MISSOURI
E Missouri University of Science and Technology

Scholars' Mine

\(;V%Tkpsuter Science Faculty Research & Creative Computer Science

01 Jan 1992

Experimentation with Proof Methods for Non-Horn Sets

Christopher J. Merz
Missouri University of Science and Technology, merzc@mst.edu

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

b Part of the Computer Sciences Commons

Recommended Citation

C. J. Merz and R. W. Wilkerson, "Experimentation with Proof Methods for Non-Horn Sets," Applied
Computing: Technological Challenges of the 1990's, pp. 530 - 535, Association for Computing Machinery,
Jan 1992.

The definitive version is available at https://doi.org/10.1145/143559.143683

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/143559.143683
mailto:scholarsmine@mst.edu

Check for
Updates

Experimentation with Proof Methods for non-Horn Sets

Chris Merz and Ralph Wilkerson
Department of Computer Science
University of Missouri-Rolla

Abstract

Two resolution proof strategies developed by Peter-
son [4] are implemented by modifying Otter, an exist-
ing automated theorem prover. The methods, Lock-T
refutation and LNL-T refutation, are generalizations
of unit refutation and input resolution, respectively, to
non-Horn sets and represent independent, equivalent
but opposite ways of searching. The algorithms used
are based on a corrected version of the foundational
work. The strategies have been tested on various non-
Horn challenge problems from the Tarskian Geometry
and the Non-Obvious problem, with the results being
in some cases quite favorable when compared to other
resolution techniques.

Introduction

In its purest form resolution is a brute force, semi-
decidable, and combinatorially explosive approach to
antomated theorem proving. Numerous strategies
have been devised to help focus this process, such as
the set of support strategy, input resolution, unit res-
olution, linear resolution, binary resolution, hyperres-
olution, unit-resolvent resolution, and lock resolution.
It is well known that some of these procedures are only
complete for Horn sets, and since many problems can-
not be formulated as Horn sets, an efficient method
for directing the resolution process on non-Horn sets
is needed.

Peterson [4] generalized input resolution and unit res-
olution to apply to non-Horn sets by integrating them
with a specialized lock resolution procedure. The
Lock-T proof method generalizes unit resolution and
is a breadth-first search for the empty clause, while
the LNL-T proof method generalizes input resolution
and is a depth-first search for the empty clause. Peter-
son postulated that these two strategies would work
well together if run in parallel and allowed to share

Parmisgion to copy without fee all or part of this material is
granted pravided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
titte of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
© 1992 ACM 0-89791-502-X/92/0002/0530...$1.50

"important” intermediate results known as lemmas.
The implementation of these methods was done by
modifying the automated theorem prover, Otter, de-
veloped at Argonne National Laboratories by Mc-
Cune [2]. This permitted the use of existing routines
which handled the internal representation, manipula-
tion, and bookkeeping of the clauses. Test problems
from the Tarskian Geometry [5] and the Non-Obvious
problem [3] were used to evaluate algorithm perfor-
mance.

As stated in the introduction, this work is based on
the modification and integration of set of support res-
olution, input resolution, unit resolution, and lock res-
olution. Resolution procedures take as their argument
a set of expressions in a simplified version of predicate
calculus known as clausal form. The symbols, terms,
and atomic sentences of clausal form are the same
as those in ordinary predicate calculus. However, all
logical implications and quantifiers are removed leav-
ing only sets of disjuncted positive or negative literals
called clauses. For example, the predicate calculus
sentence A = B which is equivalent to —A V B has
the clausal form {—A, B}.

Given S, an unsatisfiable set of clauses, a set of support
for S is a set of clauses which if removed from S results
in a satisfiable subset of clauses. A set of support
resolventis one in which at least one parent is selected
from the set of support or a descendant thereof. A
set of support deduction is one in which each derived
clause is a set of support resolvent. A set of support
refutalion is a set of support deduction of the empty
clause .

