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I. INTRoDUC~~N 

In this paper we will present a unified theory for the double eigenvalue 
problem whose differential equation is given as 

L(x; A, ,u) = (p(l) x’(t)>’ - f(t) x(t) + Aq(t) X(l) +/u-(t) x(t) = 0 (1) 

subject to x(a) = x(J) = x(v) = 0, where p(t) > 0 and a < p < y. 
This theory will include qualitative and numerical results. The basic idea 

is to redefine the problem in (1) as a quadratic form problem 

ff(x; A Pu) = J(x) - =,(x1 -P&(X), (2) 

where 

x’*(t) + Z(t) x’(t)] dt, @a) 

and 

K,(x) = jy q(t) x’(t) dt, 
(I 

K,(x) = 1 r(t) x’(t) dt, 
‘L2 
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THE DOUBLE EIGENVALUE PROBLEM 439 

and to apply the vast amount of mathematical ideas previously developed by 
the first author. 

In a sense this problem is both an ending and a beginning of an approx- 
imation theory of quadratic forms. It is an ending since it includes the curent 
problems of interest in this setting, namely, the numerical focal, conjugate 
and oscillation point problems (A = ,u = 0; ,8and y ignored), the numerical 
eigenvalue problem and the one constraint problem (LI = 0 ; y ignored). It is a 
beginning since it includes a systematic theoretical and numerical 
development of the double eigenvalue problem occurring in physical 
problems (see [ 1 ] for references) and indicates how to handle multiconstraint 
problems and “mixed” eigenvalue-constraint problems. 

In Section II we present the theoretical results and preliminaries necessary 
for the remainder of this paper. In particular, we give very general inequality 
results concerning the signature and nullity of quadratic forms in (2), relate 
this to differential equations in (l), and show how these results fit in a 
qualitative picture for our two parameter problem. 

In Section III we show how to build finite dimensional Hilbert Spaces by 
use of splines and finite dimension quadratic forms which are approx- 
imations of the quadratic form in (2). We also give the “Euler-Lagrange 
solution” for this finite dimensional problem. A very strong approximation 
result relation to our finite dimension solution is then given. In Section IV 
we give a two dimension iteration scheme to find the proper values of A and 
p and in Section V test cases are given to show how efficient and 
numerically accurate our procedures are. 

For convenience of the reader we present a diagram (Fig. 1) which 
indicates how (given fixed values of the parameters Iz and ,u) we numerically 
approximate this problem). Arrow (1) denotes ideas which were redeveloped 
to “fit” into the overall picture. Arrow (2) denotes approximation ideas given 
by the first author. Arrow (3) denotes the new ideas (algorithms) in this 
paper which include the iteration scheme, the oscillation vector (eigenvector) 

FIGURE 1 
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results, and the “Euler-Lagrange equations” for two parameter tridiagonal 
matrices. 

In Section IV we will give a two dimensional iteration scheme which uses 
the idea of the diagram as a “subprogram.” In Section V we give a 
numerical example which agrees with the example in [I]. 

II. PRELIMINARY AND THEORETICAL RESULTS 

In this section we present and derive basic results necessary for the 
remainder of this paper. We begin with a paraphrasing of the notation in [2] 
for the point t = /I, relate solutions of (1) to the signature of a quadratic 
form, and finally give a parametric curve in the (1,~) axis which occurs in 
our numerical problems. 

For each pair of real numbers (A, p) let the quadratic form 
ff(x ; 4 P) = J(x) - =,tx> - H,(x) g iven in (2) be defined on the interval 
a ,< t </I. Let GZ@) be the set of all arcs x(t) defined on a < t </I such that 
x(a) = x(J) = 0 and such that x(t) is absolutely continuous and x’(t) is 
square integrable on [a, /3]. @(/I) is a Hilbert Space with inner product 

(x, Y) = x(a) y(a) + (R x’(t) y’(t) dt 
a 

(3) 

and (Ix]] = m. Let s,(l, ,u) denote the signature (index) of H on Or@), 
that is the dimension of a maximal subspace B c CZ!@) such that x # 0 in B 
implies H(x; A, ,u) < 0. Let n,(;l, p) denote the nullity of H(x ; A, P) on Q(p), 
that is, the dimension of the space of arcs in flQ3) such that H(x, y ; A, ,u) = 0 
for all arcs y(t) in a(,@, where H(x, y ; A, ,u) is the bilinear form associated 
with H(x ; 1, ,u) = H(x, x ; A, ,u) in (2). 

