
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Jan 1974 

A Review of Directed Graphs as Applied to Computors A Review of Directed Graphs as Applied to Computors 

Paul D. Stigall 
Missouri University of Science and Technology, tigall@mst.edu 

Ömür Tasar 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
P. D. Stigall and Ö. Tasar, "A Review of Directed Graphs as Applied to Computors," Computer, vol. 7, no. 10, 
pp. 39 - 47, Institute of Electrical and Electronics Engineers; Computer Society, Jan 1974. 
The definitive version is available at https://doi.org/10.1109/MC.1974.6323332 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4792&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4792&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MC.1974.6323332
mailto:scholarsmine@mst.edu


Special Tutorial 

A Review of 
Directed Graphs 
as Applied to Computors 

Paul D. Stigall and Omür Tasar 
University of Missouri-Rolla 

Introduction 
The complexity of digital computers and their large scale 

use have led some researchers to investigate tools not 
commonly used. In recent years, applications of graph 
theory to computers as well as other fields of study have 
given fruitful results and have attracted more and more 
scientists. The attempt here will be to review previous 
accomplishments on a fundamental level and to stimulate 
the reader to investigate an area where valuable work is 
being performed. 

A great advantage for anyone who works on graphs is to 
be able to transfer his problems to a computer. The graphs 
are represented by matrices that can be easily handled in 
computer programs. Useful programs, which are applicable 
to many engineering problems, are documented by Henley 
and Williams.1 

The theory relevant to the study of graphs is rigorously 
developed.2»3 Because its applications are many, it is worth 
mentioning a few interesting papers. A FORTRAN 
recognizer, which is itself a FORTRAN program, has been 
modeled by a graph by Gonzalez and Ramamoorthy.4 This 
graph is reduced by the techniques described in the 
following sections. The information obtained from the 
reduced graph is useful in determining the suitability of a 
program for parallel processing. Another paper presents a 
discussion of the techniques for optimal scheduling of 
tasks in a multiprocessor system.5 Given a set of 
computational tasks and the relationship between them, a 
graph is formed. The algorithm developed finds a schedule 
for tasks for which the total execution time and the 

number of processors required are minimal. Bruno and 
Altman6 have modeled the control structure of an 
asynchronous digital system. Basic control modules are 
formed to perform single control functions. The obtained 
graph is used to find the necessary and sufficient conditions 
for a class of well-formed control networks. 

The discussion of graphs in this paper will not span the 
classical use of graphs, such as state diagrams which model 
finite-state sequential machines.7 

Basic Definitions 
A graph is simply a mathematical model of a system. It 

exhibits a relation or the absence of a relation among the 
elements of a set. The terms "point," "vertex," and "node" 
are frequently referred to as the elements of this set. A 
relation between these elements is usually called "line," 
"branch," "link," or "edge." In this paper, interest is 
concentrated on directed graphs, where the edges must be 
directed, and the terms "node" and "edge" will be used. 

What is to be coordinated with nodes and edges is a 
matter for the problem in question. In the case presented 
here, a node may possibly represent a register, a flip flop, a 
gate, or a unit of the computer. An edge may represent a 
connection between two registers, or if it has a value 
associated, it may reflect a property of the system such as 
speed. Figure 1 shows a simple directed graph. 

Graphs may have properties such as symmetry, 
reflexiveness, and completeness. A graph is symmetric if 
every node satisfies the following condition: existence of an 
edge from node (a) to node (b) implies an edge directed 
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Figure 1. A Directed Graph 

n2 5 

b. Reflexive Graph c. Complete Graph 

Figure 2. Properties of Directed Graphs 

from node (b) to node (a). A graph is reflexive if every 
node has a loop on itself. A graph is complete if every pair 
of nodes is connected in at least one direction. These 
properties are reflected in Figure 2. 

Types of Directed Graphs 
The following set of directed graphs are not used 

throughout the rest of the paper but are included here for 
the sake of completeness. 

