate the dielectric
function are given in Table II.

A fixed angle cross section for 8=22 is detailed
in Fig. 6. The crosses in Fig. 6 are the experi-
mental data of Bryksin et al. ' One must be very
careful in relating the F%HM of the ATH spectra
to the damping of the SEW. The shape of the
minima is determined by the ATH parameters of
8 and gap spacing d as well as the material pa-
rameters. The influence of 8 and d on the width
is clearly apparent in the Figs. 5 and 6 for NaC1.
Therefore if one desires to measure the material
damping using SEW, the experimental variables
8 and d must be accurately measured and d should
be uniform.

The finite divergence of the incident beam is
considered by integrating at a fixed frequency
over a range of incident angles centered about 8,.
The ref lectivity is weighted with a Gaussian of
standard deviation of one degree; the angular in-
tegration interval included 99.4% of the incident
beam. The result of this treatment is displayed
in Fig. 6. The solid curves are the spectra ob-
tained by the integration method. The two curves
A are calculated with a gap spacing of 19 p, m and
the two curves B with a gap spacing of 8 p,m. As
one can see, the minimum after integration moves
toward lower frequencies for the 19 pm gap (A)
but toward higher frequencies for the 8 p, m gap
(B). The shift between A and B is due to the ef-
fect of the gap as discussed earlier for NaCl. For

I.O

0.8

0.6

04

&w02
O l l l I i I l l

2OO 2iO 220 2M 24O

FREauENcv (cm ')

cuz(cm «)

6e
I'(cm ')

179
2.0
2.864

15.7

N(cm ~)

m*
T(cm ~)

2.00x 10"
0.022 me

10.0

TABLE II. InSb oscillator parameters.

FIG. 6. ATR spectra with a divergent incident beam.
The solid curves are spectra calculated without the angu-
lar integration and the dashed curves are the spectra
after the integration treatment. The A curves are spectra
with a 19 pm gap spacing and the B curves with a 8.0
pm gap spacing. Note the different directions of the
shift in the dashed-curve minimum relative to the solid
curve for A and B. The crosses are the experimental
points of Bryksin ef, nl .~
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measurements at smaller angles where the dis-
persion curve is near the light line, the minimum
shift is reduced, but the amount of change is dif-
ficult to predict without this integration. Any
attempt to include a nonuniform gap spacing would
require a finite width beam treatment of the ATR
technique, which we did not attempt. " This
underscores the requirement that the experimen-
tal conditions be rigidly controlled in order to
plot dispersion curves from the ATR spectra.

IV. DISCUSSION

Dispersion curves are usually discussed in the
context of no damping. For surface electromag-
netic waves this gives the usual dispersion curve
with k„(which is real) becoming infinite at tu„
where e(~,) = —1. Although most discussions have
neglected to mention it, for surface phonons, k„
becomes infinite also at the lower frequency,
where e(u) = —1 also. This is obvious from Eq.
(1). When damping is included so that e(u) is
complex, then one must make either ~ or k„com-
plex. If co is chosen as complex, with k„real, it
is generally impossible to find an analytical ex-
pression for the dispersion curve [i.e. , an analytic
expression for Re(u) as a function of k]. However,
a solution has been found numerically for InSb by
Gammon and Palik, ' who find the resulting dis-
persion curve to be very close to that obtained
using real e(~). This is, no bend ba, ck occurs,
and k„becomes large as v approaches ~,. If,
however, we take k„complex and co real, then the
imaginary pa.rt of the denomina. tor of Eq. (1)
never vanishes, so the real part of k„never be-
comes infinite, and the dispersion curve (k„vs ~)
exhibits bend back near (d„as seen in Fig. 1. It
is not obvious that the dispersion curve obtained
in this manner should agree with that obtained by
taking cross sections of the ATR surface at fixed
photon frequencies, although such agreement is
found.

A similar problem for bulk polaritons within
the context of Raman scattering ' has been
discussed in the literature. Several authors' "'"
have used a, temporal damping (~ complex) treat-
ment for bulk polaritons which have the usual
dispersion relation

The real co roots of the polynomial do not exhibit
bend back as k„ increases, but the roots asymp-
totically approach a limiting frequency. How-
ever, Giallorenzi" points out that the solution
does not differ substantially from that obtained by
taking only the real part of &(co), just as for SEW.

Puthoff et al."have made the calculation keeping

(d real and found the dispersion curves also bend
back in a, manner similar to that found for SEW
dispersion curves with k„complex.

Another way to understand this difficulty with
the dispersion curves is to consider it as an at-
tempt to describe the normal modes of a system
that has damping. If one considers the excitation
as a wave propagating along a surface, then
spatial damping (complex k„) is appropriate.
Conversely viewed as an excitation of a normal
mode that decays in time, temporal damping
(complex &u) is required.

The way to avoid these difficulties is to consider
the quantities measured in the experiment. As we
have shown, the ATR surface resolves the differ-
ences between the two experimentally determined
dispersion curves.

V. CONCLUSION

The ATR surface has been used to show how

dispersion curves for surface electromagnetic
waves with or without bend back can be obtained
from measurements of ATR spectra. Theoreti-
cally, no bend back occurs if the dielectric func-
tion is purely real. The introduction of an imag-
inary part of the dielectric function complicates
the picture because the poles now occur for com-
plex values of k and (d. If one mades k„real and
(d complex, bend back does not occur, while com-
plex k„and real co produces bend back in the dis-
persion curves. The ATR ref lectivity surface
then shows the relation between the two experi-
mental conditions: fixed 8, variable co and fixed
~, variable 6). The first produces minima curves
which do not bend back, while the second condition
produces curves which do bend back. Also, the
problem of defining what is meant by an SEW be-
comes difficult because the decay of the fields
away from the surface into the medium is always
exponentially damped. "" Infact, dips may appear
in the ATR spectrum where there is no SEW, at
least according to the usual criterion found with-
out damping. This will be illustrated in a future
paper. '4

In addition, the qualitative effect of a divergent
incident beam can be visualized by considering the
shape of the minima in the surface. A quantitative
example is given for InSb with two gap spacings,
and the shift in the upper branch minimum is
shown to be toward higher frequency for one gap
spacing and toward lower frequencies for another.

The application of the reflectance surface
technique is not limited to isotropic materials,
and we will publish theoretical and experimental
results for MnF, in a forthcoming paper. '
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