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FINDING FIXED POINT COMBINATORS USING PROLOG

Rkhard Rankin
R@ Wfierson

ComputerScience Department,Universityof Mksoun-Rolls

Apowerfdncw atmtcgy,calkdtbckcmcl method, haabeen
developed by Laq’ Wos and W- McCunc at Argonne
National Laboratories, to StUdyvarious tkcd point pmpcrtks
within _ classes of applicative systems. We present a
v- simpk -log reasoning $y~, named JIST, which
incorporates both stages of the kernel method into a s“mgk
lmiiicd program. Furthermore, the prolog tool has been
extended to run within a distriiutcd emimnmcnt using the

Linda protocol.

Introduetkn

‘f%rough a combination of his kernel strategy and the
automated reuoning program, OT1’ER, Wos has &em
extremely succeastid in addressing various fixed point
properties of fragments of Combiiry logic Ws].

ewarchers in combinatory logic regard the search for suchR
tied point COmbiirs ss dfidt probkms. ‘rhUS, the
incredibk success of Wos in developing a strategy for
finding these is regarded as a real achievement for automated
reasoning.

The kernel strategy, effk.etive as it is, does not completely
solve the pmblcm by any means, but it is the- first such tool
that, under certain condtins, can effectively find such
combinators in a relatively short amount of time. There arc
numerous unanswered questions regardiig thii strategy, as
well, fbremost of which is the question as to whether the
kernel tnefhod is complete.

The kemcl strategy is a two stage process which first
attempts toestabliah the “emtence of the reducible weak
fixed point pmpcrty (which implies the weak fixed point

AcMsAcwmMl%u$A
e 193 Mm o-ss7sl-ssbmWmxMoL&sl

pmpcrty) and, assuming the success of this - ~ge,
attempts toestablisht hecxktcnceofthe atrongfixcd point
pmpe~, The entire strategy is based upon proper
manipulation of the elements of the basis B of the tigmat
A.

The kernel method has bcem implcmcatcdin the geaeral
purpose theorem prover, OT’TER. Howmmr, there am
patiicular aspects of the OTTER implmnentation which can
be quite cumbersome. In paticular, the kernel method is
essentially a two-stage process, requiring, at a miniium,
some human intemmtion to prepare the output from stage 1
to be input into stage 2. This is in large part due to the
peculiarities of OTTER. An addtiional mstrwtm. . n, though
not part of the kernel strategy is the restritiion strategy,
called the 1‘s Rule, which is used in stage 2 to restrict the
application of the inference nde paramodulation. In an
article of thk length, it is impossible to dmuas in dctaii all
the nuances of combinatory logic or automated reasoning,
and refer the reader to ~8]. However, w will provide
the basic notions required for this discussion.

Basks of Combinatory L@ and the FIxHI hint

Properties

Combinatory logic is concerned with the abstract idea of
applying one function to another, and it can be shown that
any computable fimction can be expressed within its
frSllWWO& @81]. FormaUy, combinatory logic is an
equational system which has the S and K mmbinators as a
basis:

((SX)Y)Z) = (xZ)@Z) and (KX)y = X.

These two combinators, S and K, generate all of
Combwtory logic and specifically, what htmests logicii
is the study of subs- of thii logic, called fragments. Of
particular interest is whether these fragments satia~ the weak
or strong fmcd point property.

Definition: Let B be a basis for a fragment A, then we say
A satisfies the weak freed point property if and ordy if, for
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all combinators x, there exists a combinator y such that
y=xy, where y u expruaed solely in terms of the
castbiim in B and the combinator x.

~ M B be a baaii for fragment A. Then we say
A satisfies the strong tlxed point propesty if and only if there
exiata ● cmnbiir y such that, for all combinatora x,
YX=X*),
where y is expreaaed solely in terms of combinators from B.
We call such a y a tixed point combinator.

Befdse continuing, here are a few simple examples.
Consider the tlagmemt whose basis consists of the single
comb-r L,
Lxy = X(yy) ,

Then Ly(Lx) = y(Lx(Lx)) which is clearly of the form y =
Xy, and thus the weak fixed point property holds in this ease.
For the strong fixed point propesty, consider the fragment
whose basis consists of the single combmtor U, Uxy =
y(xxy). Them the combinator UU is a strong fixed point
combinator since UUy = y(UUy) for all y.

The kernel method is implemented using the inference rules
of parsmodulation, which generalizes equality substitution,
and binary resolution on a clausal representation of the
combinators. See @WO]for a discussion of this system. As
an illustration of pstmmodtdation, consider the
pammodulation from the right hand side of Bxyz = x(yz) into

the krm Bu of Buvw = u(w). Here the most general
unifier {B/x, yzht} is obtained to construct the new equality
BByzvw = yz(vw) in a single inference step. This form of
equality reasoning, however, must be carefiliy restricted or
else enormous numbers of useless equality clauses can be
gemcrated by such a reasoning program.

