
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

01 Jan 1990 

Role of Term Symmetry in E-Completion Procedures Role of Term Symmetry in E-Completion Procedures 

Ralph W. Wilkerson 
Missouri University of Science and Technology, ralphw@mst.edu 

Blayne E. Mayfield 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
R. W. Wilkerson and B. E. Mayfield, "Role of Term Symmetry in E-Completion Procedures," ACM Eighteenth 
Annual Computer Science Conference (CSC90), pp. 134 - 139, Association for Computing Machinery, Jan 
1990. 
The definitive version is available at https://doi.org/10.1145/100348.100369 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/100348.100369
mailto:scholarsmine@mst.edu


The Role of Term Symmetry in 
E-completion Procedures 

Ralph W. Wiierson 
Department of Computer Science 

University of Missouri-Rolla 
Rolla, ;MO 65401 

Blayne E. Mayheld 
Department of Computer Science 

Oklahoma State University 
Stillwater, OK 74078 

Abstract 

A major portion of the work and time involved in 
completing an incomplete set of reductions using an 
E-completion procedure such as the one described by Knuth 
and Bendix or its extension to associative-commutative 
equational theories as described by Peterson and Stickel is 
spent calculating critical pairs and subsequently testing them 
for confluence and coherence. A pruning technique which 
removes from consideration those critical pairs that 
represent redundant or superfluous information can make 
a marked difference in the run time and efficiency of an 
E-completion procedure to which it is applied. In this paper, 
a technique is proposed for removing critical pairs from 
consideration at various points before, during, or after their 
formation. This method is based on the property of term 
symmetry, which will be defined and explored with respect 
to E-unification and E-completion procedures. Informally, 
term symmetry exists between two terms when one can be 
transformed into the other through variable renaming. By 
identifying and eliminating various forms of term symmetry 
which arise bet\veen syntactic structures such as, reductions, 
critical pairs, subterms, and unifiers, it is possible to derive 
an E-completion procedure that produces the same results 
without processing these symmetric redundancies. 

1 Introduction 

The concept of term symmetry is based on the 
realization that variable names used in a term are just 
symbols acting as placeholders for actual variables, and 
mapping those symbols to a different set of symbols 
will not change any aspect of the term, other than the 
variable names. This is the same idea that permits 
variables to be renamed in order to assure that terms 
involved in unification are variable-name disjoint. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy other- 
wise , or to republish, requires a fee and/or specific permission. 

0 1990 ACM 089791-348-5/90/0002/0134 $1.50 134 

Throughout let E be an equational theory. The 
congruence relation on terms is denoted by s = t. The 
results of this paper were achieved thro$gh the 
development of of a flexible E-unification algorithm 
which is able to process pairs of terms which may 
contain any combination of null-E (null equational 
theory), C (Commutative), AC 
(Associative-Commutative), and AC1 
(Associative-Commutative with Identity) operators 
[I’&], [.Sr851. T erms are represented as trees 
following the notation used by [F’S8 l] or [ HO80]. 

Definition 1.1: A set of variable renaming 
substitutions or a variable renaming is a set of 
substitutions, 0 = {x1 +-yl, . . . , x, +yn), which is a 
one-to-one, onto mapping from the set of variables 
{Xl, ... , XJ to the set of variables Qi, . . . , y,). Any 
substitution , x, +-yi, such that x, =yi is an identity 
substitution and may be dropped from 0. The 
identify variable renaming is the empty set, (1. The 
application of a variable renaming, Q, to a syntactic 
entity, t, is written as P. 

Definition 1.2: Two terms, s and t, are symmetric by 
u, written as s z 
variable 

I t, if there exists a (possibly empty) 
renaming from vars(s) 

(i.e., the set of all variables occurring in s) to vars(t), 
u = (Xl t Yl, .*. I &I + V”}, and its inverse, 
u-1 = Ql +- Xl, ... , yn + &), such that P = t and 
s = p-1. Such a variable renaming is said To be a 
syEmmetry of s and t. Two terms for which no 
symmetry exists are asymmetric. Note that if G is 
empty then s = t. Also, note that ifs and t are variable 
disjoint, as i: usually the case, then 0 is a match 
between s and t. 

Example 1.1: Let + be a commutative operator (C, 
AC, or ACI). The two terms s = + (xl, x1, x2, x3) and 
t = + (yi, y2, ~2, y$ are symmetric by the variable 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F100348.100369&domain=pdf&date_stamp=1990-01-01


renamings cJ1= (Xl +y2, X2 +y1, X3 +y3) and 
=2 = (Xl + Y2, X2 +- y3, X3 +y1). 

