
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1986

PROLOG. PROLOG.

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
R. W. Wilkerson, "PROLOG.," IEEE Potentials, vol. 5, no. 3, pp. 22 - 25, Institute of Electrical and Electronics
Engineers, Jan 1986.
The definitive version is available at https://doi.org/10.1109/mp.1986.6500804

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars'
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/mp.1986.6500804
mailto:scholarsmine@mst.edu

Prolog

Ralph W. Wilkerson A programming language
for fifth-generation

computing

programming language
was developed in the
early 1970s by Alain
C o l m e r a u e r , based
u p o n the w o r k of

Robert Kowalski and others. Prolog,
a contraction of "PROgramming in
L O G i c , " uses the formalism of
mathematical logic as its primary
design principle. It has been studied
extensively ever since the Japanese
announced their intention to build a
new series of fast, intelligent com
puter systems using this language.
This project is popularly referred to
as the "Fifth Generation Computing
Systems Projec t . "

Prolog has attracted the attention
of the artificial intelligence communi
ty because of its applications in rela
tional databases, natural languages,
automated reasoning, and other areas
of symbolic processing. Its declarative
nature distinguishes it from other
languages such as For t ran and
Pascal, which are primarily pro
cedural; that is, programs in these
languages consist of statements that
specify actions which need to be ex
ecuted in order to achieve the desired
result. In other words, the flow of
control necessary to perform some
computation is explicitly specified.

Declarative languages such as Pro
log, on the other hand, specify the
flow of data in a program, and pro
grams become descriptions of a col
lection of relations or functions to be
computed. Thus, the execution of a
Prolog program is an application of
the definitions (rules) to find an out
put corresponding to some given in
put . This type of programming is
sometimes called pattern-directed
rule-based programming, and it is
typical of the activity which takes

place in the development of expert
systems. For example, W A R P L A N ,
a Prolog program created by D . H . D .
Warren, is a general planning system
prototype that provides a base for
tasks such as programming robots to
assemble auto parts or writing pro
grams for constructing possible floor
plans for businesses.

The structure
Currently, there are several Prolog

i m p l e m e n t a t i o n s a v a i l a b l e for
microcomputers, with a fairly large
difference in their terminology and
syntax. The syntax used here is that
of micro-Prolog, with its simple
front-end that provides a user-
friendly environment much closer to
the syntax of English. It should be
noted that other Prolog syntaxes may
not have the same features as micro-
Prolog, therefore the items discussed
here may not function exactly the
same in other forms of Prolog.

Prolog programs are composed of
facts and rules. Facts are simple
statements about objects and their
relationships which contain no logical
connectives. We call a collection of
facts a database. For example, the
statement, " M a r y likes calculus ,"
contains two objects, " M a r y " and
" c a l c u l u s , " and a relat ionship,
" l ikes . " As a Prolog fact, this would
be expressed as: likes (Mary calculus).

A rule is an abstract statement
about objects and their relationships
which contains one or more logical
connectives. For example, "Everyone
who likes calculus is intelligent," can
be represented more formally as, " I F
χ likes calculus T H E N χ is in
telligent," where χ stands for any ob
ject. However, Prolog requires that
such sentences be in H o r n clause

Form, which places the conclusion
before the condition. Thus , our
sentence becomes " x is intelligent IF
χ likes calculus," which in micro-
Prolog syntax is the rule "intelligent
(_JC) if likes (_ x calculus) ."

Notice that the above rule contains
the variable -X (micro-Prolog re
quires that all variables begin with an
underscore). In Prolog, a variable
only has scope in the statement in
which it is defined. The conclusion of
the rule, intelligent (- *) , is referred
to as the goal, and the condition of
the rule, likes (_ χ calculus), is called
a subgoal. In order for the goal to be
satisfied, the subgoal must be
verified.

One executes a Prolog program by
asking questions within the Prolog
environment, which makes use of the
facts and rules to derive an answer to
that question. In micro-Prolog these
questions take the form of " i s " or
"which" queries. In the first case, the
answer to the question is either " y e s "
or " n o , " and in the latter, it is a list
of answers which satisfy the query,
if any. The actual answers are arrived
at by using depth-first search and
backtracking.