In input resolution, an input resolvent is one in which
at least one of the two parent clauses is a member
of the initial database. An input deduction is one in
which all derived clauses are input resolvents, and an
input refutation is an input deduction of the empty
clause . In unit resolution, a unit resolvent is one in
which at least one of the parent clauses is a unit clause;
i.e., one containing a single literal. A unit deduction
is one in which all derived clauses are unit resolvents,
and a unil refutation is a unit deduction of the empty
clause .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F143559.143683&domain=pdf&date_stamp=1992-04-01

Lock resolution is described in detail in [1). A literal
is said to be locked if it has been assigned a posi-
tive integer which is then called its lock. A clause
is locked if each of its literals are locked, and a set
of clauses is locked if each clause therein is locked.
A lock resolution is a resolution of locked clauses in
which the literals resolved upon have the minimum
lock in their respective clauses and the literals of the
resolvent inherit the locks they had in the parents.
For example, let C = {A;(z), —Ba(z,y),Ca(y)} and
D = {-As(a), B4(c,z)}, where the subscripts repre-
sent locks. The only possible lock resolvent of C and
D would be {—Bs(a,y), C2(y), By(c,z)}. A lock proof
is one in which all resolvents are lock resolvents. A
lock refutation is a lock proof of the empty clause, {}.

A Horn set is a set of Horn clauses, where a Hom
clause is a clause with at most one positive literal.
Each of the resolution techniques defined above is
complete only for Horn sets. That is, for an unsat-
isfiable set S, a refutation is guaranteed only if § is a
Horn set.

Extending input and unit resolution

This section presents a summary and correction to
Peterson’s [4] foundational work on this subject. The
first step is to generalize unit and input resolution to
apply to Horn sets. The following theorem can be
thought of as a generalization of unit resolution and
states that lock resolution (without any restrictions
on the locking of literals) is complete for Horn sets.

Theorem 1 If S is an unsatisfiable set of locked Horn
clauses, then there exists a refutation of S by lock res-
olution alone (no factoring).

Just as Theorem 1 is a generalization of unit resolu-
tion, Theorem 2 is a generalization of input resolution.

Theorem 2 Suppose S 1s an unsatisfiable sel of
locked Horn clauses in which the lock of any positive
literal is the mintmum lock in ils clause. Then there
ezists a linear tnpul refutation of S with top clause
negalive by lock resolution alone.

Recall that a linear refutation with top clause Cis a
refutation in which one parent of each resolvent, the
center parent, is the result of the previous resolution.
One parent of the first resolvent is C. Since it is de-
sirable to use these strategies without restricting the
clause types, it is necessary to extend Theorems 1 and
2 to non-Horn sets. To build up to this, a few more
terms must be introduced.

In a set S of clauses, a single literal may occur in sev-
eral different places (i.e., in the same clause or in other
clauses); each of these will be called an occurrence of
that literal. In proofs by resolution alone, each literal
L may be traced back through its parent clauses to a
single occurrence of a literal called the ancestor of L.
If T is a set of occurrences of literals in S, a T-literal
is any literal whose ancestor is in T and a T-clause is
any clause composed entirely of T-literals.

A non-Horn set S can also be thought of as a Hornr
set where T is a set of literal occurrences chosen from
the nonunit clauses of S such that the deletion from S
of all the literal occurrences in T changes S into a Horn
set. Any literal in T will be called a T-literal, and any
clause composed entirely of T-literals is a T-clause
or a T-lemma. Using Peterson’s terminology, a lock
negative linear T-lemma (LNL-T) proof of a clause C
is a lock proof of C in which the only lemmas are T-
clauses, and each lemma and C are proved linearly. In
such proofs, the side clauses are either members of S
or earlier proved lemmas, and the center clauses are
composed only of negative literals and T-literals. The
top clause in an LNL-T proof must be negative, and
factoring is performed only on lemmas and only on
literals with the same ancestor and with the lowest
lock in their clause. A lock-T proof of a clause C is
a lock proof of C in which factoring only occurs in
T-clauses and only on literals of smallest lock and of
common ancestery. We now show how to change input
resolution, which is know to be complete for Horn sets,
into a method which is complete for Horny sets. The
method is stated in the following theorem and then
illustrated with an example.