Another form of term symmetry that is of 
interest is the symmetry which can exist within a single 
term. Symmetry within a term is a consequence of the 
presence of commutative operators. 

Definition 1.3: A term, s, is se/f-symmetric by 
6, written as s zz s, if there exists a variable renaming 
from vars(s) to v&s(s), 0 = (x1 c yI, . . . , x,, c y,), such 
that s0 = s. Such a variable renaming is said to be a 
self-.symEmetry of term s. 

All terms are self-symmetric by the identity 
variable renaming. Since self-symmetry is a 
consequence of commutativity, a self-symmetry other 
than that described by the identity variable renaming 
can only exist if the term contains one or more 
commutative operators. 

Example 1.2: Let + be a commutative operator (C, 
AC, or ACI). Then the term s = + (xl, xl, x2, x3, x,J 
is self-symmetric by the variable renamings 
01 = {x2 + X3, X3 +--x2}, 

02 = (x2 + x4, X4 f-- x2}, 

Q3= (X36X4, X4+-X3}, 

04 = (x2 + X3, X3 +- x4, x4 + x2), 

Us= (X2+X4, X4+X3, X3+X2). 

2 Term Symmetry in E-Unification and 
E-completion 

There are four types of term symmetry which 
may be observed in an E-completion procedure: 
symmetric reductions in the set of reductions being 
completed by the procedure, symmetric critical pairs, 
symmetric subterms used in the formation of critical 
pairs, and symmetric unifiers produced during the 
formation of critical pairs. The nature of term 
symmetry suggests that these symmetric syntactic 
structures may be redundant, hence it should be 
possible to derive from the Peterson-Stickel [~~81] 
E-completion procedure an asymmetric E-completion 
procedure that produces the same results without 
processing symmetric redundancies. For a more 
general approach to E-completion see [JK86]. 

In this section we will outline the fundamental 
ideas necessary for the development of an asymmetric 
E-completion procedure. Due to space limitations, we 
provide the basic results without proofs, and refer the 
reader to [Ma881 for these proofs and a more detailed 
analysis. In order to accomplish this, two points must 
be proven: first, that symmetry between syntactic 

structures, such as reductions, critical pairs, subterms, 
and unifiers, can be detected, and second, that the 
processing of a set of pairwise symmetric syntactic 
structures can be replaced by the processing of any one 
member of the set without changing the results 
produced by the E-completion procedure. 

One method for detecting symmetries between 
syntactic structures, though ineflicient, is to generate 
all matches that exist between the structures. If one 
of the matches is a variable renaming, there exists a 
symmetry between the structures. A more efficient 
algorithm for symmetry detection will be presented in 
the full paper. 

2.1 Symmetric Reductions 

A reduction, ,J --) p, is an ordered pair of the 
terms R and p. Two reductions, 1, 3 pl and Rz -+ p 1, 
are symmetric reductions if there exists a variable 
renaming, G, such that L, z A2 and pl z pz. The 
redundancies introduced &to the E-:ompletion 
procedure by reduction symmetry are removed by the 
process of inter-reduction simplification. 

Inter-reduction simplification is an integral part 
of the Peterson-Stickel E-completion procedure. 
When a new reduction is added to a set of reductions 
being completed, the two component terms of each 
reduction in the set are reduced to terminal form using 
the other reductions in the set. Any reduction reduced 
to an identity is discarded to preserve the finite 
termination property. If it reduces to an identity, then 
any information carried by the reduction must be 
embodied within the remainder of the set. 

To demonstrate how this takes place, consider a 
member, Jr --t pl, of the set of reductions that is 
symmetric by a variable renaming, 0, to a newly added 
reduction, ,12 + p2. By the definition of reduction 
symmetry, I, z J2, or AI = 12. The variable renaming 
is, therefore, i term m&h between 1, and J2, so 
A, + pl can be used to rewrite ;I2 --, pz into a new 
reduction, o(pl) -+ p2. But another consequence of the 
symmetry of the two reductions by G is that ply ~2, 
or pf = +I) = ~2. Therefore, the new reduction is 
reduced to an’identity and is discarded. Thus, the 
removal of reduction symmetry already takes place in 
the E-completion procedure as part of the 
inter-reduction simplification process. 

