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T e r m i n a t i o n  V i a  C o n d i t i o n a l  R e d u c t i o n s  

Timothy B. Baird 
Department of Mathematics and Computer Science 
Harding University, Searcy, AR 72143 501-279-4570 

Ralph W. Wilkerson 
Department of Computer Science, University of Missouri-Rolla, 

Rolla, MO 65401 314-341-4653 ralphw@cs.umr.edu 

Abstract  
We generalize the notion of rewriting modulo an equa- 
tional theory to include a special form of conditional 
reduction. We are able to show that this conditional 
rewriting relation restores the finite termination prop- 
erty which is often lost when rewriting in the presence 
of infinite congruence classes. In particular, we are 
able to handle the class of collapse equational theories 
which contain associative, commutative, and identity 
laws for one or more operators. 

Introduction 
In 1970 Knuth and Bendix established necessary and 
sufficient conditions for a set of reductions to be com- 
plete. These conditions are commonly referred to 
as the finite termination property and the confluence 
properly. Based on these conditions, they were able to 
devise both an algorithm for testing the completeness 
of a set of reductions and a procedure which can take 
the equational axioms of an algebraic system and at- 
tempt to generate a complete set of reductions. The 
Knuth-Bendix procedure was able to generate com- 
plete sets of reductions for a limited number of alge- 
braic systems, most notably free groups. Early com- 
pletion procedures, however, were not able to handle 
any algebraic system whose definition included a com- 
mutativity axiom because inclusion of such axioms in 
the reduction set resulted in the loss of the finite ter- 
mination property. 

Peterson and Stickel [PS81l(see also [LB77]) were 
able to overcome this limitation of completion proce- 
dures by splitting the equational axioms of an alge- 
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braic system into two sets: (1) equations which are 
incorporated into the pattern matching process used 
to apply reductions, and (2) equations which form the 
basis of a set of reductions to be completed. Their 
approach requires not only the finite termination and 
confluence properties, but also a linearity property for 
equations in the first set and a special compatibility 
property between the reductions and the first set of 
equations. Besides these properties, it is necessary to 
have a finite and complete unification algorithm for 
the equations which are incorporated into the pattern 
matching process. Peterson and Stickel were able to 
generate complete sets of reductions for algebraic sys- 
terns which included both associativity and commuta- 
tivity axioms, building these axioms into the pattern 
matching facility via associative-commutative unifica- 
tion. Such completion procedures are referred to as 
E-completion procedures, where E represents the set 
of equations incorporated into the pattern matching 
process. Using this E-completion procedure, Peterson 
and Stickel were able to generate complete sets of re- 
ductions for algebraic systems such as commutative 
groups, commutative rings, and distributive lattices. 

Jouannaud and Kirchner [JK86] generalized the the- 
ory of E-completion sufficiently to account for all pre- 
vious completion and E-completion theory. They were 
able to replace the compatibility requirement of Pe- 
terson and Stickel with a more general property which 
they call coherence and to remove the linearity require- 
ment for E in favor of the more general requirement 
that the congruence classes generated by E must be 
finite. They regarded the problem of infinite congru- 
ence classes as a major open problem since many in- 
teresting cases such as equipotence and identity fall 
into this category. Bachmair and Dershowitz [BD87] 
generalized the theory of 3ouannaud and Kirchner so 
as to remove the finite congruence class requirement, 
but still requiring the finite termination property. This 
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generalization does not help if the termination prop- 
erty is lost for equational theories which generate infi- 
nite congruence classes. 

Rather  than a t tempting to solve this problem for all 
equational theories which generate infinite congruence 
classes, we consider only the class of equational theo- 
ries which contain the associative, commutative, and 
identity laws for one or more operators (ACI). It is 
the presence of the identity law in these theories which 
causes them to generate infinite congruence classes and 
to lose the finite termination property which places 
them outside the scope of the previous E-completion 
theory. In [PB89] we describe the theory and imple- 
mentation of a process which finds complete sets of 
reductions for ACI theories, omitt ing the details con- 
cerning the termination of the rewriting relation. In 
order to guarantee the finite termination property of 
the rewriting relation, we found it necessary to restrict 
the applicability of the reductions through the use of 
a special form of conditional reduction. 

P r e l i m i n a r i e s  

We begin by stating some of the basic definitions and 
notation which will be used in our discussion. The 
notation is similar to that  used in [JK86] or [PB89] 
and the interested reader should refer to those papers 
for more details. 