Theorem 3 Suppose S is an unsatisfiable HornT set
which is locked in such a way that the literals of T in
any clause are locked greater than or equal to the other
literals of that clause, and that if a clause contains a
positive literal which is not in T then that literal is
locked less than or equal to the other literals of thal
clause. Then S has an LNL-T refulation.

For example, consider the set of clauses which show
that any number greater than 1 has a prime divisor
[1]. The clauses are listed as sets of literals disjuncted
by the ”|” symbol where the subscripts are locks and
the T-literals are also subscripted with a T. Factoring
will only take place under the conditions laid out for
LNL-T proofs. The set S is:

{Dl(x! :)}

{—D2(t»y)l - D3(y’ z)lDl(z7 z)}
{Pr(z)| Dra(g(z), z)}
{Pi(z)|LT2(, 9(2))}
{Pi(z)|LT2(9(2), z)}

O e Q2 BN =

{Ll(lra)}

{=Ps(z)| — D3(z,a)}

{-Ls(l,z)| — La(z,a)| P1(f(2))}
{-L+(1,z)| - Le(z,a)|Dy(f(2),z)}

0O o -1

It can be seen that S is a Horng set by removing the
T-literals of clauses 3, 4, and 5. One poesible LNL-
T refutation might proceed as follows (with parent
clauses in brackets). Note the derivation of each of
the lemmas (clauses 11, 14, and 15) and the LNL-T
proof of the empty clause.

10 [71] {=Ps(a)}

11 [103) {Dr2(9(a),a)}

12 [71] {—Ps(a)}

13 [12 4] {Lr2(1,9(a))}

14 [71] {-Ps(a)}

15 [14) {L12(9(a),a)}

16 [72) {=Da(z,y)| — D3(y,a)| — Ps(z)}

17 16 9] {=Ds(y,a)| = Ps(f(»))| — L2(1,p)|
_LG(yv a)}

18 1711] {-Ps(f(g(a)))| — Lz(1,9(a))
—LS(g(a)va)}

19 [18 8] {=Ls(l,9(a))l — La(g(a),a)|
—L7(l,9(a))| — Le(g(a), a)}

20 (1915} {—Ls(l,9(a))| — L1, 9(a))l
~Le(g(a), a)}

21 [2013] {-Lz(l,9(a))] — Le(g(a),a)}

22 [2115] {-Lz(1,9(a))}

23 [2213) {}

Theorem 4 If S is an unsatisfiable Hornp set which
is locked in such a way that the literals of T in any
clause are locked greater than or equal to the other
literals of that clause, then there ezists a lock-T refu-
tation of S.

The main point of the last two theorems is that for a
Hornr set there is a refutation in which the only lem-
mas are T-clauses. Unfortunately, the preconditions
of Theorems 3 and 4 are too weak to guarantee the ex-
istence of their respective refutation types as demon-
strated by the following counterexample to Theorem
4,

Let S be the non-Horn set

1 {A|B}

2 {-A|B}

3 {Al-B}
4 {-A|-B}

The set S is unsatisfiable by the following resolution
proof (where factoring is allowed),

5 [12) {B)
6 [34) {-B}
7 [56] {}

Hence, S is an unsatisfiable Hornr set by the following
locking scheme (where the locks are the subscripts and
the T-literals are subscripted with a ”T” and a lock):

{Ai1|Br2}
{—A.|Bra}
{A:| - Bs}
{—A| - B3}

D N e

By noting that the literals of T in any clause are
locked greater than or equal to the other literals of
that clause, we have satisfied all of the preconditions
of Theorem 4 which implies a lock-T refutation of §
exists. But the complete list of lock-T resolvents is
listed below, and it does not contain the empty clause

5 [1,2 {Br:|Bs}
6 [1,4] {Br2| — Bs}
7 23 {Brs| — B3}
8 [34] {—Bs| — B3}
9 5,7 {Brs|Bs}

The problem here is in clauses 5 and 6, where the
T-literal, Bz, blocks the non-T-literals locked higher
than it from being resolved and prevents the proof
from continuing. Note also that in a Lock-T proof of
a clause C factoring only occurs in T-clauses and only
on the lowest locked literals of common ancestry. This
is why clauses 8 and 9 cannot be factored and resolved
with each other to obtain the empty clause.

