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FINITE  DIMENSIONAL  GROUP  RINGS1

RALPH   W.   WILKERSON

Abstract. A ring is right finite dimensional if it contains no

infinite direct sum of right ideals. We prove that if a group G is

finite, free abelian, or finitely generated abelian, then a ring R is

right finite dimensional if and only if the group ring RG is right

finite dimensional. A ring R is a self-injective cogenerator ring if Rn

is injective and RR is a cogenerator in the category of unital right

/{-modules; this means that each right unital Ä-module can be

embedded in a direct product of copies of R. Let G be a finite group

where the order of G is a unit in R. Then the group ring RG is a self-

injective cogenerator ring if and only if R is a self-injective

cogenerator ring. Additional applications are given.

1. Introduction. Let R always denote an associative ring with 1 and

G a group with order \G\. The group ring of a group G and a ring R is

the ring of all formal sums 286G, r(g)g with r(g) e R and with only finitely

many nonzero r(g) [7]. For a right finite dimensional ring R, there exists

an integer n such that R contains a direct sum of «-summands and the

number of summands of any other direct sum in R is at most n. In this

case, we write dim iR=n. The ring R will be considered as a right /v-module

RR and by finite dimensional we shall mean right finite dimensional.

It is known that if H is any semigroup with 1, then RH is a ring. In

particular, the polynomial ring is a special case of this construction.

Shock has shown that the right finite dimensional property carries over

to polynomial rings [10]. This paper extends this result to group rings.

If R is a subring of Q and the identity of R is also the identity of Q,

then R is a right order in Q if

(a) every nonzero divisor of R is a unit in Q, and

(b) every element of Q can be written in the form of cdr^ where c

and d are in R and d is a nonzero divisor of R. We prove that if G is a

finite group, then R is a right order in a self-injective cogenerator ring

and the order of no finite normal subgroup of G is a zero-divisor in R
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FINITE DIMENSIONAL  GROUP  RINGS 11

if and only if RG is a right order in a self-injective cogenerator ring.

Let G be a free abelian group. If R is a right order in a right Artinian ring

then RG is a right order in a right Artinian ring.

2. Finite dimensional group rings. It is always true that if RG is

finite dimensional then R is finite dimensional; however, the converse is

not in general true.

Example 2.1. There exists a finite dimensional ring R and a group G

such that the group ring RG is not finite dimensional. Let R be a field of

characteristic zero and G=0 2c (f°r aü prime p), where C„ is a cyclic

group of order p. Then RG is not finite dimensional. This follows from

the fact that RG is regular and the right ideal œiCP) of RG generated by

{1— h\h e Cv} is principal [2]. So the question naturally arises as to when

the group ring RG is finite dimensional.

Proposition 2.2 (Shock [10]). A ring R is finite dimensional if and

only if the polynomial ring R[xx, x2, ■ ■ ■ ] is finite dimensional. Furthermore,

dim R = dim R[xx, x2, ■ ■ ■ ].

Proof.    See Theorem 2.6 of [10].

Let R be a subring of S, then we call 5 a ring of right quotients of R,

if for every O^s e S and for every s' e S, there exists r e R such that

sr7^0 and s'r e R. Let QiR) denote the complete ring of quotients of R.

It is well known that R is finite dimensional if and only if QiR) is, and in

this case dim R = dim QiR). It is also known that if S is a ring of right

quotients of R then QiR) is the complete ring of quotients of S [4].

Theorem 2.3. Let G be an infinite cyclic group, then R is finite dimen-

sional if and only if RG is finite dimensional. Furthermore, dim R = dim RG.

Proof. Let S be a multiplicative semigroup isomorphic to the non-

negative integers. Then 5 is a semigroup with identity and is generated by

the nonnegative powers of some element, say g. By Proposition 2.2, it

is clear that RS is finite dimensional, since RS is just a polynomial ring

in the variable g. Now S can be embedded in an infinite cyclic group G,

which is generated by all powers of g. We need only show that RG is a ring

of right quotients of RS. Let rx, r2 e RG with

0 * rx = rx(gx)gx + • • • + rx(gn)gn

- rx(gx)gai + ■■■ + rx(gn)ga"

and

r» = i-2ihx)hx + ■ ■ ■ + r2ihm)hm

= r.vW + • • • + r2ihm)g"-.
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Let k=max{\ai\,\bj\} for all I^i<?i and liíy'íSm. It is clear that

r=gk e RS, rpr^O, and r2r e RS. Hence, RG is finite dimensional. Also,

dim Q(RS) = dim RS= dim R shows that dim R = dim RG. The converse

is clear.