Asking questions about a collec
tion of facts expressed in Prolog form
is exactly like querying a relational
database of facts. For example, " is
(likes (Mary calculus))" is equivalent
to , " I s it true that Mary likes
calculus?" If Prolog is able to con
firm this fact in the database, then it
will respond " y e s " ; otherwise, it will
respond " n o . " In attempting to
verify the above query, Prolog
utilizes a powerful pattern matching
technique called unification to find a
match in the relation name (also
called the predicate name) and the

22 0278-6648/1000-0022$01.00© 1986 IEEE IEEE POTENTIALS

corresponding arguments. Simply,
uni f ica t ion a t tempts to find a
substitution which makes two or
more statements identical.

Consider " is (likes (Mary - *)) " ,
which asks whether there is anything
that Mary likes. Again, Prolog will
respond " y e s . " When the question is
asked, the variable ~x is uninstan-
tiated, and Prolog searches for any
relation and first argument which
unifies with " l ikes" and " M a r y . "
But since the second argument is a
variable, Prolog will instantiate the
variable ~x to "ca lcu lus" and
display the answer to the user.

Suppose we then ask is (intelligent
(_ *)) , or, " Is there anyone who is in
tel l igent?" In this case, the clause
"intelligent (- *) " is matched with
the goal of the rule for intelligent. In
order for this goal to be satisfied, the
subgoal "likes (_ x calculus)" must
be verified. Prolog proceeds to check
the " l ikes" relation to determine if
there is a relation where someone
likes calculus. Since the fact "likes
(Mary calculus)" is in the database,
the subgoal will be confirmed. The
goal intelligent (- *) will hence be
confirmed and Prolog will respond
with " y e s . "

It should be noted here that if we
actually wanted a list of all the in
telligent persons in the previous
query, we would have had to use the
" w h i c h " form of the question. Fur
thermore, an " i s " query will ter-

brother-of (_x _y) if nifcfe (^x) and parent-of <_z _x) anc

srster-of (_x _y) If female (_xj and parent-of (_z _x) an

uncie-of <_x _y) if mala («x) and parent-of (_z _x) and gra
aunt-of (_x _y) if female (_x>and parent-of (_z _x) and gn
cousin-of (_x _y) If parent-of (_z _x) and parent-of (_w j) i
cousln-of < χ _ y) If parent-of (_ ζ _ χ) and parents L w j) j
husband-of (_ x _y) If father-of (_ x _ z) and mc
wife-of (_x _y> if husbandof (_y _x)
father^f ftîèfcî * ;

father-of (Bob Bill)
fatnerof (BojMlewV.'.' \
father-of (Rick Jane)
mother-of (Ann Rick) " W ** ' . .·; '";[·

mother-of (Ann Mary)
mother-of (Mary Mark)
mj&ii\#pb} / > - ' \ \ ' · . ' , ; " : " *
male (Flick) m t̂lîni) < / ; V ; :
mate (Mark)

Fig. 1.

minate its search once it has con
firmed the query . Howeve r , a
" w h i c h " query continues to search
the database until all answers have
been exhausted.

This brings us to another point in
the construction of Prolog programs.
The order in which facts and rules are
entered into the Prolog database af

fects the order in which they are
evaluated. For example, suppose we
e n t e r e d the fact " l i k e s (Bob
calculus)" into our database after the
fact "likes (Mary calculus)". Now
the query: which (-x: intelligent
(_ x)) , which is read, "Give the
names of all individuals that are in
tell igent," would respond with the

Fig. 2

OCTOBER 1986 23

Move disk 1 from peg a to peg c
Move disk 2 from peg a to peg b
Move disk 1 from peg c to peg b
Move disk 3 from peg a to peg c
Move disk 1 from peg b to peg a
Move disk 2 from peg b to peg c
Move disk 1 from peg a to peg c

Fig. 3.

answers "Mary , B o b , " in that order.
The answer " B o b " was found by
resuming the search through the
database until other answers were
found or the search failed.