Now note that by strengthening the locking require-
ments on T-literals by requiring them to be locked
greater than or equal to ALL other literals in S, a
lock-T refutation can be found for the example above.
The new locking of S is

{A1|Br4}
{—A1|Brs}
{A1| - Bs}
{~A1| - Bs}

> O N e

The refutation proof is

5 (1,2 {Bral|Bri}

6 [1.4] {-Bs|Br4}

7 [23 {Brs| - B3}
8 [34] {~Bs| - B3}
9 [56) {Brs}

10 89 {-Bs)

1 o1 {)

Locking the T-literal, B, in clause 1 higher than all
non-T-literals of S, allows the proof to continue yield-
ing the previously blocked result in clause 9 which
leads to the generation of the empty clause. Recall
that factoring is allowed on the T-lemma {Br4|Brs}
which allows clause 9 to be written as { Br,}.

By adding this further restriction on the locking of T-
literals, Theorem 4 can now be restated and proved.
The proof remains the same except for an added note
showing how the new condition was actually implicitly
assumed by Peterson.

Theorem 5 If S is an unsatisfiable HornT set which
15 locked in such a way that the literals of T in any
clause are locked greater than or equal to the all other
hiterals of S, then there exisis a lock-T refutation of S.

Proof: Consider first the ground case. The proof will
be by induction on the number of literals in T. If T
is empty, the result we need reduces to the ground
case of Theorem 1. Suppose that the result is true if
T consists of N - 1 literals and suppose we now as-
sume that T contains N literals. Let A be a literal of
highest lock in T (and now of higher lock than any
non-T-literal). Form S’ by deleting A from the clause
in which it appears and form T’ from T by deleting
A. Then S’ is a Horn-T’ set with the required type
of locking. Thus S’ has an LNL-T’ refutation. When
A is replaced in the clause from which it came, this
refutation becomes an LNL-T proof of a clause con-
sisting only of zero or more copies of A. (NOTE: In
the original proof of Theorems 3 and 4, the previous
statement made the implicit assumption that A was
locked higher than any non-T-literals. The lock for
literal A plays an important role since when A is re-
placed in a clause it must also be replaced in all the
descendants of that clause. In order to obtain an LNL-
T proof of a clause with zero or more copies of A, A
must be locked higher than any of the non-T-literals
of the the resolvents/descendants which contain it. If
it is not, the LNL-T refutation may become a proof of
a clause consisting of one or more copies of A followed
by some other non-T-literals. Thus, if A is locked too
low, it may prevent the proof of the desired result.) If
this clause is {}, we are finished. Otherwise, factor-
ing will yield the unit clause {A}. Now form S” by

~

deleting from S all clauses containing A and adjoining
the clause {A}. Then S” is also a Horn-T’ set and the
induction hypothesis yields an LNL-T refutation for
S”. This refutation combined with the earlier proof of
{A} gives the required refutation of S.

Theorem 3 also requires a stronger hypothesis. The
proof is the same as for Theorem 4 except that it
builds on Theorem 2 instead of Theorem 1.

Implementation Details

The most efficient way to implement the new proof
strategies described above was to modify Otter 2.0,
an automated theorem prover developed by William
McCune at Argonne National Laboratories {2). This
allowed the use of existing routines to manage clauses
(ie., input, output, factoring, unification, etc.) and to
keep track of statistics (ie., number of clauses gener-
ated, number of clauses kept, etc.). Using the statisti-
cal routines allows for direct comparisons with results
previously generated in Otter using other inference
rules.

Peterson [4] suggested that an implementation of his
two new proof strategies be based on Theorems 3 and
4, but that such an implementation allow the user to
relax some of the strict conditions of the theorems set
up to preserve completeness. The next few paragraphs
outline those flexibilities.

In the actual implementation, factoring is done in ei-
ther proof method only on the lowest locked T-literals
in newly generated lemmas. For the sake of showing
completeness, the factored literals were required to be
instances of the same T-literal. The implementation
does not check for this condition, but it can be forced
by locking all T-literals uniquely so that any T-literals
in a resolvent with the same lock must be instances of
the same T-literal.