It should be pointed out that paramodulation is nomrtally
restricted from paramodulating ‘from’ or ‘into’ terms which
are variables. The reason for this is that such a
pammodtdation will always succeed, resulting in an
ovenwbelming number of conclusions being inferred. There
will be occasions where such an option maybe needed, but
it should be used with great cam.

The Kereel Methodist Ot&er

As noted above, the kernel method is a two stage method.
From a review of the literature, it seems that the only known
automated method using the kernel method was the
implenteatation done using OTI’BR.

Tlte O’11’ERkernel rneihod requires two distinct program to
be run. The stage 1 program uses pammodulation to expand
inequality clausea. The original inequality clause is derived
by the negation of the conclusion that a kernel exists. As
this CkUSC,and dacadant clauses are reduced, the goal is
to find a contradiion between one or more of the
inequalitia, and the reflexive property. The output of this
stage is visually inspected to determine if such clauses have

been constructed.

Stage 2 in O?TER requires that the candidate clausea from
stage 1 be transferred to the stage 2 program. The stage 2
program then uses pammodulation as an expansion role, in
an attempt to find a clause unifiable with (0 t) such that f
does not occur in e. This establishes the strong freed point
property, with 9 beiig the strong freed point combinator.
Again, the output must be visually inspected after the
program runs to determine if any such& have been found.

Suppose K is a kernel found in stage 1, i.e. K =xK for all
x, Now, if there exists a combinator e such that ex = K
and K= xK, then it follows that x(t3x) = x(xK) = XK = K
= f)x. That is, (3 is a strong freed point combirtator. Thus
we want to attempt to expand the kernel K into a term ex
such that e contains no occurrences of x.

Implementation in Prolog

There are various reasons which make the implementation of
the kernel method in prolog an appealing option. Besides the

usual
benefits of prolog’s compact code and ability to do pattern
matching with relative ease, a prolog implementation would
allow the researcher to easily experiment with different
search techniques. Furthermore, since Sicstus Prolog
version 2.1 was used for the development of this project, it

is possible to take advantage of the Linda protocols to
implement distributed processing across a workstation
network. This provd to be invaluable in developing a high
performance implementation of the kernel method since stage
1 and stage 2 could effectively be run as distinct
simultaneous processes.

The prolog implementation, called JIST, maintains,
conceptually, the two stage approach. On single cpu
systems, however, any kernels found are passed to the stage
2 portion of the program for immediate processing. On a
multiple cpu system, one instance of stage 1 exists, supplying
kernels to many instances of stage 2 programs.

The first problem which needed to be addressed was prolog’s
unsound unification algorithm, which results from the lack of
an occurs check in most prolog implementations (including
Sicstus Prolog). This problem was efficiently overcome by
utiliziig the sound unification code from Stickel’s Prolog
Technology Them-em Prover (PITP) [S88]. The
implementation of sound unification, while quite long in
prolog terms, is relatively efficient and avoids the costly
occurs check. Furthermore, one ‘procedure’ from Stickel’s
unification code , not_occurs_in, was utilized in stage 2 of
the kernel method as well.

Another aspect of prolog which needed to be addressed was
its use of unbounded depth-fret search. This causes prolog
to be incomplete, and,as such, could cause the theorem
prover to search too deeply and increase memory
requirements excessively. Instead, the theorem prover
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esnploys avuiaat of the well known bmmdcdscarch

tdmiquecaned d@Mlrataearchwithite rativedqxxling
l’REq, whkhia abreukh-tiratacarch Sacrificing some speed
fir more efiisd manory utiiiz&n.

Can&Won wczc mpruedd m probg by USC of list
strudwa. This was done to provide fir the simple addkion
of combinatora to the &tabase, and was felt to involve a
minimum of Prolog cxpmkweon thcpartofthc potcmial
user. In pdcular, ● combinator is an equality clause such
as Bxyz = x(yz) fir the B combinator. It is customary to
assume left aaaoc”m for the comb~rs unkas the

~ P* ~ ~. ~ -r ~rdsl
the B combibator is short fir the equality a(a(a(B,x)y),z) =
a(x,a(y,z)) where ‘8’ is the function which in combinatory
logic means thatonecombinator i8appliedto another. This
ia perhaps, the more common notatbn, as opposed to Wos’
notation of Bxyz=x(yz). In Prolog, thk same equality clause
wouldbe rcpreacdcdin list notation andthc prediitcequal:
equal( [a,a,[a,b,XJ,Yl,Zl, [a,X,[a,Y,ZJl). with the X,Y and
Z being Prolog varkbb, and ‘a’ and ‘b’ bciig constants.
Note that logical variabks in prolog arc generally uppcmaae,
whik logicians normally indk8te logical vwiabka with lower
- kttem.

