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A ROUTING ALGORITHM FOR THREE STAGE 
REARRANGEABLE CLOS NETWORKS 

Ralph W. Wilkerson 

Department of Computer Science 
University of Missouri-Rolla 

Rolla, MO 65401 

1. INTRODUCTION, 

In [l] a deterministic routing algorithm for 
rearrangeable nonblocking interconnection networks 

using ZtxZt switching elements was presented using 
graph representations of a permutation. However, 
in order to obtain the required connections for 
permutations where the required connections are of 
arbitrary size, a backtracking technique was ap- 
plied. In this paper, a heuristic algorithm will 
be introduced that obtains the connections for 
switches of arbitrary size with less use of back- 
tracking. Furthermore, the algorithm will be ap- 
plied to three stage rearrangeable Clos networks. 
The algorithm depends heavily upon some basic theo- 
rems about systems of distinct representatives 
[2,31. 

2. SIMULTANEOUS REPRESENTATIVES. 

We begin this section by stating the famous the- 
orem of Phillip Hall concerning systems of distinct 
representatives. 

THEOREM 1. Let K be a finite set of indices, K 
= {l,Z,...,n). For each k in K, let Sk be a subset 

of a set S. A necessary and sufficient condition 
for the existence of distinct representatives xk, k 

= l,... ,n, xk in S k, 'k Px j' when k f j is Condition 

c: For every t = l,..., n and choice of t distinct 
indices k l,...,kt, the subsets S kl, . . ,Skt contain 

between them at least t distinct elements. 

Slepian and Duguid [3] used this theorem to ar- 
rive at necessary and sufficient conditions in order 
for a three stage Clos network to be rearrangeable 
nonblocking. As an another immediate consequence 
of Hall's theorem is the following theorem on si- 
multaneous representatives. It is this result which 
we will apply to obtain an algorithm for establish- 
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ing the interconnections in the three stage Clos 
networks. 

THEOREM 2. If a set S is divided into a finite 
number of subsets in two ways, S = A1+A2+...+A = 

n 
BI+B2+...+Bn, and no k of the A's are contained in 

fewer than k of the B's for each k = l,...,n, there 
will exist elements x l'...,Xn that are simultane- 

ously representatives of the A's and the B's. 

While the above theorem is essentially an exist- 
ence theorem, the proof however is constructive, and 
by directly placing our problem in the context of 
the proof of this theorem, we can arrive at the al- 
gorithm we want. We begin by letting P be a permu- 
tation of the integers l,Z,...,mn, n I m and define 
a set S to consist of the mn ordered pairs (i,P(i)) 
where P(i) is the image of i under P. Now decompose 
S into two collections of m sets (indexed by k = 
1 ,-*., m) as follows: 

AkO = ((j,P(j)) 1 (k-l)n+l < j I kn) 

BkO = {(j,P(j)) 1 ((k-l)+1 5 P(j) I kn) 

Clearly, AIO+...+AmO = BIO+...+BmO and further- 

more the A's and the B's are respectively pairwise 
disjoint since P is a permutation. Hence we can 
apply Theorem 2. To determine such a collection 

(xkO) of simultaneous representatives, define a 

collection of sets (Sk01 where each Sk0 is the set 

of all indices j such that the intersection of A 
k0 

and B 
j0 

is nonempty. The collection {Sko) satisfies 

Condition C of Hall's theorem and let j,,...,j be 

a system of distinct representatives for the (SLo). 3 
Thus by choosing xkO such that xkO is in the 

intersection of AkO and Bjko, we obtain a system of 

simultaneous representatives of the A's and B's. 

It should be noted that if we delete xkO from AkO 

and B 
j,O 

and denote these reduced sets of A's and 

B's by {Akl) and CBkl} then the above process can 

be applied again. As before the solution exists due 
to Theorem 2 and we can find simultaneous represen- 
tatives fxkl) for the sets (Akl) and {Bkl}. This 
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process can be repeated a total of n times at which 
time all the reduced sets become empty. This fact 
is important in determining the interconnections in 
the three stage Clos network. 

To illustrate the above process, let us consider 
the following example for m = n = 3 and P = (1 3)(4 
5 7)(6 9 8). 

*lo = {(1,3),(2,2),(3,1)1 

*20 = {(4,5),(5,7),(6,9)) 

*30 = {(7,4),(8,6),(9,8)1 

B1O = f(1,3),(2,2),(3,1)1 

B20 = ((4,5),(7,4),(8,6)) 

B30 = iG,7),(6,9),@,8)) 

slo = (11 

s20 = (2,s) 

s30 = t2,3) 

A system of distinct representatives for the 

jl = 1, j, = 2, and j, = 3. Now choose xl0 = 

x2o = (4,5), and x3o = (9,8) as a system of 

taneous distinct representatives. 

S's is 
(1,3), 

simul- 

3. AN ALGORITHM FOR FINDING REPRESEN- 
TATIVES. 

In this section we will describe an algorithm 
for finding a system of distinct representatives for 
the S sets of the previous section with less back- 
tracking than the algorithm of [l]. 

ALGORITHM S-D-R 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Step 8. 

With 

Determine the A and B sets for a permuta- 
tion P. 
Determine the S sets corresponding to the 
A and B sets. 
Repeat thru Step 8 until each S set has a 
representative. 
For each value of k = l,...,m count the 
number of S sets with no representative 
which contain K. 
Let Min k be the value of k whose count 
is a minimum and greater than zero. (if 
zero, then backtrack). 
Find the S set of smallest cardinality 
which contains Min k. 
Set the value Min-c as the representative 
for the S set of Step 6. 
Mark deleted the value Min-k from all S 
Sets which contain it. 

no backtracking the above algorithm has a 

running time of O(m2) and when m = n the running time 
is linear in the length of the permutation P. 