A net is a directed graph consisting of a set of nodes and 
edges. The set of nodes is finite and not empty. The set of 
edges is finite.3 Hence a single node can constitute a trivial 
net. An example of a net is shown in Figure 3a. Petri nets, 
named after their inventor, C. A. Petri, are used to 
represent systems in which both static and dynamic 
conditions can exist simultaneously.8 J. L. Bear introduced 
them as graph models for parallel computation in a survey 
in which multiprocessing was studied.9 

A relation is a directed graph which satisfies the above 
conditions but does not have any parallel edges. Two edges 
connecting the same two nodes are not considered parallel 
if they are oppositely directed. In Figure 3b, a relation 
obtained from Figure 3a is shown. 

A digraph is an irreflexive relation.3 Namely, it is a 
directed graph or a net having no parallel edges and loops. 
The theoretical studies and matrix representation of 
digraphs will be discussed in detail below. Figure 3c 
illustrates a digraph reduced from Figure 3b. Acyclic 

directed graphs form a special class of digraphs where no 
two nodes are mutually reachable.3»9 

A network is a relation in which the edges are assigned 
values.3 If all the values on the edges are one, the graph is 
still a relation. In this sense, relations form a subset of 
networks. Systems dealing with frequencies, probabilities, 
and cost analysis can easily be represented by networks. A 
corresponding network of the relation in Figure 3b is 
shown in Figure 3d. Inflow networks, edges are interpreted 
to represent capacities of a flow, such as signals, cars, 
people, oil, and trade items. Then maximum flow 
considerations become important. Techniques and algo
rithms are developed to find a maximum flow in a network 
between any two nodes.2 >3 Network flows are formulated 
as linear programs. Maximum flow in relation to linear 
programming is discussed by T. C. Hu.1 ° 

Matrix Representation 
Matric representation is a practical tool with which one 

can work on graphs. It allows algebraic manipulation and 
use of computer programming so that large dimensioned 
matrices, hence large graphs that have many nodes and 
edges, can be analyzed. 

In forming the matrix, one row and one column for each 
node in the graph are assigned. Unless the assignment varies, 
a square matrix is generated. Depending on what is 
intended for the matrix, it is equally valuable to assign rows 
and columns to edges, or rows to nodes and columns to 
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Figure 3. Types of Directed Graphs 

d. Network 
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a. Logic Diagram for Z = AB b. Its Directed Graph 

A -

a< 

rij n2 n3 n4 

0 0 1 0 

0 0 1 0 

0 0 0 1 

0 0 0 0 

c. Adjacency Matrix A 

Figure 4. Adjacency Information of D Representing a Logic Diagram 

edges. However, the case with nodes is discussed here, and 
it should be kept in mind that a similar approach may be 
taken for other cases. 

The Adjacency Matrix The adjacency or connectivity 
matrix A has extensive use and is defined as follows: if the 
element ay of the matrix A is one, it indicates that there is 
an edge from node (i) to node (j); if ay equals zero, the 
graph does not contain an edge from node (i) to node 

K = 

n1 

n2 

no 

n 

"1 "2 n 3 n4 

0 0 0 1 

0 0 0 1 

0 0 0 0 

0 0 0 0 ■4 L 

d. Square of the Adjacency Matrix 

(j).3,11 -12 In other words, the nonzero elements of A show 
how many paths of length one, i.e., directed edges, exist 
between the corresponding nodes. Similarly, the elements 
of A2, where A2 is obtained by regular matrix 
multiplication of A itself, indicate the number of possible 
paths of length two. The idea can be extended to find the 
number of possible paths of length n. These are illustrated 
in Figure 4. For example, there exists one possible path of 
length two from ni to n4. 
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The row sum of node (i) of A is called the outdegree of 
node (i), and the column sum of node (i) of A is called the 
indegree. These figures give the total number of edges going 
out of and into the node, respectively. 

The adjacency matrix has been effectively applied to 
computer areas. Ramamoorthy and Chang11 have based an 
algorithm on the adjacency matrix to segment a large 
system into smaller subsystems with the purpose of 
diagnosing the system in parallel. Rüssel and Kime12 used 
the adjacency matrix as well as indegree and outdegree 
concepts in fault diagnosis of combinational networks. 
Kleir and Ramamoorthy13 have used the adjacency matrix 
in optimization strategies for microprograms. It has also 
been used in the structural theory aspects of machine 
diagnosis.14 

The Reachability Matrix The reachability matrix, R, 
gives useful information about the behavior of a graph. The 
element ry equals one if node (i) reaches node (j) over any 
path regardless of its length and if i equals j . If ry equals 
zero, it indicates that there is no possible path whereby 
node (j) can be reached from node (i).3»11-12 The 
transpose of R, namely RT, represents a graph in which the 
directions are reversed with respect to the original graph. 