Let S be a set of terms, E a set of equations, and 
R a set of reductions. The relation =~  is a single 
application of an equality in E and the relation "-~R 
is a single application of one of the rewrite rules in R. 
Let R/E(or  "--PalE) be the relation =E o "--~R o =E. 

For any set of substitutions O, let ~ O  be the set 
of all E instances of substitutions in O, where an E 
instance of a is a substi tution which is E equal to an 
instance of o'. Then o" ~ rE@ means that a is not 
an E instance of a substi tut ion in O. For a term t, 
dom(t) is the set of all positions of subterms of t, c 
is the element of dom(t) at which t occurs, sdom(t) 
is the subset of dora(t) at which non variables occur, 
if m E dora(t), then t i m  is the subterm occurring at 
m, and t [m ~ s] is the term obtained from t if the 
subterm at m is replaced with s. 

Let the relation t --~R,E s mean there exist • ~ p E 
R, a position m E sdom(t), and a substitution a such 
that  t/rn =E )w" and s = t [m ~-- ptr]. 

Note that  "-~n,E C -on~E, thus if "--~n,E contains 
infinite chains ~ n / E  will contain them also. The fol- 

lowing example demonstrates that  --~R,E and -'-~R/E 
termination can, in fact, both be lost when rewriting 
relative to an ACI equational theory. 

Let R contain the reduction - ( x + y )  ~ ( - x ) + ( - y )  
and let E be the ACI equational theory for + . Then 
the term ( - a )  can be rewritten as 

+ 0) (-a)  + (-0) 
=E --(a + 0) -t- (--0) ---~n ((--a) + (--0)) + (--0) 

= E  • . .  

When rewritten as an --~R,E chain we have 

--a ~ n , ~  (--a) + (--0) 

-"~R,E ((--a) + (--0)) + (--0) 

" " ~ R , E  • • . 

Clearly both --~n,E and --~n/Z contain infinite chains 
in this example. It is very easy to find many other sim- 
ilar examples where termination is lost for ACI equa- 
tional theories and for other equational theories which 
generate infinite congruence classes. 

In order to develop any theory for rewriting relative 
to an ACI equational theory, we must first develop a 
rewriting relation which is provably terminating. In 
the following we develop a generalization of the --~R/E 
rewriting relation for rewriting relative to ACI equa- 
tional theories and establish the criteria under which 
its termination is guaranteed. 

Central to the development of the termination cri- 
teria for --~R/E is the notion of a core element of a 
congruence class generated by an ACI equational the- 
ory. We will say that  a term t is a core element of 
[t]ACl i f t  is in normal form with respect to the rewrit- 
ing relation ---~/,ac, where I is the set of reductions of 
the form x + 0 ~ x and AC is the set of associative 
and commutat ive laws for each ACI operator,  +,  in the 
equational theory. The rewriting relation used here is 
precisely the same as ---~R,E with I playing the role of 
R and AC playing the role of E.  We will write t .~I 
to mean the normal form of t with respect to " - + I , A C .  

Note that  I is by itself a complete set of reductions 
with respect to AC, thus all core elements of [t]ACl 
are AC-equal to each other. Clearly this means that  
there are a finite number of terms in the core for any 
congruence class generated by an ACI theory. Fur- 
thermore, given any term of finite size, we can easily 
find the associated core element.  

For example, consider the ACI congruence class 
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which contains the te rms a + b, (a + b) + O, (a + O) + 
b,b+(O+a), (a+O)+(O+b), (O+O)+(b+a),  ( ( ( a + b ) +  
O) + 0 ) , . . .  The  core for this congruence class contains 
only the two terms a + b and b + a. 

As is usually the case, our proof  of termination for 
the "-'~rt/E rewriting relation will be based on the use 
of a weighting function, W, such tha t  W(t)  gives the 
weight of any te rm t. We will depend on the following 
six properties for W: 

Wl :  Vt W( t )  > 0 
W2: i is an identity for an ACI opera tor  in E 

Vt W( i )  _< W(t )  
w3: s = w(t)  
W4: W(s)  > W( t )  

W ( T [ m ~ s l ) > W ( T [ m ~ t ] )  
Wh: W(s)  > W( t )  and 0 is any subst i tut ion 

w( o) > w(to) 
W6: t / m  = s, for some m 6 dora(t) :=~ 

w(s)  _< w(t)  

These properties have been shown for a number  of 
weighting functions. Since weighting functions are 
usually dependent  on the actual  operators  allowable 
in s and t, we will assume tha t  such a W exists. The  
required properties can then be demonstra ted when 
the sets R and E have been given, making known the 
allowable operators  for s and t. For problems which 
involve the ACI operators  + and • and the unary op- 
erator - ,  the complexity measures of Lankford [La79] 
have been shown to meet  the required properties. 