We pause to review briefly some characteristics of these nonnegative 
integer valued functions which the reader should picture as the number of 
negative and zero eigenvalues of a real symmetric matrix. We assume that 
~~(1, ,u) and n,(A, ,D) is defined similarly to s,(A, ,u) and n,(A, ,u) above on the 
interval a < t < y and will “incorrectly” use the symbol H since there is no 
danger of confusion. 

THEOREM 1. Assume q(t) > 0 and r(t) > 0; then 1, <R, and p, <yz 
imply s&~~~,)<s&,PJ. Similarly 
$(A Pu> < sy(k P). 

s,(L, ,,u,) < sY(&, pz). Finally 

The first statement follows since A, < 1, and ,B, < ,u, imply 
~(x;~,,~,)--H(x;~,,~C1,)=J(x)--~~,(x)-~,~,tx)--(x)+~,~,(x) + 
.kG(x) = (&-J1)Kltx) + 012-~I)K2(x)>0 or WX;&,P,)> 
H(x; II,, &) so that if x,,(t) implies H(x,,; A,, ,u,) < 0 then H(x,; &,,uJ < 0. 
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The final statement follows by defining y&) equal to x,(t) on [a,P] and 
y,,(t) = 0 on [p, 71. Then if H(xt, ; 1, ,u) < 0 we have H(y, ; 1, ,u) = 
w&l ; 4 Pu) < 0. 

Of special importance is to note the connection between s&p) and the 
number of oscillation points of a nontrivial solution of (1) subject to 
x(a) = 0. The next result is stated only for t =/I but holds equally well for /I 
replaced by any t,, a < t, < y. As above we would (incorrectly) use the same 
symbol H to denote a quadratic form with integration over the interval 
[a, to]. Note that s,~(& ,u) is a nondecreasing function of t, follows from 
Theorem 1. 

THEOREM 2. The value of n,(L, p) is zero or one. It is one IT there exists 
a nontrivial solution x,,(t) to (1) such that x0(a) = x,,(j) = 0. The value of 
s,(A, ,u) equals m l@ there exists a nontrivial solution x,(t) of (1) satisfying 
x,(a) = 0 and xl(tj) = 0 for j = 1, 2 ,..., m, where a < t, < t, < 0-a < t, < p. 

These results have been given in more detail in Ref. [2]. Note that s,(&~) 
counts the number of points t on (a,/?) for which n,(;l,,u) = 1. 

Our final effort in this section is to note that for t = p, q(t) > 0, r(t) > 0 
and q and r linearly independent functions we can separate the (L,,L) plane 
into open sets 

0, = {(A, ,u) : S&I, p) = m, n& Pu) = 01 

with boundary lines 

From Theorems 1 and 2 we note that r,,,, for m = 0, 1,2,..., defines a 
function p = g,(A) which is one to one and has negative slope. This follows 
immediately since for a fixed value of I, we have shown in Ref. [4] that 
there exists an eigenvalue-eigenvector solution (,B, x,(t)) to Eq. (l), where 
x0(a) = x0@) = 0 and x,(t) at m points in the interval (a, 8). 
If we define Oj, and rj, similar to above except that the “prime” denotes the 
y situation, i.e., 

then our picture is Fig. 2, where (&,,,u~), the solution of the double eigen- 
value problem, lies at the intersection of the two lines r,,, and rj, described 
above -and the ordered pair, designated (m, m’) at this intersection, denotes 
the fact that the corresponding eigensolution “crosses” the axis m times in 
(a, p) and m’ = j - m - 1 times in (/3, y). 
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FIGURE 2 

III. THE NUMERICAL APPROXIMATION PROBLEM 

In this section we give the spline approximating setting associated with the 
differential equationquadratic form problem by (1) and (2). The theoretical 
basis of these ideas is given in Ref. [2]. We ask the reader’s indulgence while 
we introduce three more parameters and a “generalization” of the theory 
above with a “product” parameter q = (E, u, 1, ,L). 