The elementwise product, Q = R X RT, is obviously a 
symmetric matrix. The nonzero elements, qy, of this matrix 
indicate that nodes (i) and (j) are mutually reachable. This 
information is useful for the purpose of reducing graphs if 

necessary. One reduction technique requires the selection 
of the nodes whose columns are equal. These are the nodes 
which are reachable from the same set of nodes and which 
reach the same set of nodes. Hence, they can be combined 
into one node. The set of nodes combined into one new 
node is called a strong component. If all columns of Q 
happen to be equal, the graph is said to be strongly 
connected, in which case every node is reachable from 
every other node. An example of the points illustrated 
above is given in Figure 5. 

Hence, the graph has four strong components, {nj}, 
{n2}, {Π3}, and {n4,n5}, which are called N^, N2, N3, and 
N4, respectively. To find the reduced graph with nodes Nj , 
N2, N3, and N4, the new edges must be found. The rule is 
as follows: there exists an edge from Nj to Nj if there is a 
path from any node in Nj to any node in Nj. The reduced 
graph is called a condensation of D and is shown in 
Figure 6. 

The reachability matrix has been applied to computer 
related problems.12>14-15 It provides a powerful reduction 
technique. Most of the algorithms in fault diagnosis are 
derived for reduced graphs.16 

The Connectedness Matrix A valuable measure for 
classifying graphs is connectedness. Earlier, a strongly 
connected graph and its strong components were defined. 
To explore the other possibilities, the following types of 
graphs can be briefly described with respect to connected-

A 

B 
L, 

a. Logic Diagram for F = AB + Bf b. Its Directed Graph 

R = 

n 1 

n2 

n1 n2 °3 ^ n 5 

1 0 1 1 1 

0 1 1 1 1 

0 0 1 1 1 

0 0 0 1 1 

0 0 0 1 1 

Q = n-

n4 

η η2 n3 n4 r^ 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 1 

0 0 0 1 1 

c. Its Reachability Matrix R d. Q - R X R T 

Figure 5. Reachability Information of D Representing a Logic Diagram 
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ness. A disconnected graph implies that there exists at least 
one node or a set of strongly connected nodes that neither 
reaches nor is reached from any other node. In a strictly 
weak graph, there exists a sequence of edges between any 
two nodes; however, the directions are not continuous. A 
strictly strong graph has a directed path between any two 
nodes. The example in Figure 7 clarifies these descriptions. 

It is an easy matter to deduce the idea of connectedness 
from the reachability information. Hence, a connectedness 
matrix, C, can be defined, which will indicate the above 
attributes, given two nodes. Let us say that 0, 1,2, and 3 
represent the four kinds of connectedness: disconnected, 

strictly weak, strictly strong, and strongly connected, 
respectively. A new matrix, J, is defined as follows: 

Jkl = 

0 if node (k) and node (1) are disconnected 

1 otherwise 

Figure 6. The Reduced Graph of Figure 5b. 

Thus, the matrix representation for connectedness is simply 
C = R + RT + J. For instance, in Figure 7a, because J14, 
rj4, and x^\ are zero, C14 equals zero implying a 
disconnected graph. 

In case the graph is composed of disconnected 
subgraphs, D^, D2, . . . Dn, the connectedness matrix for 
each subgraph can be found, C(Di), C(Ö2), . . . C(Dn). The 
connectedness matrix of the whole graph will have the 
forms shown in Figure 8. 