Recall thatstage loftbekcxnelmdhod sarchcsftxa
combinator y such that y =xytbral lx. Suchayiscalkd
a kemcl of the gives fragmmt. This property is asserted by
the usc of the clause not_equal( [a,f,Xl,X) which is the
skolemind form of the negation of the weak iixcd point

PFV. ‘fllia, in ~, allows for the goal of the
PI’ogram to bc the conatmction of a proof by contradiction.

Stxgc 1 works in searching for kernels by obtaining an
equality clause rcpmemm“gacombinator inthefiagmcnt
under consideratbn. Them, an attempt is made to find a
U-b SUbteml in the kfthand SidCOfthe no_cqual CiSUSe,
andthcright hand aidcofthecquality clause. Anew
not-equal clause is gwwmtcd using the cquivaknt of
Paramodutin, and is asserted into the database. A check
for a contradiction is then performed on the new clause. The
contradiin will occur as a violation of the reflexivity
pro- ~h k ~uti tir paramodulation. rf a
contradktbn has occurred, them the approphte kernel is
output. Thisiaa valid kemclduetothc fact that the
contradiction is arrived at fmm the proof by contradiction
using the dsaiial of the wuk tlxcd point property. A sample
outpti clause from stage 1 is shown MOW.

After a contradiin is found, the program backtracks, and
attcmpta to find additional kernels at the same level. A new
kernel could conceivably come horn a dMferent subtcrm of
the same clausea just used, or fium other clausea at the
cuneat level of the dambase, This pmccas continues until a
maximum depth bound has k exceeded. When all the
pmc.eming has bcem completed for a cextain level, the

Program PrOCcCdSone kvel deeper into the search tree.

Sampk stage 1 output, fragment b,m:

kerncl([a,m,[a, [a,b,fl,mJJ,O,O).

It should be pointed out that the kernels of stage 1 are
usually fairly easy to find, provided they exist at all. In fact,
Wos speculates, and wc concur, that the hct that no kernels
are quickly found may, in fkct be an argument against their
exiatcrw. This speculation, however, has not &em
substantiated to date.

Kernels are placed into a file as they are kcated. Itisthis
tilewhich supplies the input data for stage 2, md allows for
a simple conversion to nmning the theorcm prover on a
distributed network. Whcm using the Linda protocols, the
file is replaced with a ‘blackboard’ procumor which provides
multiple copies of stage 2 with the kernels as they become
available. Tbc stage 2 pmceaaea, in either version, search
for strong fixed point comb-rs.

Stage 2 also uses paramodulation as its infemmcc ruk. hl
this case, though, wc paramodukte into terms on the kft
hand sides of the kernels obtained from stage 1, using the
equality clauses rcprcaemting the ekmcmta of the fragment
under consideration. Paramodulation is, therefore, being
used as an expansion rule, and not a reduction rule as in
stage 1.

Stage 2, in fact, attempts to unify newly generated potdial
strong fwd point clauses with the list stru~rc [a, THETA,
Xl. If this is possible, a secondary check is made to assure
that : not_occurs_in(X,THETA). when these cases both
hold, a strong fixed point has been found. When such a
tied point combinator is found, it is with to a f~, and
attempts arc made to tind more strong f- points through
backtracking, using the same clause. when this stage is
completed, the next kernel is input from either the fdc or the
blackboard, and processing continues. Sample output from
stage 2 is shown below.

Sample output from stage 2:
Fmccas: 2
Combinators Available:
comb([a,[a,b,~, ~, Z],[a,X,[a,Y,ZJ])
comb([a,m,~,[a, X,XJ)
comb([a,[a,l,X, YJ,[a,X,[a,Y,YJ])

CANDIDATE:
kemel([a,[a,[a, o,[a,b ,fl],[a,l,[a,b,fl]],~ ,0,0)
*FOUND* Theta: ((b((b(lm))t))b)

found after 6.70399 of CPU time
clause: 344

*FOUND* Theta: ((b((b((bm)m))l))b)
found allcr 31.796 of CPU time
clause 1375

It should be noted that this theorem prover does not restrict
paramodulation by use of the 1‘s ruk. In OITER, this
special restriction stmtcgy is used to force tie h term to
include the fmt symbol of the argument which contains it.
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ett~n position WdOrS with a slightly different
notation, but does not use them to r@rict paramodulation.

Using the depth-tlrst with iterative deepesting variant, and a
position veelor, we can not only easily implement the 1‘s
tuk, it can be extcmded or altered to any positional strategy
&ii.

M~ant8ga of JIST

There are several dtict advantage to the system presented
here u compared to the OTTER systesn presented by Wos
and McCune. The JEST system was designed to be run under
a ‘standard’ prologimpksnentation. For maearchem wiUing
to run the program, ‘ss is’ , only the list representations of
the eombinatom need be adjusted. It is not necessary for the
user to search through the output of stage 1, as it is when
using OTTER, to kmtte the kernels to use for stage 2.