Let a be the space of functions defined above, namely, the arcs x(t) which 
are absolutely continuous with x’(t) square integrable on [a, r] such that 
x(a) = x(y) = 0 and norm given by 

(x, v) = x(a) y(a) + /+x’(t) y’(t) dt. 
‘(I 

Let Z denote the set of real numbers of the form CJ = l/n (n = 1, 2, 3,...) and 
zero. The metric on Z is the absolute value function. For u = I/n, define the 
partition 

7r(u)=((a,=a <a, <a,... <a,=~), 
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where 

u,=k=+u (k=O,...,n). 
n 

The space Q(o) is the set of continuous broken linear functions with vertices 
at n(o). 

For each E in [a, y] let Z(E) denote the arcs x(t) in 62 satisfying x(u) = 0 
and x(r) E 0 on [E, r]. Finally if 9 = (E, u, 1, p) is an element in the metric 
space J(q) = [a, r] x Z x 9’ x 9 with metric d(qi, v2) = ]e2 - E, ] + 
lo2 -oll+ II, -,I11 + I,+ -,a,,), where ur = (si,cri,A1,pi) for i= 1,2, define 
9(q) = U(o) n X(s). Thus an arc x(t) is in B(q) iff it is a spline function 
of degree 2 on [a, a,], where uk < E < uk+ 1, such that x(u) = 0 and x(t) = 0 
on lh 71. 

Now that our Hilbert spaces are constructed we construct appropriate 
quadratic forms designated by H(x ; q) = H(x; E, u, &,u) which are the 
approximating quadratic forms for (2). Thus define p,(t) = ~(a,*) if it is in 
[uk, uk,. ,), where uf = uk + u/2 with similar definition of r,(t), q,(t), and 
r,(t). For v = (E, u, 1,~) let H(x; q) = H(x, x; q), where 

H(X, Y; v) = fy IP&) x’(t) v’(t) + LWxtO ~(01 dt ‘ck 

- A iy q,(t) 44 t(t) dt -P iy r,(t) x(f) ~(0 dt 
‘P ‘L1 

(5) 

is defined for arcs x(t), y(t) in M(q). As above we define s(q) and n(v) to be 
the signature and nullity of the quadratic form H(x ; r,r) on the Hilbert space 
4rl)* 

The connection between s(q), n(q) and oscillation or conjugate points is 
now given. Let u, L and ,U be given, a point E at which S(E, 6, A, ,u) is discon- 
tinuous is an oscillation point of H(x; E, u, A,,u) relative to {R(E): E in 
[a, b]}. In Ref. [2] we show that, as a consequence of a very general concept 
of approximation, the mth oscillation point E,Ju, J.,p) is a continuous 
function for m = 1, 2,3,... and E, < y. Continuity is in the sense of the metric 
defined above. When u = 0 we have the continuous problem given by (1) and 
(2) and our definition coincides with the usual definition of oscillation or 
conjugate points. 

To numerically find S(E, u, A, p) for u # 0 we follow the ideas in Ref. [4]. 
Choose u = l/n ; ak = a + k/n for k = 0, 1,2,... ; 

ZkW = I 1 -nit--ua,l iftin [uk-l,uk+ll 
0 otherwise (6) 
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for k= 1, 2, 3,...; and x(t) = bjzj(‘) (repeated indices are summed) in 9(q) 
for q = (E, o, 2,~). Note that zk(f) is the spline “hat” function and is the basis 
for our finite dimensional space. A straightforward calculation shows that 
H(x; q) = bibjeij(v) = II’D( where B = (b, , bz,...)TV, x = bizi and D(v) 
is a symmetric tridiagonal matrix “increasing” in E so that the upper k X k 
submatrix of D(a,+ r, u, 1, ,u) is D(a,, cr, 1, P). The results of Theorem 3 are 
given in Theorems 2 and 3 of Ref. (41 with modification to this example 
(two additional parameters). 