The Value Matrix For a network, the adjacency matrix 
has scalar entries rather than ones and zeros. To distinguish 
the two matrices, the adjacency matrix for a network is 
called the value matrix, M. If the values on the edges are 
associated with probability or cost, the matrix is called a 
probability matrix, P, or a cost matrix, G, respectively. In 
cases where the outdegree of each node on a probability 
network is one, and the probabilities assigned to the edges 
are time-dependent, this particular type of graph is 

a. Disconnected Graph b. Strictly Weak Graph c. Strictly Strong Graph d. Strongly Connected Graph 

Figure 7. Types of Graphs with Respect to Connectedness 

c = 

C( D1 ) 0 0 

0 C( D2) 0 

0 0 C( D3 ) 

0 

0 

0 

C(D n ) 

Figure 8. Connectedness Matrix of a Disconnected Graph 
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D: 

n1 

P = n. 

n1 n 2 n 3 n4 n 5 

0 .25 .5 .25 0 

0 .4 .6 0 0 

0 0 0 0 1 

.5 0 · 5 0 0 

0 0 0 1 0 

Figure 9. A Probability Network and Its Probability Matrix 

G = n-

n1 n 2 n3 

0 1 0 0 GO 

5 0 0 25 

25 GO 0 

Figure 10. A Cost Network and Its Cost Matrix 

occasionally called a markov chain. M. A. Breuer modeled 
the statistics of intermittent faults in digital circuit by a 
first order Markov model.1 7 The cost of going from node 
(i) to node (i + 1) is infinite, if there is no edge from node 
(i) to node (i + 1). Examples are shown in Figures 9 and 10. 

Description of the Basic Theorems At this point, it is 
interesting to investigate whether the matrices discussed 
relate to each other in any manner. The matrix R is 
expected to be a function of the powers of A, because the 
elements of An indicate the possible number of paths of 
length n, and the reachability question asks whether any 
path exists between two given nodes. The procedure then 
must be to take powers of A until the longest path has been 
searched and to transform the total number of possibilities 
to a "one" to indicate reachability. The latter function is 
labeled U and defined as follows: U(a) = 1, where a is any 
number other than zero, and U(0) = 0. 

After this stage, the reachability matrix will not change. 
The above descriptions can be summarized with a theorem: 

Theorem 1: Rn = U(I + A + A2 + . . . + A") in which I is 
the identify matrix and defines reachability over length 
n. If Rn = R n + 1 , t henR=R n . 3 

The cost of going from one node to another over a 
specified length is of great importance. One certainly would 
try to find the minimum cost path, which is called cost 
geosdesic. When taking powers of G, the matrix 
multiplication is performed by using the modified 

multiplication "X" and the modified addition "+" 
operations defined as follows: a X b = a + b and c + d = 
min(c,d).3 

Obviously, the arithmetic does not add all possible paths 
of a certain length but rather finds the cost of different 
paths of the same length and chooses the minimum value. 
Let us find %\γ of G2, i.e., the cost of going from node (1) 
to itself over a path of length two by referring to Figure 10. 

«11 = £ ΐ 1 Χ 2 ΐ 1 + £ ΐ 2 Χ δ 2 1 + 8 ΐ 3 Χ δ 3 1 

= m i n ( g 1 1 + g 1 1 , g 1 2 + g 2 1 , g 1 3 + g 3 1 ) 
= min(0, 150, oo) 
= 0. 

Staying at node (1) is assumed to have no cost, hence that 
path is chosen. 

Theorem 2: There is a positive integer for which 
Gn=Gn+l.3 

After reaching this condition, there is no need to take 
higher powers of G, and Gn is called the total cost matrix. 

In general, if the edges of the network indicate only 
zeros and ones, a distance matrix is formed, and the 
modified arithmetic yields the minimum distance. 

PL/1 programs for finding the R and C matrices, given 
the A matrix, and for calculating total cost matrix are 
documented and available from the authors. 
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Input 

SIOG1: (A 

Output 

Figure 11. A Single Input Single Output Graph, SIOG1 

Fault Diagnosis Using Graph Theory 
A fault is a malfunction in the system. It is of vital 

importance whether a fault exists or not. Testing the 
machine for a fault if it exists is called a diagnosis. Fault 
diagnosis in digital computers is one of the major areas 
where efficient methods have to be established. In recent 
years, applications of graph theory to this area have been 
promising. An approach called a test point method finds 
spots on the system where test points can be located.14 

Some points serve as inputs, and the result can be detected 
at other points. The blocking gate method is another 
approach in which the minimum number of edges to be 
blocked are found to diagnose the system.16 The latter 
method is discussed in detail below. 