Example 2.1.1 Let the set of reductions at some point 
in an execution of the E-completion procedure be the 
reductions describing an Abelian group, 

?-I: x + ( -x) --, 0, 

135 



r2: - ( -x) -+ x, and 
r3: - (x +y) -+ ( -x) + ( -y), 

such that + is an AC1 operator and - is a null-E 
operator. Let 

r4:y+(--y)-+O 
be a reduction newly added to the set of reductions. 
It is the case that rl z r4 by Q = {x +- y). Thus 
4x + ( -4) =y + ( -u), ‘and the left-hand side of r4 
can be repIaced by a(O), or 0. The reduced form of r4 
is 0 -+ 0, which is an identity and must be removed 
from the set of reductions. 

2.2 Symmetric Critical Pairs 

A critical pair, < s, t > , is an unordered pair of 
the terms s and t which are reduced to terminal form 
and then compared as part of the E-completion 
process. Two critical pairs, < sl, tl > and < s2, t2 > , 
are symmetric critical pairs, written as 
< $1, t1 > s <s,, t,>, if there exists a variable 
renaming, g, such that sl =s2 and tl zt2, or sl zt2 an d 
~1 zs2. Without loss of ge;erality, we*shall assu”me the 
former for the duration of this discussion. 

Critical pair symmetry is the lowest level of term 
symmetry in the E-completion procedure, that is, most 
term symmetries between reductions, subterms used in 
forming critical pairs, or unifiers will ultimately show 
up in the form of symmetric critical pairs. Removal 
of the other three types of term symmetry will result in 
the elimination of most, but not all, symmetric critical 
pairs. 

In order to eradicate the remaining symmetric 
critical pairs, and to lay a foundation for use in proving 
that symmetric subterms and unifiers can be removed, 
it must be shown that discarding symmetric critical 
pairs will not change the results of the E-completion 
process. We shall begin by establishing some basic 
facts about the terminal forms of terms and critical 
pairs. Here, tlR denotes the result of reducing t by R 
to an irreducible or terminal form (i.e. a term which 
cannot be rewritten by any reduction in the set of 
reductions R). 

Lemma 2.2.1: If s and c are terms and R is a set of 
reductions such that szt then 
(Vsl”) (3lR) sl” 5 tJR. 

0 ’ 

Lemma 2.2.2: If cpI and cp2 are critical pairs such that 
CP1 2 cn, then (VcplJR) (3cpzJR) cplJR T cpllR. 

If two symmetric critical pairs truly represent 
redundant information, then it will be possible to prove 
that either one of them is sufficient for the proper 
operation of the E-completion procedure. 

Lemma 2.2.3: If cpt and cpr are critical pairs such that 
CPl z cm, then either cpl or cm may be discarded 
without changing the results produced by the 
E-completion procedure. 

This result may be generalized to deal with a set 
of symmetric reductions, rather than just a pair. 

Theorem 2.2.1: A set of pair-wise symmetric critical 
pairs encountered during the E-completion process 
may be replaced by any single member of that set 
without affecting the results of the process. 

2.3 Symmetric Unifiers 

As shown in the previous section, symmetric 
critical pairs may be discarded without affecting the 
results of the E-completion procedure. However, 
creating critical pairs which are then thrown out is a 
waste of processing time: Unifiers must be generated 
and applied to form these unneeded critical pairs. A 
better approach is to search for symmetric 
redundancies and to remove them from the 
components from which the critical pairs are built 
before much processing effort has been expended. One 
of the components that can be examined for term 
symmetry is the unifier associated with each critical 
pair. We would like to show that discarding symmetric 
unifiers has no effect on the results of the E-completion 
procedure. In order to prove this, it must be shown 
that symmetric unifiers produce symmetric critical 
pCi.b. 

Definition 2.3.1: Let s and s’ be terms. Assume, 
without loss of generality, that s and s’ are variable 
disjoint. Two unifiers, 13,, 8, E csu(s, s’), are 
symmetric unifiers, written as ~7~ z e2, if there exists a 
variable renaming, 6, such that & = 82, and, for all 
terms, t, to which 8, and e2 will be applied, t z t and (I 
h(t) 2e2(f). 

The definition of symmetric unifiers is more 
complicated than those of symmetric critical pairs and 
symmetric terms. In fact, the fmal condition of the 
deftition--that is, the requirement that, for all terms t 
to which the unifiers will be applied, 
B,(t) 5 e2(z)--seems to be self-defeating: Checking this 
condi%on for a given value of o requires the application 
of & and B2 to a term, which is exactly the process that 
detecting and discarding symmetric unifiers is supposed 
to eliminate. However, there is a way to show that any 
variable renaming that meets the first two conditions 
of the definition will meet the third condition. The 
following theorem is obtained. 