Another  possible approach to this problem would 
have been to develop a new weighting function which 
handles some of the problems which we encounter  
when dealing with infinite congruence classes. For in- 
stance, we could have a t t empted  to develop a weight- 
ing function which assigns the same weight to all mem- 
bers of an ACI congruence class. In doing this, how- 
ever, we would lose proper ty  Wh, which seems to be 
more useful than the suggested property. Our present 
approach, therefore, is to work with weighting func- 
tions similar to those which have already been devel- 
oped by those working with finite congruence classes 
under AC theories. 

R/E T e r m i n a t i o n  

In this section we establish sufficient conditions for 
the terminat ion of '"+R/E. The basic approach is to 
demonstra te  criteria under which the weight of a t e rm 
strictly decreases on every --+rt/E step. We first present 
and prove a theorem which indicates these require- 

ments.  This result is then used to redefine the notion 
of-"*WE rewriting. In order to accomplish our goal 
in this section we begin by proving a group of lem- 
mas which allow us to reduce the problem to that  of 
classifying the subst i tut ion involved in the rewriting. 

The  following proper ty  of  ACI  congruence classes 
was mentioned informally in our previous discussion 
of core elements. We state  it more formally here for 
reference in a later proof. 

L e m m a  1 (L1)  I f t  =ACt S then ~ ~I =AC S iS. 

Proof: This is a direct consequence of the definition 
of j l and the fact that  I is by itself a complete set of 
reductions with respect to AC. 

We now show that  coring a t e rm can never increase 
its weight. 

L e m m a  2 (L2)  For every term, t, W ( t  1I) _< W(t) .  

Proof: It will suffice to show tha t  if s is obtained from 
t by one application of an identity law, then W(s)  < 
W(t) .  We assume without loss of generali ty that  the 
identity law is x + 0 ~ x, for some ACI  operator  +, 
that  there exist m 6 dora(t) such tha t  t / m  = u + 0 
for some te rm u, and s = t [ r n * - u ] .  Since u is a 
term, it follows from W6 tha t  W(u)  < W(u  + 0), and 
hence we have using W4 tha t  W(s)  = W(t  [m ~ u]) < 
w(t  [m + 0)]) = w ( t )  

The next l emma makes it clear tha t  we can preserve 
ACI-equali ty when we subst i tute  equals for equals on 
both sides of the equality, provided that  the subterm 
being replaced is in the same context  in each term, rel- 
ative to the ACI theory. This contextual  requirement 
is assured by the added condition that  the sub te rm 
occurs exactly once in each side. I t  is easy to see that  
the lernma is not true without  this contextual require- 
ment.  

L e m m a  3 (L3)  Given terms t and t', a constant c, 
and positions x 6 dora(t) and x' 6 dom(t') such that 
t[x ~ c] =AC1 t' [x' ~---el, c 5£ACl Ident(a)  for any 
ACI  operator a in E , and c occurs in neither t nor 
t', then for any  erm t = a c ,  4 

Proof: Since we are given tha t  t [x  ~--c] =ACt 
t '  [x' ~ el, this means tha t  there exists a sequence of 
terms t[x ~ c] ~ tl =lac I t2 =lAG I "'" "~iAC t t n  
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t '  Ix' ~ c], where =~tcI  is used to mean a single appli- 
cation of one of the ACI  equations. Since none of these 
equations can eliminate or duplicate c it follows that  
there is exactly one occurrence of c in each ti. This 
means tha t  a corresponding sequence of = ~ c t  steps 
with each c replaced by s can be used to demonstra te  
tha t  t [x  ~-- s] =ACl t' [x' ~ s]. 

We now establish the existence of a core t e rm which 
is similar enough in s t ructure  to a given te rm tha t  we 
can replace a sub te rm in each with ACI-equal terms 
and preserve ACI-equality. This  l emma will provide 
the backbone for the proof of  our main theorem in 
this section. 

L e m m a  4 (L4)  Given a term, t , and a position, 
x E dora(t), then there exists a core term, t', and 
a position, x ~ E dom(t ') ,  such that for any term 
s , t e x ~  --- s] =AC' ~' [~t ~.._ S tel. 