JIST proceasca clauses one kvel at a time. This technique
SUOWSthe system to locate kernels and fixed points lower in
the search tree. As each level is processed, it is discarded,
leaving only the next level in memory. This allows an
arbitrary depth of the search tree to be eompleiely processed
without a depth fit search whiih could miss shotir fwd
points. (Although when paramodulation into variables is
aUowed, the depth possible to procas in a finite time is
small). Paramodulation into variablcxi is aUowed merely be
setting ● flag in the prolog database. The depth of search is
ako set by a single prolog !lag.

Thc main attribute of thii system, however, involve the
amount of search space which can be tmvemed, as well as
the removal of human intmwntion. In the single processor
system, kernels found in stage 1 are automatically processed
by stage 2. No human inspection of the output is required.

Using OITER, even the output of stage 2 must be visuaUy
inspected. OTTER tkd points located are tagged with a
‘unitcontlict’ message, but still must be Ioeatedby hand. In
JIST, the fixed points are placed in a file as they are found.
No human inspection or discrimination is required at aU,
aUowing pemons unfamiliar with the system to use it without
prior training beyond loading the sothvare md selecting the
fragmeslt of intere@.

In the multi—proceasor system, a single cpu is dedicated to

the blackboard. Another cpu finds kernels, and sends them
one at a time to the blackboard. AS stage 2 processors
become available, the blackboard sends each kernel to a
stage 2 pmceaaor, in the same sequence that such kernels
were received. Each stage 2 p~sor then processes a
kernel, and savea any fied pointa found into a fde. The
number of stage 2 pmcesaom which ean be supportedis freed
only by any internal capacity limb fmm Sicstus Prolog.
Whea the search baaed upon a paticular kernel is completed,
again, controlled by a uaeretabliahed depth limit, the stage
2 proceaso r clears its database and requests a new kernel to

-s. SinCCthis is b~idy ~ infinite loop on both ends

of the system, the system is terminated by hand when
desired.

Performance

There are no standardsby which to measure the performance
of a specialized theorem prover such as JIST. Such terms as
‘fast’ or ‘efficient’ are meaningless. There can also be no
direct comparisons of output against the only other known
implementation in OTTER as the search techniques employed
are different, and the results cannot be directly correlated.

For illustrative purposes, however, we present some

information on the number md speed with which strong
freed point combinatom (SFPC) can be found. AU programs
were run on NeXT workstations under a Novell nelwork
using the multiprocessor system. The stage 1 programs and

the server (blackboard) program were run on the same CPU.

Using the combinatom B, L, M, the fmt SFPC was found
atkr 0.047 seconds. Using 6 instances of stage 2, alla

appm~tely 4 cpu minutes, 47 SFPC were located. using
the combinators B, M, W and eight instances of stage 2, the
fmt SFPC was found al?er 0.11 cpu seconds. Wkttin 1 cpu

minute, 89 SFPC were found.

Using the combinatom W, M, Q, L, a single processor fmm
the multi-processor run found ltM SFPC in 6.51 cpu
seconds. Using the combinatom B, M, C, a single processor
from the muki-pmcessor mn found 18 SFPC in 1.546 cpu
seconds.

The system was checked against the output of OTfER, and
was tested using the ‘sage birds’ listed in [S84]. Sage birds

are SmuUyans name for SFPC. All 11 sage birds were
verified as being SFPC using JIST. [n the case of two sage
birds, however, due to the different seamh method employed

in JIST, variations were found fmt for the fragments:
B,M,W and W, S,B,W. The sage bird UU was found most
quickly, with 0.0 seconds required. The is due to the feature
of JIST which checks the ~ssibilhy that the kernel may itself
be a SFPC before fufiher processing.

Conclusion

A pmlog implementation of a Theorem Prover for the
construction of strong fixed point combinatom has been
presented. This implementation is based upn the kernel
method for discovering strong fuaxl point combinatom for a
fragment of combinatory logic. Logicians consider the
search for such combinators as a difficult problem, and,
because of the kernel method, this problem has successfully
yielded to attempts at automating the process.

J[ST, a theorem prover implemented in pmiog, advances the
kernel method in several ways. It attempts to miniiir.e the
amount of knowledge regarding the theorem prover itself

r~uir~ of the user. It removes the human intervention
necessary in the previous implementation of the kernel
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ndwd by ●mmddly -, Pmceaaing, and reporting
both weak and ltrong w poti Oombiim. It pmvidu
fbr a be &at scarcb for comb~rn, allowing
combiim lowcrin tbc8rarohtrceto bcdwvcmdandi9
mmilablc in both aerial and paralkl vcrsiorw for Sicatus
Prolog.
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