Sometimes we want to ask a ques
tion or state a rule which involves
more than one condition or goal. For
example, suppose we add the facts
male (Bob) and female (Mary) to our
database and ask the question "is
(likes (-X calculus) and female
(_ x)) . " In this situation, we have a
conjunction of the two conditions
"likes (-X calculus)" and "female
(_ x) " , which must both be satisfied
in order for the query to succeed.
That is, an instantiation of the
variable ~x must be found which
makes both conditions verifiable in
our database. In a similar manner, we
can have a conjunction of conditions
or subgoals in the statement of a Pro
log rule. For example, we could
change our intelligent rule to " in
telligent (-x) if likes (~x calculus)
and reads (~x Potentials) ."

In addition to being able to query
the Prolog program about facts and
rules, Prolog has a large number of
built-in predicates to aid in the con
struction of new predicates. These in
c lude p red i ca t e s for va r ious
arithmetic operations, string opera
tions, input /output operations, and
interfacing with the disk operating
system, just to name a few.

A database program
The logic program in Fig. 1 ex

presses the kinship relations of a col
lection of people. The EQ(-X-y)
relation contained in the "brother-
of" predicate is built-in and attempts
to unify its two arguments, suc
ceeding if it can do so.

Consider the question "is (cousin-
of (Mark Jane)) ." In the first cousin-
of predicate, Mark will be bound to
the variable _ x , and Prolog will at
tempt to satisfy the first subgoal
" p a r e n t - o f (_ z M a r k) . " This
subgoal will unify with the first
parent-of relation, and an attempt
will be made to satisfy the new
subgoal "father-of (_ x M a r k) . " A
search of the father-of facts fails, so
the second parent-of rule is tried.

This succeeds when -X is unified
with Mary in the fact "mother-of
(Mary M a r k) . " Thus , the parent-of
relation is satisfied, and the first
subgoal of the cousin-of relation has
now been satisfied.

Next, the subgoal "parent-of (_ w
J a n e) " is at tempted, and it is solved
in a similar manner as the first
subgoal, but _ w is unified with Rick.
Thus, the first two subgoals of the
first cousin-of ru le have been
satisfied. Now the third subgoal,
"brother-of (Mary R ick) , " is tried,
but this goal fails, since the subgoal
male (Mary) fails. Hence, Prolog
backtracks and attempts to find
another _ w to satisfy the second
subgoal, "parent-of (_ w J a n e) , "
which also fails. Consequently, P ro
log backtracks again and attempts to
resatisfy the first subgoal and find
another _ ζ such t h a t ' 'parent-of (_ ζ
M a r k) " is t rue. But this also fails,
and thus the first cousin-of rule fails.
In the same manner , the second
cousin-of relation is tried, and, as in
the first case, the first two parent-of
subgoals are satisfied.

Now the subgoal "sister-of (Mary
Rick)" is pursued, with the first
subgoa l female (M a r y) be ing
sat isf ied. The second subgoa l ,
"parent-of (_ z M a r y) , " is solved,
with -z unified with Bob, and the
fact "parent-of (Bob Rick)" is con
firmed, so that the third subgoal is
also t rue . Finally, since " N O T
(EQ(Mary Rick)" is t rue, the sister-
of rule is confirmed, and hence the
original "cousin-of (Mark J a n e) "
goal is verified.

Application to problem solving
As a second example, consider the

game called the Towers of Hanoi .
The initial situation is depicted in Fig.
2, where there are three pegs with five
disks stacked on the left-hand peg.
The disks are stacked such that each
one is slightly smaller than the one
under it. The object of the game is
to move all the disks from the left
hand peg to the right hand peg, sub
ject to the conditions that only one
disk can be moved at a t ime, and no
disk is ever allowed to be placed on

top of a smaller disk. (In the original
story, the game has 64 disks of gold
stacked on diamond needles. At the
time of creation, priests began mov
ing the disks, and when the transfer
is complete, the universe will cease to
exist.) It can easily be shown that the
number of moves in this game is
2 ^ - 1 , where TV is the number of
disks to be moved.