Proof." Let t '  = (t [x ~ d)  l I where c is a special 
constant not previously appearing in t and c #ACI 
Ident (a)  for any ACI operator  a in E. The  special 
constant  c will serve as a marker  to mark position x 
in t and allow the determinat ion of the corresponding 
position in t ~ after the coring p, rocess has taken place. 
Clearly the rewriting relation "~t,AC can move the po- 
sition of c during the coring process, however, it can 
neither eliminate nor duplicate c since the AC equa- 
tions can only serve to permute  terms and the I reduc- 
tion can only eliminate identities, which c is not. Thus 
there must  be one and only one position x' C dom(t ' )  
such tha t  t ' / x  ' = c. We know tha t  t [ x ~ c ]  =At1 
(t Ix ~ c]) 11 since .L I preserves ACI-equality. But  
(t [x ~--c]) 11= t '  by definition, and since t ' / x '  = c, 
we now have t [x ~-- c] =ACl t' [x' ~ c]. Since c occurs 
exactly once on each side of this equation, we can ap- 
ply Lemma  3 and subst i tute  any te rm s for the marker  
giving t [x ~ s] =AC/ t '  [x' ~ s]. Finally, we can core 
s on one side since coring preserves ACI-equali ty and 
we have t [x  ~ s] =ACI t' [x' ~ s 1']. 

I t  is impor tan t  to note tha t  the t e rm s can be 
changed arbitrari ly after t '  and x ~ have been found. 
This will allow us to find t r for a given t and then 
change the subst i tu ted sub te rm without having to find 
another  t - t ~ pair. 

Our next l emma will be used later to establish that ,  
under the conditions which we will assume, --~a/E can- 
not replace a sub te rm which is E-equal to an identity. 

L e m m a  5 ( L 5 )  I f W ( t  11) > W(s  j I) theft t I I t A c I  

Ident(c¢) for any AC1 operalor o~ in E.  

Proof: Assume t II=ACZ Ident (o  O. This implies that  
t J.I=Ac Ident(c  0 by Lemma 1 since both  are core 
terms. Then  by W3 we have W ( I d e n t ( a ) )  = W( t  11 
). But this together with the given hypothesis allows 
us to conclude tha t  W ( I d e n t ( a ) )  > W ( s  ~I), which  
contradicts W2. Thus  the assumption tha t  t 11 =ACt 
Ident(o 0 must  be false. 

The following l emma shows tha t  coring the subtermn 
inserted into a cored te rm is equivalent to coring the re- 
sulting term, provided that  the inserted sub te rm does 
not collapse down to an identity. 

L e m m a 6  (L6)  I f  y E dom(t J )  and s I l # a c l  
Ident(o 0 for any A C I  operator c~ in E,  then (t 11 
[y ~ 8]) t I -~  t ~I [y ~ 8 .LI]. 

Proof: Clearly t 1 / [y ~-- s t I] is in normal  form with 
respect to --~I,AC unless s 11= Idcnt(o  0 for some ACI 
operator  c~ in t 11 which has s j r  in its scope. Since we 
are given that  s l t •  I den t (a )  for any ACI opera tor  c~ 
in E ,  this cannot  be the case. Thus  t 1 / [y ~ s 1 t] = 
(t I t [y ~ s ~I])  lit, which is equal to (t 21 [y ~ s]) 11 
by the definition of J .  

Given a subst i tut ion a = {zl ~ - t t , . . . , z n  ~ in} 
and a t e rm t, we can split tr into two disjoint por- 
tions by defining functions E1 and E2 as follows: 

~1(0", t)  : {(Xi ~ ~i) [ (Xi ~ l~i) E O" and xi is in 

the scope of an ACI  operator  o~ in t 

and ti =E Ident(oO, the identi ty for c~} 

= zcl( ,t) 

Clearly, if o"i = E l ( a , t )  and 0.2 = E2(o',t) then a = 
cx [.J o'2 = at0.2. Our main theorem will show that  the 
terminat ion of -'*R/E is dependent  only on the E1 por- 
tion of the te rm matching  subst i tut ion which is used 
to apply each reduction, in order to show tha t  the E1 
port ion of a subst i tut ion plays the vital  role in this pro- 
cess, we will first consider the role of the E2 portion. 
For a subst i tut ion a and a t e rm t define a cored substi- 
tution rr J ,  by ¢r 1 / =  {(xl ~ ti I t) I (x l  ~ ti) E o'}. 