A free abelian group is a group which is a direct sum of infinite cyclic

groups.

Corollary 2.4. Let G be a free abelian group, then R is finite dimen-

sional if and only if RG is finite dimensional. Furthermore, dim i? = dim RG.

Proof. Let H=Sy@S2(B- ■ ■ where each S( is a multiplicative semi-

group isomorphic to the nonnegative integers. If R is finite dimensional

then RH is finite dimensional by Proposition 2.2. Let G=Gy®G2®- • • ,

where S¿ is embedded in the infinite cyclic group G¿, and now show that

RG is a ring of right quotients of RH. The details are omitted. The con-

verse and dim R = dim RG follow easily.

Lemma 2.5. For a finite group G, the group ring RG is finite dimensional

if and only if the ring R is finite dimensional. Also, dim i?^dim RG^.

dimR- \G\.

Proof. Let G be finite, then RGR is /v-isomorphic to a direct sum of

\G\ copies of the finite dimensional it-module R. Hence, RG is a finite

dimensional Jt-module and therefore a finite dimensional ÄG-module.

The converse and inequalities are clear.

Theorem 2.6. Let G be a finitely generated abelian group, then R

is finite dimensional if and only if RG is finite dimensional. If H is the

torsion subgroup of G, then dim i?^dim RG^dim R ■ \H\.

Proof. If G is a finitely generated abelian group then G^Gy®G2®- • •

®Gn®H where |//|<co and G¿ for l^i^n is an infinite cyclic group.

As in [2, p. 673], we define Ay—RGy, A2=AyG2, ■ ■ ■ , An=An_yGn,

and A = AnH; clearly RG^A. By Corollary 2.4 and Lemma 2.5, we see

by induction that A is finite dimensional and consequently RG is finite

dimensional. The converse and inequalities follow easily.

3. Applications.   Let Z(R) denote the right singular ideal of R (4).

Lemma 3.1.    Let G be a free abelian group, then Z(RG)=Z(R)G.

Proof. The proof uses the same technique as the proof of Theorem

2.7 of [10].

Proposition 3.2 (Connell, [2]). The group ring RG is semiprime if

and only if R is semiprime and the order of no finite normal subgroup is a

zero-divisor in R.

Proof.    See the appendix of [4].
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It is well known that a semiprime Goldie ring is a semiprime, finite

dimensional ring with zero singular ideal.

Corollary 3.3. Let G be a free abelian group. A ring R is a semiprime

Goldie ring if and only if RG is a semiprime Goldie ring.

Proof.   The proof is immediate.

Proposition 3.4 (Burgess, [1]). 7/"Z(RG)=0, then Z(R)=0 and the

order of every finite normal subgroup of G is a nonzero-divisor in R.

Proof.    See Theorem 4.8 of [1].

A locally normal group is one in which every finite subset is contained

in a finite normal subgroup.

Proposition 3.5 (Burgess, [1]). Assume that G is locally normal and

the order of every finite normal subgroup of G is a nonzero-divisor in R.

IfZiR)=0, thenZiRG)=0.

Proof.   See 4.9 of [1].

Corollary 3.6. Let G be a finitely generated abelian group. Then

R is a semiprime Goldie ring and the order of every finite normal subgroup

of G is a nonzero-divisor in R if and only if RG is a semiprime Goldie ring.

Proof. The proof is immediate using the construction in the proof

of Theorem 2.6.

A right ideal of a ring R is said to be essential if it has nonzero inter-

section with every nonzero right ideal of R. A right ideal D of R is dense

if for every 0^rx e R and for every r2e R there exists r e R such that

rxr^0 and r2r e D. We denote the Jacobson radical of R by Rad R. A right

ideal A is said to be small if for every right ideal B, A+B=R implies B=R.

It is known that A is small if and only if A c= Rad R.

The following remarks are well known.

Remark 3.7. A right ideal D is dense in R if and only if DG is dense

in RG.

Remark 3.8. A right ideal L is essential in R if and only if LG is
essential in RG.

A right ideal B is rationally closed in R if x~xB={r e R\xr e B) is not

dense for all x e R—B. Let 7(R) denote the injective hull of R, then B

is rationally closed in R if there exists a subset S of 7(R) such that B=

{x e R|5'x=0} [8].

Lemma 3.9. A right ideal K of R is rationally closed in R if and only if
KG is rationally closed in RG.
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Proof. If K is rationally closed then there exists a subset S<= I(R)

such that K={x e R\Sx=0}. We will show that KG={x e RG\SGx=0}.