THEOREM 3. The values S(E, u, A, ,u) and n(s, o, I, ,u) are respectively the 
number of negative and zero eigenvalues of the symmetric tridiagonal matrix 
D(a,, o, 4 PU), where of0 and ak<E<ak+,. The sum 
s(ak+ 1T 0, A PU) + Ok+, y o, A, ,u) is the number of times the discrete solution 
c(u, A,,u), dej?ned below, crosses the axis on the interval (a, ak+ ,I. There 
exists 6 > 0 such that tf ] E - akt , I+la-u’I+I~--‘I+J~-~‘/<6 and 
ak+, is not a conjugate point to t = a, i.e., x0(t) a solution of (1) satisfying 
x,,(a) = x,,(LI~+,) =O implies x,(t) ~0, the above sum is equaZ to (i) the 
number of oscillation points of (1) on (a, ak+ 1), (ii) the sum S(E, u’, II’, ,u’) + 
n(e, u’, d’, ,u’) and in particular (iii) the sum S(E, 0, 1, ,u) + n(e, 0, A, ,u). 

Our final effort will be to construct a finite dimensional approximation 
solution c(u, A’, P’) to problem (l)-(2). That is if x,(t) is the solution to (1) 
and c(u, A’, ,u’) is our approximate solution and if they are normalized to 
agree ar (say t = a,) then 

i 
’ [c’(u)-x;(t)]‘dt+O as u + 0, A’ -+ 1, P’ + ,u. (7) ‘C2 

This convergence is of course muc stronger than pointwise convergence. 
Two steps are involved in this solution. The first is to construct the 

elements ek,k and ek,k+ I of the symmetric tridiagonal matrix D(n). The 
second is to give the Euler-Langrange equation of this matrix. This equation 
is the solution c(u, A, ,u) referred to above. 

A direct calculation in (5) leads to 

e k,k = ff(Zk~ zk ; ‘-7~1, P) = joy,’ [P,(t) Z;2(t) + @) Z:(t)] dt 

-A jak” q,(t) z:(t) dt - p (‘“” r,(t) z:(t) dt 
Ok- I (Ik-1 

= [ PK- 1) + P(G)lkJ + o/3 [W- 1) + @,*)I 

- W3 [4(4-1> + &,*)I -Pa/3 [r(G- J + r(G)l, 
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e k,k+ 1 = H(zk, Zkf I ; UT n9pu) 

= 

I 
I*:: [P,(G m z;+ Itf) + Z,(t) Zk(f) zkt I@>] dt 

-~ju*+2~,~f~zk~r~zk+,~~~~~ 

ak-l 

= --~@,*)/a + ol(@)/6 - Aaq(a:)/6 - p~r(a;)/6. 

Finally, we show in [4] that for a given fixed value of 1 and P the finite 
dimensional approximation to the solution x,(t) in (1) is the vector 
c(u, 1,~) = cizi(t) (repeated indices are summed) where the components Ci 
are defined recursively by 

cle,, + c2e12=0, 

clezl + c2e22 + c3e13 - -0 y 

(94 

(9b) 

Ck-lek,k-l +Ckek,k+Ck+lek,k+l- -0 kk = 3, 4, 5 ,,.. ). PC) 

This vector c(u, A, p) is the vector satisfying the limiting relationship in (7). 
In practice if the coefficient functions p(t), Z(t), q(t), r(t) are at all “nice” our 
algorithm is easy to apply and converges quickly. This is due to the fact that 
we approximate an integration process using (2) and not a difference using 
(1). Furthermore for each choice of u the values ~,(a,*), etc., need only be 
computed once in our two dimension iteration scheme unlike the case of 
differential equations. This results in relatively little computation time and 
allows us to compute all numerical eigensolutions A,(u), ,u~(u) with one 
computation of p,(a,*), etc. 