The blocking gate method assumes that there exists only 
one fault at a time and that it is not self-correcting. Also no 
faults can cancel each other during diagnosis. One way to 
diagnose the system is to insert blocking gates on every 
edge in the graph. The idea can be extended to conduct the 
diagnosis more efficiently. 

First, the system is modeled with a directed graph. Then 
the graph is reduced so that it does not contain any 
strongly connected components. Finally, the graph is 
transformed into a single input single output graph (SIOG) 
to enable the method to work with one input and one 
output. This is easily accomplished. If the graph has more 
than one input, an input node (i) is entered to the graph 
that fans out to all the necessary inputs. If there is more 
than one output, they will lead to an extra output node (o). 
One can start with the example of the SIOG shown in 
Figure 11 to illustrate the steps in the blocking gate 
method. 

At this point, a reduced SIOG exists and it is ready for 
the introduction of the pattern for finding the locations of 

the minimum number of blocking gates. The range of node 
(k) is the set of nodes on the directed path from node (i) to 
node (o), when node (k) is deleted. The node range matrix, 
NR, of a SIOG is a square matrix with rows and columns 
corresponding to the nodes of the graph. The NR matrix of 
the graph SIOG1 is given in Figure 12. The k'th row of the 
matrix has elements of ones for the nodes in the range of 
node (k). Otherwise, the elements are zero. The set of 
nodes, whose columns are equal, constitutes the partition 
of maximum distinguishability, MD. Referring to Figure 12, 
the MD set for the graph SIOG1 is found as follows: 

MD = {ÜÖ; 2^8; 3^9; 4; 5; 6; 7}. 

Every edge of the graph is to be tested so that the set of 
minimum number of edges is found. The blocking gates 
have to be located on this set of edges to distinguish the 
particular distinguishability class. Another matrix is used to 
perform what is mentioned above. The matrix, ER, has 
columns corresponding to the partitions of maximum 
distinguishability; its rows correspond to the edges of the 
graph. If the edges are ordered with consideration for the 
cost of blocking gates to be located on them, then the 
resultant sets of edges obtained from the matrix, ER, can 
be compared with the set with the minimum cost can be 
chosen. Figure 13 illustrates the ER matrix of the graph 
SIOG1. It is assumed that the cost of building blocking 
gates on the edges increases as the output node is 
approached. 

The edge range of an edge (k) is defined as the set of 
nodes on a directed path from node (i) to node (o), when 
edge (k) is blocked. The element er^i on the k'th row of 
the matrix ER would be one if the partition 1 includes the 
nodes within the range of edge (k). Otherwise, the elements 
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0 
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1 
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1 1 1 1 1 1 

0 1 1 1 1 1 

1 1 1 1 1 

1 1 0 1 1 1 

0 1 1 0 1 1 

1 0 0 1 0 1 

0 0 0 0 0 0 . 

Figure 12. The NR Matrix of the Graph SIOG1 

are zero. After constructing the matrix, equal rows are 
found. These rows form the sets of a new partition, named 
E. The equal rows of the ER matrix form the following set: 

E = { r j ï ; 2 j2 ;377 ;4~8 ;5^ ;640} . 

The elements of E are to distinguish the partition of MD. 
Remamoorthy and Mayeda16 discussed the method 
theoretically and proved that the set E distinguishes the set 
MD. 

The matrix ER is reduced to another matrix EQ when 
the equal rows are deleted. The small numbered edges name 
the rows of EQ, because they imply less cost. To complete 
the example, if blocking gates are placed on edges 1, 2, 3, 4, 
5, and 6 during design stages, the system will be able to 
diagnose faults within nodes 4, 5, 6, 7, and sets of nodes 
{1,10},{2,8},{3,9}. 

Conclusion 
The developments in graph theory are of current interest 

in computer research. Because many books and papers are 
being published on the subject, the aim of this paper has 
been to present to the reader the fundamentals of graph 
theory so as to acquaint him with the terminology and 
commonly used techniques. Today most of the work on 
graph theory is original and to some degree is separated into 
independent groups; however, a great deal of work needs to 
be done to unite all the ideas and applications into a 
consistent unified approach. ■ 
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Figure 13. The ER Matrix of the Graph SIOG1 
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