As shown in the previous section, another concern for
completeness is that T-literals be locked greater than
or equal to all non-T-literals in the set of clauses. This
checking is left to the user, and, as the results will
show, such a restriction can do more than just pre-
serve completeness. For instance, literals which are
known to produce many resolvents (ie., Equal(x,y))
are sometimes better off locked as high T-literals and
thus put off until the later stages of the proof.

As Peterson pointed out, in a Lock-T proof, if in each
clause negative literals are locked lower than positive
literals and if T contains only positive literals, the
result is a restriction of Robinson’s Pl-refutation [6).
This suggested heuristic for locking is merely echoed
here for the readet’s information and is not required

by the implementation.

Another suggested feature of the two methods is in
allowing a restart of the proof procedure if memory
overflows. One can simply retain the lemmas and the
initial set of clauses, discard everything else, and start
over. The specific algorithm for handling the restart
procedure is given in the next section, but it should
be pointed out that if the back subsumption flag is
set and a non-T-lemma clause is generated which sub-
sumes an input clause, the input clause will be deleted
at the time of subsumption, and the non-T-lemma will
be deleted upon restart of the proof procedure. Hence,
to avoid this loss of completion the user should clear
the back subsumption flag.

Chang and Lee [1] indicate that lock resolution, like
most resolution strategies, is not complete with the set
of support proof strategy. Therefore, this is a concern
of the two newly implemented strategies. To overcome
this when using the Lock-T proof strategy or regular
lock resolution, all clauses should be put in the set
of support list. This is not a concern of the LNL-T
proof method because it does not actually use the set
of support strategy.

The names for the subroutines which actually imple-
mented Lock-T refutation and LNL-T refutation are
unit-t-proof and t-lemma-proof, respectively. These
pairs of terms will be used interchangeably through-
out this work.

When using t-lemma-proof alone, the user should put
at least one clause in the set of support list because
Otter will not go into its main inference loop if this
list is empty. Since t-lemma-proof treats the set of
support list the same as the axiom list, this will have
no effect on the proof strategy other than to just get
it started. Otter will normally stop when there are no
more clauses in the set of support list to move in to the
axiom list and resolve with the other axioms. If this
happens when the t-lemma-proof method is active, the
proof may be prematurely halted if the t-lemma-proof
strategy has not yet completed. To prevent this, the
last given-clause is retained as a dummy clause to al-
low the loop to continue until t-lemma-proof either
finishes or generates a clause which is kept and in-
serted in the set of support list.

Both of the methods are actually specializations of
lock resolution where LNL-T proofs have restrictions
on the locking of literals and for choosing clauses to
be resolved. Lock-T proofs only have restrictions on
the locking of literals. The implementation actually
resulted in the addition of three resolution proof tech-
niques, the first of which was lock resolution. The
first modification was to allow Otter to accept a new
input format for clauses with numbered/locked liter-

als. When using any lock resolution based inference
method, the new format requires literals in any list of
clauses to be preceded by an ”@”, followed by a *T”
if it is a T-literal, followed immediately by an integer
and a blank. For instance, an acceptable form of

{—=Ps(z)| - Le(z,y)|LT7(9(2), v)}

would be

{@3 - P(z)|@6 — L(=,y)I@T7 L(g(2), y)}

Since Lock-T resolution is a specialization of lock res-
olution it was implemented with a simple call to the
lock resolution routines. The preprocessing conditions
for the initial clause set are handled at the time of in-
put where the initial clause set is inspected to see if it
satisfies the locking criteria and it is indeed a Horny
set. The postprocessing stipulations are that factoring
is only allowed on T-lemma resolvents and only on the
lowest locked literals, and that lemmas are cross-fed
to the LNL-T proof strategy if it is active.