Let x e KG then SGx=0 since Sk=0 for all k e K. Hence x e {x e RG\

SGx=0}. Now suppose Oj^x $ KG. We want to show there exists y e SG

such that yx^O. Let x=ry(gy)gy + - ■ •+ry(g„)gn, since x $ KG there

exists ri(gi) such that r .-(g,-) £ K. K is rationally closed so there exists

0#í e S such that sr^g^^O. Hence, sxj^O implies x $ {x e RG\SGx=0}.

Conversely, suppose K is not rationally closed in R, then there exists

x e R—K such that x~1K is dense in R. Thus (xrxK)G=x~1KG is dense

in RG and hence KG is not rationally closed in RG.

Proposition 3.10 (Renault, [6]). The group ring RG is self-injective

if and only if R is self-injective and G is finite.

Proof.    See [6].

Lemma 3.11 (Shock, [9]). Let R be a self-injective ring. Then R is a

cogenerator if and only if R is right finite dimensional and Z(R) is rationally

closed.

Proof.    See Proposition 2 of [9].

If R is a self-injective ring then Z(R) = Rad R [4]. It is known that if R

is self-injective and finite dimensional then R/Rad R is completely

reducible.

Theorem 3.12. Let G be a finite group where the order of G is a unit

in R, then R is a self-injective cogenerator ring if and only if RG is a self-

injective cogenerator ring.

Proof. Let R be a self-injective cogenerator ring. It is clear that RG

is finite dimensional and injective. By Lemma 3.11, we need only show

that Z(RG) is rationally closed. It is clear that if R contains no proper

dense right ideals then every right ideal is rationally closed and conversely.

So, we shall show that RG contains no proper dense right ideals. Let D be

a dense right ideal of RG. Then D+Z(R)G is dense and by Proposition 5.1

of [8], (D+Z(R)G)/Z(R)G is dense in RG/Z(R)G since Z(R)G is rationally

closed. Clearly, RGjZ(RG) and R¡Z(R) are completely reducible. There-

fore, (RIZ(R))G^RG/Z(R)G is completely reducible [2] and thus

RG¡Z(R)G contains no proper dense right ideals. Hence, D+Z(R)G=RG.

But Z(R)G<=Z(RG) = Rad RG implies Z(R)G is small. Hence, D = RG.
Conversely, let D be dense in R, Dj^R, then DG is dense in RG and

DG^RG.



1973] finite dimensional group rings 15

Lemma 3.13 (Shock, [9]). Suppose that ZiQiR)) is the Jacobson

radical of QiR) and is rationally closed. If QiR)jZiQiR)) is a completely

reducible ring and R/Z(R) is semiprime, then R is a right order in QiR).

Proof.   See Proposition 4 of [9].

Theorem 3.14. Let G be a finite group, then R is a right order in a

self-injective cogenerator ring and the order of no finite normal subgroup

of G is a zero-divisor in R if and only if RG is a right order in a self-injective

cogenerator ring.

Proof. Let R be a right order in a self-injective cogenerator ring Q,

then Q = QiR). By 3.6 of [1], we have QiRG)^QiR)G and thus by Theorem

3.12 QiRG) is a self-injective cogenerator ring. It is now clear that both

QiRG)jZiQiRG)) and Ö(R)/Z(Ö(R)) are completely reducible. Also, it is

clear that g(R)G¡ZiQiR))G is completely reducible and that RG/ZiR)G

is semiprime. By Lemma 3.13 we need only to show that RG/ZiRG) is

semiprime. To do this, we first show that ZiR)G=ZiRG). It is sufficient

to show that ZiQiRG))=ZiQiR))G since ZiRG)=ZiQiRG))nRG=
ZiQiR)G)nRG=ZiQiR))GnRG=ZiR)G. Now (Ö(R)/(Z(Ö(R))))G^
QiR)G¡ZiQiR))G^QiRG)IZiQiR))G. Recall Z(Ö(R))G£Z(OCRG)) =
Rad QiRG). Hence, ZiQiR))G=Z(g(RG)) since QiRG)¡ZiQiR))G is
completely reducible. The converse follows similarly.

In [12] Smith showed that if G is a poly- (cyclic or finite) group and

R is a right order in a right Artinian ring then RG is a right order in a

right Artinian ring. We extend this result to a class of group rings, where

G need not be poly- (cyclic or finite), using a method of Small [11].

Theorem 3.15. Let G be a free abelian group. If R is a right order in

a right Artinian ring then RG is a right order in a right Artinian ring.

Proof. It is clear that rad (RG) = (rad R)G when G is free abelian.

We now use the same argument as in Theorem 3.6 of [10].
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