The selection of the smallest S set containing 
the minimum element is essential to the algorithm 
as the following example illustrates. 

30 = (5,4) 

s20 = (1,3,4) 

s30 = (3,4) 

s40 = Cl,21 

s50 = 12,s) 

If we select 5 as the representative for Slo and then 

select 2 as the representative for S40 instead of 

for SSO' we force Sso to be empty before a repre- 

sentative has been selected for this S set. 

4. APPLICATION TO THREE STAGE 
REARRANGEABLE CLOS NETWORKS 

The technique introduced in the previous section 
can be readily applied to the process of establish- 
ing the interconnection network in a three stage 
rearrangeable Clos network. A network is called 
rearrangeable nonblocking if it can perform all 
possible connections between inputs and outputs by 
rearranging its existing connections so that a con- 
nection path for a new input-output pair can always 
be established [3]. We will be considering networks 
where the number of inputs equal mn and the switch- 
ing elements are of size nxn. 

Let P be an arbitrary permutation on the mn in- 
tegers 1,2,...,mn, n 5 m, and then form the two 
collections of sets (AkD} and (Bko) as described 

above. Using the Algorithm S D R, find the system -- 
of simultaneous distinct representatives for {Ako) 

and (BkO) and label them a . 0 These permutation 

pairs will form the set of connections for the first 
intermediate switch a0 of size mxm in the three 

stage Clos network. Now delete the system of si- 
multaneous distinct representatives from the sets 
they represent in {Ako) and {Bko) to form two new 

classes of sets {Akl) and {Bkl}. Again find the 

system of simultaneous distinct representatives for 
the classes of sets {Akl} and {Bkl) and these will 

form the interconnections for the intermediate 
switch labeled a2 in the Clos network. This process 

can be continued to find systems. of simultaneous 
distinct representatives for the sets {Akj) and 

(B .) 
kJ 

for j I n - 1. Thus all the interconnections 

for the intermediate switches ao,...,an-1 have been 

established. 

It is important to observe that this method al- 
lows us to completely determine the interconnections 
for a given intermediate switch. Furthermore, once 
the interconnections for a switch are found, they 
are not affected by what occurs at some later point 
in the algorithm. To illustrate this technique, 
consider the example of [l] where m = n = 5 and 
P = (1 25 17 13 14 5 24 12) (2 16 9 22 4 6 8 3 23 
18 7 15 11). 
The A and B sets are as follows: 

*10 = {(1,25),(2,16),(3,23),(4,6),(5,24)) 

A20 = ((6,8),(7,15),(8,3),(9,22),(10,10)~ 

*30 = ((11,2),(12,1>,(13,14),(14,5),(15,11)) 

A40 = {(16,9>,(17,13>,(18,7),(19,19),(20,20)} 

*50 = {(21,21),(22,4),(23,18),(24,12),(25,17)} 
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B1O = {(12,1),(11,2),(S,3),(22,4),(14,5)? 

B20 = ~(4,6),(18,7),~6,8),(16,9),(10,10)) 

B30 = ~(15,~1),(24,12),(17,13),(13,14),(7,15)~ 

B40 = C(2,16),(25,17>,(23,18),(19,19),(20,20)) 

B50 = {(21,21),(9,22>,(3,23),(5,24),(1,25)} 

We now give the sequence of S sets which will be 
formed as part of the solution. The digit and or- 
dered pair following each S set will be the repre- 
sentative for that set and the simultaneous 
representative that was selected to represent the 
corresponding A and B sets. The reduced A and B sets 
are not shown since they can be found from the in- 
formation given below. 

slo = {5,4,2) 
S 20 = {2,3,1,5) 

s30 = {1,3] 

s40 = {2,3,4) 

s50 = {5,1,4,31 

Sll = {5,4] 

s21 = {2,1,5) 

s31 = {1,3] 

s41 = {2,3,4) 

s51 = {1,4,31 

s12 = r4,51 

s22 = {1,5,2] 

'32 = 13,1] 

'42 = (2,3) 

'52 = {1,4) 

S13 = {4,5) 

'23 = t5,2) 

s33 = {3,1] 

s43 = {3,2) 

s53 = (1,4) 

s14 = 141 

'24 = {5] 

s34 = 131 

s44 = (21 

s54 = II? 

2 

3 

1 

4 

5 

5 

2 

1 

3 

4 

5 

1 

3 

2 

4 

5 

2 

1 

3 

4 

4 

5 

3 

2 

1 

(436) 

(7315) 

(11,2) 
(19,19> 

(21,211 

(1,25) 

(698) 
(12,1) 
(20,201 
(24,121 

(~$23) 

(833) 

(15311) 

(16,9) 

(23,181 

(5,241 

(10,101 

(14,5) 

(17313) 

(25,171 

(2,161 
(9,221 

(13914) 

(18,7) 

(22,4) 

The Clos network with these interconnections is 
illustrated below. 

It should be noticed that this method finds all 
the interconnections for each switch and any back- 
tracking only affects the current switch settings 
which are being calculated. However, the method of 
[l] does not determine the settings until the entire 
connection array has been put into its proper form 
with any backtracking possibly affecting earlier 
settings. In the above example, no backtracking was 
required in any intermediate switch calculation us- 
ing our technique. 
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