LNL-T refutation posed the most significant imple-
mentation problem because its depth-first pursuit of
lemmas is not compatible with the set of support
strategy which is the basis of Otter’s main loop. This
required Otter to be modified in such a way as to allow
LNL-T proofs to be conducted independently of the
other inference mechanisms. Recall that in each iter-
ation of the main loop, a given-clause is moved from
the set of support list to the list of axioms and each
active inference mechanism is called upon to resolve
the given-clause against the other axioms. Since Ot-
ter is a serial program, only one inference mechanism
can be active at one time, so the pursuit of LNL-T
proofs cannot be completely independent of the other
active inference mechanisms. To accomplish the nec-
essary time slicing, LNL-T-proof is called each time
through the main loop allowing each LNL-T proof to
be advanced a little further by an amount determined
by the user. Lemmas generated by LNL-T-proof are
crossfed to the other active inference mechanisms by
placing them in the set of support. To sustain the de-
velopment of the LNL-T proofs, the set of support list
must never become empty before LNL-T-proof has fin-
ished. When this happens (if LNL-T-proof is turned
on) the last given-clause is retained as dummy set of
support clause until LNL-T-proof generates and cross-
feeds a lemma to replenish the set of support which
in turn also has the effect of reviving the active set of
support based resolution strategies and the main loop
continues.

One non-Horn problem used to test the newly imple-
mented proof strategies is known as the ”non-obvious
problem” [3]:

{—P(J"'y)l —P(y,Z)IP(:B,Z)}

{-Q(z,y)| - Qy, 2)IQ(z, 2)}
{-Q(z,9)|Q(y, z)}
{P(z, »)|Q(z,¥)}
{—P(a,b)}

{_Q(cs d)}

In order to avoid the incorporation of any heuristics in
the clause set, two of the most generic of the various
possible Horny locking schemes which satisfy only the
mimimum locking restrictions for the two techniques
were used. That is, in all of the Horn clauses, the
negative literals are locked at the same level, and the
positive literal in each clause has the lowest lock. As
for the non-Horn clause, the first positive literal is
locked lowest while the second literal is locked as a T-
literal, and vice versa. The two unit clauses represent
the negation of the theorem and are placed in the set
of support.

All of the successful runs find proofs of about the same
length (28 steps), however, the Lock-T-proof method
exhibited the best overall performance by generating
and keeping fewer clauses on both sets of clauses. The
first locking for these clauses is:

{—Pl(avb)}

{—Ql(c’ d)}
{—Pa(z,y)| — Pa(y, 2)| Pr(z, 2)}
{=Q2(z,y)| — Q2(y, 2)|Q:(z, 2)}

{--Q2(z, ¥)|Q:1 (v, 2)}
{Pi(z,9)IQr4(z,y)}

The second locking replaces the last clause by:

{Pra(z,9)|Qi(z,9)}

When run with the unlocked set of clauses, hyper-
resolution produced 1995 clauses retaining 355 for a
proof of length 18, binary resolution produced 673
clauses retaining 283 for a proof of length 22, and
UR-resolution was unable to find a proof. Lock-T res-
olution generated 201 clauses retaining 87, thus Lock-
T refutation outperformed each of these methods in
clause generation and retention. Some other less gen-
eral locking schemes were tried where the first negative
literals (if any) in each clause were locked at 2 and the
second negative literals (if any) were locked at 3 and
all other literals were locked as before. This resulted
in proofs of about the same length but with as few as
105 clauses generated and 72 clauses kept.

References

[1) Chang, C.L. and Lee, T.T.L.,(1973). Symbolic Logic
and Mechanical Theorem Proving, Academic Press,

New York, NY.

(2]

[3)

[4]
(5]

(6]

McCune, William W .,(1990). “Otter 2.0 Users Guide”,
Argonne National Laboratory, Mathematics and Com-
puter Science Division, Argonne, IL.

Pelletier,
F.J. and Rudnicki,(1986). “Non-Obviousness”, AAR
Newsletter, 6.

Peterson, G. E.,(1976). “Theorem Proving with Lem-
mas”, Journal of the ACM, 23(4), 574-581.

Quaife, Art,(1989). “Automated development of
Tarski’s Geometry”, Journal of Automated Reasoning,
5, 97-118.

Robinson, J.A.,(1965). “Automatic deduction with

hyper-resolution”, Int. J. of Computational Mathe-
matics, 1, 227-234.

	Experimentation with Proof Methods for Non-Horn Sets
	Recommended Citation

	hxi1124.PDF