L e m m a  7 (LT) G i v e n  a substitution vr and a term t 

then  (to'2) l I =  (t ~I)0" 2 ~I, where 0 2 = ~2(o ' , t ) .  
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Proof: The only way these terms can differ is if o'~ l ! 
can introduce a context for the application of 11 into 
t l I causing (t 1I)o'2 11 not to be a core term while 
(tct2) l 1 is clearly a core term. This cannot happen, 
however, because if the context for l / had been in ti it 
has already been eliminated and if ti : a C l  Ident(~) 
where xi is in the scope of an ACI operator,  a, in t, 
then (xi ~-- ti) q~ c% 11 by definition of E2. 

As the final piece which we will need in order to 
prove our main theorem for this section, we now define 
the restricted substitution set, ®(~ --~ p), as follows: 

o ( ~  ~ p) = 
{ct I ~ = {x ,  ~ I d e n t ( a l ) , . . .  an + - - -  I d e n t ( a n ) } ,  

where 
n~0 ,  
each cq is an ACI operator,  
each xl is a variable in ~ which 

is in the scope of hi, and 
W ( ( ~ )  1') _< W((p~)  1 ' )} .  

We now state and prove our main result: that  -+a//~ 
must terminate when the conditions for each rule, rep- 
resented by O(~ -+ p), are enforced. 

T h e o r e m  1 I f  the reduction t ---~RIE S is allowed to 
take place only when a q~ tEO(A ~ p), 1hen the rewrit- 
ing relation --+R/E must terminate. 

Proof: It will be sufficient to show that ,  under the 
given conditions, W(t  1 I) > W ( s  1I). If t~ ---~R/E 
t2 --'~n/E .. .  is an infinite sequence of --~R/E reduc- 
tions, then tl  J , t 2  ~ r  . . .  is an infinite sequence of 
terms whose weights get strictly smaller, but  this is 
impossible by W1. We proceed as follows: By the def- 
inition of t ---~n/z s, there exist terms t ~ and s ~ such 
that 

t = E  ff --~R sl ----E 8, 

Since t =E t 1/, it follows that  

t I I = E  tt "-'~R St : E  8 11 . 

By the definition of "--+R/E there exists m E dorn(t') 
such that  t ' / m  = Act and o" = t ' [ m ~ p o ' ] .  By 
Lemma 4 there exists a core te rm t" and a position 
m I E dom(t") such that  for every term u, 

t' [m ~ ~1 =~ t" [m' ~ u V ] .  (1) 

Let 0"1 = Ei(o',A) and o'2 = E~(o',A). From the defi- 
nitions of E1 and E2 it is clear that  o" = ctlo'2. From 
the definition of E-equality for substitutions, it follows 

that  a =E ch ~I ~:a. Since for each (xi ~--- ti) E ctl 
the definition of E1 gives that  ti =E Ident(ai) ,  it fol- 
lows that  ti 1I= Ident(ai) .  From the given condition, 
ct ~ tEO(A ~ p), we see that  ctl l z~  O(A -+ p), giving 

w((~ct , )  1 I) 
= W((ACtl  1 I )  1 I )  

> W((pctl  V) V)  
= W((pct~) V )  

by L1 and W3 
by def. of O(A --, p) 
by L1 and W3, 

and 

w((~ct) 1 I) 
= w((Act~) V ~2 V) 
> W((pff l)  l I if2 t I ) 
k w(((p~) i x ~ V) V) 
= W ( ( p ~ )  V) 
= W((p~) V) 

by L7 
by W5 
by L2 
by L1 and W3 
by defs. of E1 and E2. 

Now Lemma 5 assures us that  (Ao') 11 cannot be an 
identity. We conclude that  

w(t 1 I) 
= W(t '  l I) by L1 and W3 
= W(( t '  [m ~ An]) 1 I) since t ' / m  = Ae 
= W(( t"  [m' ~ (Act) 11]) J )  by (1) above 

= W(t"  [m' ~ (Ao') 1I]) by L6 

> W(t"  [m' ~-- (pa) i t ] )  by W4 

> W((t"  [m' ~ (pa) 1I]) 1 I) by L2 

= W((t '  [m ~- pet]) i I) by (1), L1 and W3 
= W(s '  d )  since s' = 1' [m ~ pet] 
= W(s  1 I) by L1 and W3. 