136 



Theorem 2.3.1: Let ,I, + pr and & + p2 be reductions. 
A pairwise symmetric subset of csu(Al/i, A,), for 
i E sdom(A$, encountered during the E-completion 
process may be replaced by any single member of that 
set without affecting the results of the process. 

2.4 Symmetric Subterms 

Another component of critical pair formation 
that can be examined for term symmetry is the subterm 
chosen from the left-hand side of a reduction. It is 
easily shown that if s and t are terms and r = A-+ p is 
a reduction, such that s z t and s + s’, then t + t’ such 
that s’ = t’. Since 0 is merely a kiable remking, it 
followsOthat there must exist an i E dam(s) and a 
j E dam(t) such that (s/i)” = t/j, s/i matches 1 by 0i, to 
matches ;I by f?j,E S’ = s[i + Oi(p)]g and 
t’ = to + ej(f3)]. 

Now consider the case of s =: s, such that 
(s/+‘= s/j and i #j, for some i, j E horn(s). If s/i 
match<s ;1 by 6Ji and s/j matches R by ej, then is it also 
true that s[i +- fJ&)] z sb + O,(p)]? If s/i and s/j are 
rooted at different dep\hs in the tree representation of 
s, the two subterms cannot be considered symmetric. 
They are also not symmetric if they are sibling 
operands of a common non-commutative operator. If 
s/i and s/j are in distinct subtrees of J, then they can 
only be symmetric if the subtrees in which they appear 
are symmetric. Thus, the determination of symmetry 
is pushed upward in the tree to the level at which the 
two subtrees have a common parent node, and once 
again becomes a matter of determining the symmetry 
of sibling operands. This leads to a definition of 
symmetric subterms. 

Definition 2.4.1: Let s be a term. Two subterms, s/i 
and s/j, are symmetric subterms of s, written as 
s/i z s/j, if there exists a variable renaming 0 such that 
(s/G = sJj, s z s, and s/i and s/j are sibling operands 
of a c&nmonOcommutative (C, AC, or ACI) operator. 

This deftition must be modified slightly to be 
used with subterms of the left-hand side of a reduction. 
If r = 1 + p is a reduction, then two subterms A/i and 
A/j are symmetric by 0 if (J/q0 = 1/j, r =: r, and 2/i and 
2/j are sibling operators of a ~omrno~ commutative 
operator. The reason that r 7 r is required in place of 
1. : ;i is that we want to show that symmetric subterms 
of 1 produce symmetric critical pairs, and both R. and 
p are used in forming critical pairs. Hence, we obtain 
the following theorem. 

Theorem 2.4.1: Let I, -+ p1 and 1, + pz be reductions. 
The processing of a set of pairwise symmetric subterms 

of 1, encountered during the E-completion process 
may be replaced by that of any single member of the 
set without affecting the results of the process. 

2.5 A Term Symmetry Decision Algorithm 

The main algorithm deveIoped in this section is 
a decision procedure for the symmetry of a pair of 
terms composed of commutative operators, null-E 
operators, constants, and variables. It can also be used 
to decide the symmetry of terms involving AC and 
AC1 operators if those terms have been simplified to 
normal form, that is, the terms have been flattened and 
have had all identities removed through simplification. 
The full details and psuedocode for the algorithms 
which follow can be found in [Ma88]. 

The term symmetry decision algorithm is similar 
in concept to the tree isomorphism decision algorithm 
presented by Aho, Hopcroft, and Ullman [AH74]. 
Their algorithm ignores all node labels in its operation. 
Unfortunately, this fact makes it inappropriate for use 
in deciding term symmetry, because for terms to be 
symmetric, constants must map onto identical 
constants and variables must map onto variables. An 
extension of the tree isomorphism decision algorithm 
is also suggested by Aho et al. to handle node labels. 
However, it, too, cannot be used to decide term 
symmetry, since the extension requires that variables 
map onto identical variables. In addition, neither of 
these algorithms consider the possible presence of 
null-E operators along with the commutative operators 
in the tree. 

We briefly describe an algorithm Symmetric? 
which takes two terms, tr and t2, and returns a 
symmetry, Q, if the terms are symmetric. Otherwise, 
it returns a value of FALSE. The actual 
implementation of this algorithm can be made more 
efficient by the application of constraints. For 
example, comparing the sizes of vars(Q and vars(t2) 
before calling Build-Term-Bag could save unnecessary 
processing, since a difference in these sizes means that 
tl and t2 are definitely not symmetric. 