IV. THE ITERATION SCHEME 

In this section we give a two dimensional iteration scheme which allows us 
to find c(u, 1, ,u) under the assumption that p(t) > 0, q(t) > 0, r(t) > 0. The 
condition p(t) > 0 is necessary to avoid singular theory; the nonnegative of 
q(t) and r(t) may be obtained by rewriting our equations slightly as in our 
example below and is not a requirement in our original problem. More 
precisely we find c,,, ( ) , u , w h ere m and m’ are (described above) respec- 
tively the number of crossings of c(u, A, ,u) on the intervals (ar, p) and (p, r), 
respectively. 
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FIGURE 3 

Our innermost subroutine computes a solution c(c, 1, cl) from (9). If this 
solution “crosses” the axis “exactly” m times in the interval (a, p), m + 1 
times in the interval (a, p], j = m + m’ + 1 times in (a, y), and j + 1 times in 
(a, y] we are done. Call this solution c,,,, (0). The word “exactly” means the 
crossing is within a predetermined s-neighborhood of /3 and y. If both ), and ,U 
are too large the resulting solution c(u, 1, y) “crosses” too soon or is to the 
left of c,,,,( ) d u an must be shifted to the right by decreasing L and P. 
Similarly if 1 and ,u are too small the curve c(u, &,u) is to the right of 
c,,,,(u) and must be shifted to the left by increasing L and p. 

The second most inner loop is the single eigenvalue problem done twice, 
i.e., for given ,J find ,B, =,~,(il) and ,uu2 =,u&), where p, is the solution to the 
eigenvalue problem on (a,/3) with m crossings and ,uz is the solution of the 
eigenvalue problem on (a, y) with j = m + m’ + 1 crossings. This enables us 
to find the points P, and P, in Fig. 3. We assume without loss of generality 
that d,u@,) =pu,(13,) -,ui@,) > 0 and d&J =&J -,~i(&) < 0 have been 
found as in Fig. 3. Choosing 1’ = (A, + 4)/2 we compute 
44’) =A@‘) -P*@‘)* If I44~‘l < E” where E^ is prescribed we are done. 
Otherwise if d,u(1’)d,u(l,) < 0 we set Iz, = 1’ (if LI&‘)LI,u(L,) > 0 we set 
,4= A’) and repeat this process. At each step the interval [A,, A,] is halved. 
This process converges to the desired solution. 

THEOREM 4. The algorithm described above converges to a numerical 
solution c,,,,( ) h h u w ic is an eigenvector of (1) or (2) corresponding to the 
double eigenvalue (A,&)) found above. The numerical solution c,,,,(u) is 
generated by (9) and satisfies the convergence criteria given by (7). 
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V. A NUMERICAL EXAMPLE 

In this section we consider the numerical example described in [I], 
namely, 

xN + (A + ,u cos t + e’)x = 0, x(0)=x(2)= x(4)= 0 (1’) 

H(x; Iz, p) = j; (X’Z - e’x’) dt - I. 
I 

4 x2 dt 
0 

- p j; (cos t) x2 dt. (2’) 

That is, a = 0, JI = 2, y = 4 ; p(t) = 1, l(t) = -et, q(t) s 1, r(t) = cos t. Note 
that r(t) > 0 is not satisfied on [0,4]. To correct this “deficiency” and to 
obtain (only) positive values of “A and $’ for convenience we rewrite (1’) as 

and 

xN + [(A - ,u + 60) + ,a( 1 + cos t) + (e’ - 60)1x = 0 (1”) 

A(x;ii,p)= 4[xf2+(60-et)x2]dt 
I 0 

-1 4x2dt-/Tj4(1+cost)x2dt, 
I (2’7 

0 0 

where I= L - ~1 + 60, ,C = ,L Note that H(x ; 0,O) is positive definite as is 
fl(x ; 1, p) for I< 0 and ,U < 0. The procedure described in Section IV yields 
1, ,E and hence Iz = I+ ,LI - 60, ,U = p with the same eigenvector solution. 

The table below gives the values of A and p corresponding to m and m’. 

1 

-1 

0 
-10.8034 -4.6203 

17.1705 7.8785 

1 
-4.3164 0.6342 
24.3671 13.6812 

2 4.6384 9.1117 
34.3424 23.0994 

2 

-0.2913 
-0.7143 

4.452 1 
4.9594 

12.5428 
14.6673 
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The values for m = 0, m' = I are given in [I] as ,I = -4.6204, ,U = 7.8787: 
our values are k = -4.6203, ,LL = 7.8785. Additionally our eigenvector for 
these values crosses the axis (using linear interpolation) at tB = 1.99996 and 
fy = 3.999997. For other values of m and m', Ref. [l] only gives answers to 
the nearest hundreds. We agree with their answers in all cases. 
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