We now propose to redefine the notion of --+n/E 
rewriting as follows: 

tl---~R/E t2 -: :, 

! ! 
ta =E tv-+n t2 =E t2 and ct ~ tE®(A ~ p )  

Note that  the conditional version of -+n/E can be 
thought of as a generalization of the normal defini- 
tion of -+R/E. All that  is required is to have "empty" 
conditions on reductions of the normal --~n/E variety. 
When viewed as such, any theory developed around 
conditional reductions subsumes a similar theory de- 
veloped around the usual unconditional reductions. 
Hereafter we will use "-~n/E to refer to this general- 
ization. Peterson et al. [PB89] present a procedure 
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for testing the completeness of a set of reductions rel- 
ative to an ACI equational theory, based on the con- 
ditional version of the "--~a/~ rewriting relation pre- 
sented above. It was assumed in that  study that  --'~R/E 
did terminate, subject to the conditions, and the main 
proofs were based on that assumption. Our termina- 
tion result thus collaborates that  assumption. 

A p p l y i n g  t h e  T e r m i n a t i o n  T h e o r e m  

We now describe a simple procedure for calculating 
the conditions which are needed for each reduction in 
order to satisfy the termination property. Recall from 
the previous section that  the conditions for each re- 
duction are represented by the restricted substitution 
set ®(A ~ p). We begin by finding the set I()t), where 
I(Q is given by 

I(t) = {(x ~ Ident(a)) ] x is a variable in t 
in the scope of an ACI operator,  o~}. 

The set I ($)  then forms the basis of identity sub- 
stitution pairs from which all possible members of 
@(~ ---. p) will be generated. We then generate po- 
tential substitutions, P(A), where P()t) is given by 

P(.~) = {Y l Y E 2 I(~') and y i s  a valid subs t i tu t ion) .  

Clearly, the powerset, 2I(~), generates alt possible com- 
binations of identity substi tut ion pairs. We must dis- 
card any substi tut ion which assigns more than one 
identity to the same variable because these are not 
valid substitutions. Finally, we test each member, 0., of 
P(,X) to see whether or not W((~0.) ,~I) _< W((p0") ,[I). 
If the test succeeds we place 0. in ®($ ~ p), otherwise 
we do not. 

E x a m p l e  1: The following example illustrates how 
the preceding procedure is applied to a set of reduc- 
tions to ensure ~ R / E  termination when E is an ACI 
equational theory. Consider the following set of reduc- 
tions where + is an ACI operator and - has none of 
the ACI properties: 

RI: x + ( - x )  --0 0 
R2: - ( - x )  ~ x 
rt3: + + ( - y )  

For each of the examples which we present in this sec- 
tion we will use the weighting function W(Q which is 
defined as follows: 

W(constant) = 2 

W(variable) = 2 

• u) = • w 0 )  
w ( x  + u) = + w o )  + s 
w ( ( - x ) )  = 2 + 2 • 

For R1 the only variable in the scope of an ACI 
operator  is x. The corresponding ACI operator  is 
+ and the corresponding identity is 0. This gives 
1() 0 = {x ~ 0 }  and P(A) = { ¢ , { x ~ 0 } } .  Using 
these substi tutions for 0., we find that  V0. W(A0. l l )  
> W(p0. 1.I), thus no restrictions are needed for 
R1. R2 has no variables in the scope of ACI op- 
erators, giving I(A) = P(A) = ®(a2)  = ¢. Thus 
R2 must only satisfy the property W($)  > W(p), 
which it does. R3 has variables x and y in the 
scope of the ACI operator  + with the correspond- 
ing identity 0. This gives I(A) = {x ~ 0, y ~ 0}, 
and P(.~) = {¢ ,{x  ~ 0 } , { y  ~-- 0} ,{x  ~ 0,y ~-- 0}}. 
Calling these substitutions o'1, 0"2, 0"3, and 0"4, respec- 
tively, we find that  W(A0" jr) _< W(pa I i) for all 
substitutions o" = 0.i except 0. = o"1. Thus ®(R3) be- 
comes {o'2, 0"3, 0.4}- Since o'4 is an instance of o'2 and 
0.3, any substitution which is an E-instance of 0"4 will 
also be an E-instance of 0.2 and o'3. Because of this 
we will get the same result with ®(R3) = {o'2, a3} 
as with @(R3) = {0"2,0.3,a4}. For the sake of sim- 
plicity we will use the more concise form. We now 
have the restrictions ®(R1) = ¢, @(R2) = ¢, and 
®(R3) = {{x ~ 0}, {y ~ 0}}. Equivalently, the set of 
reductions which guarantees "--~R/E termination can be 
represented as the set of conditional reductions given 
below: 

Rl:  x + ( - x )  ~ 0 
R2: - ( - x )  ~ 
R3: If x # 0 and y # 0 then 

+ y) + (-v)  

This set has been shown to be a complete set of reduc- 
tions for abelian groups relative to the ACI equational 
theory for +.  