The terms input to Symmetric? are passed 
successively into the function BuiId-Term-Bag. This 
function constructs a bag tb, or multiset, of terms from 
its input parameter, Term. The term bag contains 
exactly one new term for each distinct variable, 
x, E vars(Term). This new term is a copy of Term in 
which all occurrences of xi have been replaced by the 
constant cl, and all other variable occurrences have 
been replaced by the constant c2. These are nau 
constants, that is, CI and c2 do not appear in tl or t2. 

137 



Associated with each new term is Xi, the variable that 
was replaced by cl. If Term is ground, that is, contains 
no variables, then the term bag returned is empty. 

Once the term bags for t, and tz have been 
constructed, they are compared to decide whether or 
not the two input terms are symmetric. If the term 
bags are both empty, that is, both tl and t2 are ground, 
then tl and t2 are each sorted with respect to their 
commutative operators, that is, only the operands of 
commutative operators are sorted. Then the sorted 
terms are compared. If they are equal, then tl and t2 
are symmetric by the identity symmetry, 0 = (1. If 
unequal, the two terms are not symmetric, and a value 
of FALSE is returned. 

On the other hand, if either of the term bags is 
non-empty, then each term in both term bags is sorted 
with respect to commutativity, and then each term bag 
is sorted. If the two sorted term bags are equal, then 
there is a one-to-one, onto mapping from each term in 
tbl to an equivalent term in tb. A term bag contains 
exactly one term for each variable in the term from 
which it was constructed, and each variable is 
associated with exactly one member of its term bag. 
Thus, the mapping from tbl to t62 can, and is, used to 
construct a one-to-one, onto mapping from vars(t,) to 
vars(t2). This mapping is returned as a symmetry of tl 
and t2. If the two sorted term bags are not equal, then 
tl and t2 are not symmetric, and a value of FALSE is 
returned. 

It can be shown that Symmetric?(tI, r2) is an 
algorithm. There are a finite number of distinct 
variables in each of tl and t2, thus Build-Term-Bag will 
halt for each. Also, since Symmetric? contains no 
loops, it will halt. The worst-case time complexity for 
this algorithm is O(n210g n). 

Theorem 6.4: The function Symmetric?(tl, t2) returns 
a symmetry, 6, iff tl z t2. c 

By extending the basic term symmetry decision 
algorithm, we have developed algorithms which will 
prune the complete set of unifiers to an asymmetric 
complete set of unifiers and prune the strict domain of 
a term to an asymmetric strict domain. 

3 Implementation Results 

The ideas described in this paper have been 
implemented in Common Lisp and run on a variety 
of machines. Test runs were made for four cases: an 
abelian group, a commutative ring with identity, a 
group homomorphism, and a distributive lattice with 
identity using AC and AC1 unification. There were 

six test runs in each group, based on different 
combinations of the levels of term symmetry removed 
from processing: 

level l--symmetric reductions, 
levels 1 and 2--symmetric reductions and 

subterms, 
levels 1 and 3--symmetric reductions and unifiers, 
levels 1 and 4--symmetric reductions and critical 

p*s, 
levels 1, 2, and 3, and 
levels 1, 2, 3, and 4. 

The removal of symmetric reductions was included in 
every test since, as discussed earlier, it is an integral part 
of the standard Peterson-Stickel E-completion 
procedure. 

The results of the AC and AC1 test groups for 
the abelian group, commutative ring with identity, 
group homomorphism, and distributive lattice with 
identity are similar. In each case, removing symmetric 
subterms and/or symmetric unifiers (levels 1 and 2, 
levels 1 and 3, and levels 1, 2, and 3) did not have a 
great impact on the number of critical pairs produced; 
that is, there were not many symmetric subterms or 
unifiers found. The total run times of these three tests 
are almost identical to that of the standard 
E-completion procedure. Thus, the run time saved by 
removing these symmetric redundancies was evidently 
consumed by the process of checking every subterm 
and/or unifier for symmetry. 

The removal of symmetric critical pairs (levels 1 
and 4, and levels 1, 2, 3, and 4) was, however, a 
different matter. The elimination of this type of term 
symmetry resulted in a significant reduction in the 
number of critical pairs (13% to 28%) and a 
corresponding reduction in the total run time (14% to 
21%). The tests in which all four types of term 
symmetry were eliminated resulted in the same or fewer 
critical pairs retained than did the removal of just 
symmetric reductions and critical pairs, but once again, 
the overhead of removing symmetric subterms and 
unifiers destroyed any potential savings in total run 
time. 