A relatively simple a lgor i thm
solves this problem using recursion,
which makes this a very appropriate
problem for using Prolog. Move Ν -
1 disks from the left-hand peg to the
center peg using the right-hand peg
as an auxiliary peg. Move the M h
disk from the left-hand peg to the
right-hand peg. Finally, move the Ν
- 1 disks from the center peg to the
right-hand peg using the left-hand
peg as an auxiliary peg. For a specific
example of this algorithm in action,
study Fig. 3 when Ν = 3.

The logic program for the Towers
of Hanoi puzzle is given in Fig. 4. In
this case, the predicate "towers-of-
hanoi" consists of two rules which re
quire four arguments. The first

arguments coincide with the peg
labels given in Fig. 2, which are used
in the transfer of disks, and the
fourth argument is the number of
disks which are to be moved. The
" P P " predicate found in both rules
is the built-in print predicate which
prints the string following P P and the
current values of any variables which
might appear in the string. Also, the
" S U M " predicate in the second rule
subtracts 1 from the current value of
_7V and instantiates -X to this
value.

The output in Fig. 3 was produced
by this logic program by the query "is
(towers-of-Hanoi (a c b 3)) . " In at
tempting to verify this query, Prolog
first tries to match the query with
the first rule and fails, since the
fourth argument is three. Hence, the
second rule is tried with -N instan
tiated to three, and the first subgoal
succeeds with -X instantiated to
two. The second subgoal of this rule
is a recursive invocation of the
towers -of -hanoi p red ica te , with
which the fourth argument is now

towers-of-hanoi (.FROM .TO .AUX t) if
PP (Move disk 1 from peg .FROM to peg .TO)

towers-of-hanoi (.FROM .TO JMJX .N) if
sum (.X 1 .N) and
towers-of-hanoi (.FROM .AUX .TO .X) and
PP (Move disk . N from peg .FROM to peg .TO) and
towers-of-hanoi (.AUX .TO .FROM .X)

Fig. 4.

24 IEEE POTENTIALS

equal to two. Again, the first rule
fails t o match , but the second
matches, and this time _ Xis instan
tiated to one by the first subgoal. The
recursive call to towers-of-hanoi is
made again with the first rule mat
ching this t ime. The P P subgoal
always succeeds, and thus the first
line in Fig. 3 is printed out. Thus, the
second subgoal of the second rule
succeeds, and then the third subgoal
of this rule succeeds, with the second
line of output being printed. Finally,
for the fourth subgoal to succeed, the
call "towers-of-hanoi (c b a 1)" must
succeed, which it does, with the third
line of output resulting. The reader is
encouraged to walk through the re
mainder of the execution of this

query, carefully writing all the recur
sive calls made along the way.

Yet to come
Pro log , a logic p rogramming

language, combines the use of goal-
oriented logic within a framework
which is closely related with the man
ner in which humans think. Prolog
has the capability to explain its
decision-making process when it at
tempts to verify a goal. Currently,
there are a number of researchers ex
ploring parallel execution of the
subgoal conditions within a rule in
order to speed up the search process.
A new language called PARLOG, for
Parallel Programming in Logic, is
presently being used to study the

parallel evaluation of rules. Prolog is
still a relative newcomer in computer
languages and is continually under
modification as new ideas about its
s t ruc tu re and p u r p o s e change .
Whatever its final form, however,
logic programming languages will
play a major role in the development
of f i f t h -gene ra t i on c o m p u t i n g
methodologies for knowledge pro
cessing and artificial intelligence.

About the author
Ralph W. Wilkerson is Associate

Professor of Computer Science at
the University of Missouri-Rolla. •

Using advanced systemization, the Fujitsu Software Plant programming goal is achieving high reliability and quality in creating
programs for language processing, general/special purpose system control, and native language/graphics/voice processing.

OCTOBER 1986 25

	PROLOG.
	Recommended Citation

	Prolog: A programming language for fifth-generation computing