The preceding example suggests a bet ter  proce- 
dure for computing O(~ ~ p). When ~ contains 
at least one variable there will always be substitu- 
tions in P ($ )  which are instances of other substi- 
tutions in P ($ )  because the powerset of I(A) will 
contain members which are supersets of other mem- 
bers. For instance, as shown above, P(x + y) = 
{¢, {x ~ 0}, {y ~-- 0}, {x ~-- 0, y ~ 0}}. Calling these 
substitutions 0-1, 0"2, o"a, and 0"4, respectively, it is clear 
tha t  a2, o'a, and a4 are supersets of 0.1 making them 
instances of 0.1, and o"4 is likewise an instance of both 
o'2 and o'3. This suggests that  we generate and test 
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the elements of the powerset from the smallest to the 
largest. If an element p of P(A) is placed in @(~ ~ p) 
then no larger element q of P(A) which is a super- 
set of p need even be tested as to whether or not 
W(()tq) J )  _< W((pq) i t ) .  The test would indicate 
that  q should be added to O(A ~ p), but  we know 
that  we can leave it out. Because of the manner in 
which the substitutions are used, this clearly will not 
change the effect ofO(A ~ p) but  will speed up its cal- 
culation while automatically providing the restrictions 
in the most concise form. An interesting result of the 
process is that  O(A ---~ p) = ¢ represents a reduction 
with no restrictions while O(A ~ p) = {¢} represents 
a reduction which is always restricted, since every sub- 
stitution is an instance of the empty  substitution. 

E x a m p l e  2: In this example we will calculate restric- 
tions using the procedure just described, so as to ob- 
tain minimal restrictions. Consider the following set 
of reductions: 

n4: • • (y + z) -~ (~ • y) + (~ • z) 
Rh: x * 0  ~ 0 
R6: ~ .  ( - y )  ~ - ( x ,  v) 

For P~4, I(A) = {x ~ 1,y ~ 0, z ~ 0} and when we 
generate the powerset elements from the smallest to 
the largest we find that  the singleton sets {z ~ 1}, 
{y ~ 0}, and {z ~ 0} are all added to @(A ~ p). No 
larger members need be tested as all larger members 
are supersets of at least one of these sets. For both  R5 
and R6 we find I(~) = {x ~ 1}, P()~) = {¢, {x ~ 1}}, 
and O(X ~ p) = {x ~ 1}. Viewing these restrictions 
as conditional reductions we now have: 

R4: If x #  l a n d y # 0 a n d  z # 0 t h e n  
• (y + z) ~ (~ • v) + (~ * z) 

Rh: I f x # l  t h e n x * 0 - - ~ 0  
R6: If x -~ 1 then x * ( - y )  ---~ - ( x  • y) 

The set { R1, R2, R3, R4, Rh, R6 } has been shown 
to be a complete set of reductions for commutative 
rings with unit elements relative to the ACI equational 
theory for + and . .  

E x a m p l e  3: As a final example let us examine a re- 
duction which leads to a more complicated set of re- 
strictions. Consider the following reduction which is 
an absorption law from the definition of a distributive 
lattice: 

R7: x + (x*  y) ~ x 

I()~) = {x ~ O , x  ~ l , y ~ O , y ~  1}. Note that  y ~- 
0 must be included because, under identity substi- 
tution and coring, it is possible for y to appear 
in the scope of the + operator.  P(A) with ele- 
ments listed from smallest to largest is {¢, {x ~- 0}, 
{ ~ 1 ) ,  { y ~ 0 } ,  { y ~ l } ,  { ~ - 0 , y ~ 0 ) ,  
{x ~- 0,y ~- 1) ,  {~ ~ 1,y ~ 0 } ,  {x ~ 1,y ~ 1}}. 
Note that  several members of 2 I(~) were discarded 
because they were not valid substitutions. Of the 
remaining substitutions, only {x ~---0, y ~ 1} and 
{x ~ 1, y ~ 0} are placed in @(~ .-, p). This restric- 
tion differs from the previous examples in that  it allows 
for either x or y to take on an identity, but prevents 
both x and y from taking on identities at the same 
time. Represented as a conditional reduction, R7 now 
becomes: 

P~7: I f - ~ ( ( x = 0 a n d y = l )  o r ( x = l a n d y = 0 ) )  
then x + (x * y) --~ x, 

or, equivalently, 

R,7: I f ( x # 0 o r y # l )  a n d ( x # l o r y # 0 )  
then x + ( x *  y) ~ x. 