As was stated earlier, the goal of this research was 
to develop a method of significantly reducing the 
processing needed to complete an incomplete set of 
reductions. We have been modestly successful in 
reaching this goal. The savings in processing time 
resulting from the removal of term symmetries were 
not as significant as we had hoped for. We had 
expected a sizable percentage of unifiers to be 
symmetric, but this was not so. In fact, the removal 
of symmetric unifiers or symmetric subterms generally 

138 



resulted in a slower run time than with the symmetries 
left intact. The best method, in general, turned out to 
be the removal of symmetric critical pairs after their 
formation. 

[AH741 

[CLSS] 

[Fa84] 

[HOSO] 

[ ~~781 

[ ~~861 

C~~86-l 

CKB701 

[La871 

[LS761 

References 

Aho, A., Hopcroft, J., and Ullman, J. 
(1974). The Design and Analysis of 
Computer Algorithms, Addison-Wesley 
Publishing Company, Reading, MA. 
Christian, J., and Lincoln, P. (1988) 
“Adventures in associative-commutative 
unification.” Technical Report 
ACA-ST-275-87, Microelectronics and 
Computer Technology Corp., Austin, TX. 
Fages, F. (1984). “Associative-commutative 
unification.” Proceedings of the Seventh 
International Conference on Automated 
Deduction, R. Shostak, ed., Lecture Notes 
in Computer Science, volume 170, 
Springer-Verlag, Berlin, West Germany, pp. 
194-208. 
Huet, G., and Oppen, D. (1980) “Equations 
and rewrite rules: a survey.” Perspectives 
and Open Problems, R. Book, ed., 
Academic Press, Orlando, FL. 
Huet, G. ( 1978). “An algorithm to generate 
the basis of solutions to homogeneous linear 
diophantine equations.” information 
Processing Letters, volume 7, pp. 144-147. 
Jouannaud, J.-P., and Kirchner, H. (1986). 
“Completion of a set of ruIes modulo a set 
of equations.” SIAM Journal of Computing, 
volume 15, pp. 11551194. 
Kapur, D., Musser, D., and Narendran, P. 
(1986). “Only prime superpositions need be 
considered in the Knuth-Bendix completion 
procedure.” Technical Report, General 
Electric Research and Development Center, 
Schenectady, NY. 
Knuth, D., and Bendix, P. (1970). “Simple 
word problems in universal algebras.” 
Computational Problems in Abstract 
Algebras, J. Leech, ed., Pergamon Press, 
Oxford, England, pp. 263-297. 
Lankford, D. (1987). “Non-negative basis 
algorithms for linear equations with integer 
coefficients.” Technical Report, Louisiana 
Tech University, Ruston, LA. 
Livesey, M., and Siekmann, J. (1976). 
“Unification of A+ C-terms (bags) and 
A + C + I-terms (sets).” Technical Report, 
Universitat Karlsruhe, Karlsruhe, West 
Germany. 

[Ma881 

[PS81] 

CR0651 

[Si79J 

[St751 

[ Yes.51 

Mayfield, B. (1988). ‘The role fo term 
symmetry in E-unification and 
E-completion.” Ph. D. dissertation, 
University of Missouri-RoIIa, RoIla, MO. 
Peterson, G., and Stickel, M. (1981) 
“Complete sets of reductions for some 
equational theories.” Journal of the 
Association for Computing Machinery, 
volume 28, pp. 233-264. 
Robinson, J.A. (1965). “A 
machine-oriented logic based on the 
resolution principle.” Journal of the 
Association for Computing Machinery, 
volume 12, pp. 23-41. 
Siekmann, J. (1979). “Matching under 
commutativity.” Symbolic and Algebraic 
Computation, Springer-Verlag, Berlin, West 
Germany, pp. 531-545. 
Stickel, M. ( 1975). “A complete unification 
algorithm for associative-commutative 
functions.” Proceedings of the 4th 
International Joint Conference on Artificial 
Intelligence, Tbilisi, pp. 7 1- 82. 
Yelick, K. (1985). “Combining unification 
algorithms for confined regular equational 
theories.” Conference on Rewriting 
Techniques and Applications, J. 
Jouannaud, ed., Lecture Notes in Computer 
Science, volume 202, Springer-Verlag, 
Berlin, West Germany, pp. 365-380. 

139 


	Role of Term Symmetry in E-Completion Procedures
	Recommended Citation

	tmp.1680286455.pdf.k4MWp