S u m m a r y  

Have we weakened the original rewriting relations by 
adding the conditions in the above examples? No, we 
have not. In Example 1 the most general form of a 
critical pair which could have been conflated by R3 
before the conditions but  cannot be conflated by R3 
after the conditions must be ( - ( t  + 0), ( - 1 ) +  ( - 0 ) )  
or ( - ( 0  + t ) , ( - 0 )  + ( - t ) ) .  It is easy to see that  R1 
can be used to conflate all such pairs since ( - t )  + 
( - 0 )  =E ( - t )  + ( ( - 0 )  + 0) ~R1 ( - t )  + 0 =E - ( t  + 0). 
Thus, taken together,  the rewriting power of R1, R2, 
R3 has not been weakened by the introduction of tile 
conditions needed for termination. 

Likewise, in Example 2 we see that  the most general 
form of pairs which could have been conflated by R4 
were it not for the conditions must be either (1 • (y + 
z ) , l * y + l * z ) , ( x * ( 0 + z ) , x , 0 + x . z ) , o r ( x . ( y +  
0 ) , x * y + x , 0 ) .  The pair ( 1 , ( y + z ) , l , y + l , z )  
conflates trivially since 1 * (y + z) =E  1 • y + 1 * z. 
The other two pairs are easily conflated via R5 since 
x * O +  x *  z --~n5 O+ X* z =E X* (0+ z). As before 
we see that,  taken together,  the rewriting power of 
the entire reduction set has not been weakened by the 
conditions. 

Finally, we see that  in Example 3 the restriction on 
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R7 only prevents its application to a pair of the general 
form (0 + (0 * 1), 0) or (1 + (1 * 0), 1), which conflate 
trivially since 0 + (0 * 1) =E 0 and 1 + (1 * 0) =E 
1. Thus the restriction only prevents its application 
when its application was not needed in the first place. 
These examples indicate that  the conditions needed 
for termination may not weaken the rewriting strength 
of a reduction at all, and that  when they do another 
reduction in the same set may still provide the same 
functionality as that  which was removed. In such cases 
termination is achieved while the set of reductions as 
a whole loses no rewriting strength. 

Since --~R/E is a very general form of a rewriting 
relation between congruence classes generated by an 
equational theory, it is clear that  the conditions which 
give "--~n/l~ termination also give the termination of 
many less general rewriting relations. For instance, 
any rewriting relation ---~a~ such that  "-~n C_ -one  C_ 
-'~n/E must terminate under these same conditions. 
This is impor tant  because the -'-~n/~ rewriting rela- 
tion is not conveniently implemented in a computer 
program, especially when E generates infinite congru- 
ence classes. We have found it useful to implement 
--was for an ACI equational theory, E , in the fol- 
lowing manner.  Let t --*RE S mean that  there exist 

---~ p C R, m E dora(t), and cr such that  

t / rn  =E ~o', and 

This rewriting relation is in the range between ~ R  
and -+/~/E and is very easy to implement. The condi- 
tions which give termination are enforced as a simple 
modification to the ACI term matching routine. The 
term matching routine receives a term, a pattern,  and 
the conditions. Whereas the normal ACI term match- 
ing would return the first substi tution which matches 
the pat tern to the term, the modified routine returns 
the first such match which does not violate the condi- 
tions. If no such match can be found, the term and 
pat tern are considered not to match. 

The rewriting relation we have described is actually 
a rewriting relation from a core element of one con- 
gruence class to a core element of another congruence 
class. When rewriting in this manner,  we begin with 
a core element, but we are allowed to leave the core 
during the ACI-matching step before we apply the re- 
duction. We then push the result back down to the 
core. As a principle application of this idea, we are 
able to restore the finite termination property that  is 

often lost when rewriting in the presence of infinite 
congruence classes, which includes the ACI equational 
theory. 
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