
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

30 Sep 1974

Designing HMO, an Integrated Hardware Microcode Optimizer Designing HMO, an Integrated Hardware Microcode Optimizer

James O. Bondi

Paul D. Stigall
Missouri University of Science and Technology, tigall@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
J. O. Bondi and P. D. Stigall, "Designing HMO, an Integrated Hardware Microcode Optimizer," Proceedings
of the Annual International Symposium on Microarchitecture, MICRO, pp. 268 - 276, Association for
Computing Machinery, Sep 1974.
The definitive version is available at https://doi.org/10.1145/800118.803873

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/800118.803873
mailto:scholarsmine@mst.edu

DESIGNING HMO, AN INTEGRATED HARDWARE MICROCODE OPTIMIZER

James O. Bondi

Department of Electrical Engineering

Paul D. Stigall

Departments of Electrical Engineering and Computer Science

University of Missouri-Rolla
Rolla, Missouri 65401

ABSTRACT

This paper discusses an algorithm for op-
timizing the density and parallelism of micro-
coded routines in microprogrammable machines.
Besides the algorithm itself, the algorithm's
uses, design integration problems, architec-
tural requirements, and adaptability to con-
ventional machine characteristics are also
discussed and analyzed. Even though the paper
proposes a hardware implementation of the al-
gorithm, the algorithm is viewed as an integral
part of the entire microcode generation and
usage process, from initial high-level input
into a software microcode compiler down to
machine-level execution of the resultant
microcode on the host machine. It is believed
that, by removing much of the traditionally
time-consuming and machine-dependent microcode
optimization from the software portion of this
process, the algorithm can improve the overall
process.

INTRODUCTION

Since the advent of microprogrammable
machines in recent years, a frenzy of research
has occurred on developing good software com-
pilers to generate user-designed microprograms,
or microcode, for chosen target machines [i],
[2]. The traditional argument against such
compilers is that they will never be able to
generate the completely compact microcode
needed in a typical high-usage microprogram.
The traditionalists thus conclude that the
tedious and complex task of microprogramming
is best left solely to the hardware designers
[3], [4], [5], [6]. On the other hand, many
machine users have long desired a machine
whose instruction repetoire they could tailor
to their particular needs [5], [6]. These
users argue that a microprogram compiler would
drastically reduce microcode production time,
thus making even medium-to-low-usage, less
highly compact microprograms practical [4].

Two important characteristics usually
sought by proponents of such compilers are (i)
a powerful, high-level input language and (2)
a high degree of target-machine independence
for the user. Typical versions of such com-
pilers are structured in two basic phases con-
ducive to these characteristics. The first
phase is a complete compiler taking high-level
input source into intermediate-level text.
The second phase is a simple, direct transla-
tor chosen by the user to transform this in-
termediate text into actual microcode for his
target machine [3], [7].

Although microprogram compilers such as
those just mentioned have proved quite prom-
ising, one particularly annoying problem re-
mains. This problem is the compactness, or
degree of optimization, of the microcode out-

put versus the required compilation time. To
be feasible, even medium-to-low-usage micro-
programs require a fair degree of optimization.
Furthermore, such microprograms require short
compilation times to make them worthwhile pro-
ducing. These two requirements are inherently
conflicting, especially since microprograms and
their formats are traditionally highly target-
machine-dependent while the compiler attempt-
ing to optimize these microprograms is design-
ed to be highly target-machine-independent.
In other words, it is extremely difficult to
efficiently optimize a machine-dependent pro-
cess by means of a machine-independent mecha-
nism [2] , [7], [8].

One possible solution to this problem is
to relieve the microprogram compiler of a
large part o~ its optimization chores. The
authors propose moving many local optimization
duties out of the compiler and across the
software-hardware boundary into the hardware
realm of the target machine. The hardware
microcode optimizer, HMO, is a simple hardware
algorithm capable of condensing a sequence of
essentially horizontal microinstructions to
increase their bit density and parallelism.
It is reasonable to expect that a hardware
implementation of such a hardware-dependent
process can be both fast and cost-effective
[9]. Furthermore, by improving the efficiency
of software microprogram compilers, the HMO
algorithm can increase the practicality of a
truly user-microprogrammable computer system.

It must be stressed that the overall
microcode optimization process being proposed
in this paper would consist of two basic
levels, or phases. The first level, performed
by the software microprogram compiler, would
be the more complex, global, primarily machine-
independent type of optimization procedures.
The second level, performed by the HMO algo-
rithm and associated hardware (after receiving
the software compiler's generated microcode),
would consist ideally of as much as possible
of the less complex, local, highly machine-
dependent type of optimization.

I. DESCRIPTION OF BASIC HMO ALGORITHM

Consider how the major internal hardware
components of a computer are involved with
the flow of data, or information, through-out
the machine. With respect to the HMO algo-
rithm, the following classification of such
components is useful: (i) a fixed source, or
data constant (e.g., a pseudo-register which
supplies a hardwired constant of 0 or 1 to
other components), (2) a data transformer
(e.g., an adder, shifter, working register,
main memory during a load-from-memory instruc-
tion, etc.), or (3) a data sink (e.g., main

268

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800118.803873&domain=pdf&date_stamp=1974-09-30

memory during a store-into-memory instruction).
However, since the production of data constants
is a fixed operation, with no inputs on which
to perform a function, HMO need not be con-
cerned with such constants. Their control is
inherently covered in the control of the trans-
formers and sinks to which they supply inputs.

Concerning the control of active, func-
tional components such as transformers and
sinks, two major areas of interest are the
supplying of inputs and the callin~ for out-
puts, with only the former area actually being
needed for sinks. If we consider now a flex-
ible microprogrammable architecture such as
that shown in Fig. i, these two areas become
nothing more than particular groups of hori-
zontal microinstruction bits controlling ap-
propriate register transfers. One other area
of interest for both transformers and sinks is
timing, or the time interval required for them
to complete their respective functions. This
timing requirement implies a certain needed
minimal distance between some microinstruc-
tions, or microwords, in any microinstruction
stream. Assume for now that the microcycle
time of HMi in Fig. 1 is such that this needed
distance is only one microcycle. This means,
for example, that it is acceptable for one
microword to excite an adder "input supply"
and the microword immediately following to
excite the corresponding adder "output call."

Notice that the "latching" type architec-
ture of HMi affords the microprogrammer virtu-
ally complete timewise independence of when
inputs are supplied to a data transformer such
as the adder. He may, in fact, "latch" in
adder inputs during different microcycles.
All he must do is make certain all desired in-
puts are fed at least one microcycle before he
calls for the corresponding transformer output.
Thus, the HMO algorithm can simply sequence
through a stream of microinstructions, con-
densing (essentially combining) all micro-
instructions containing "input supply" bits
into one instruction, until it reaches the
point where the next instruction contains an
"output call" bit corresponding to the already
condensed "input supplies." At this point,
the algorithm must temporarily stop condensing,
save (or execute) the newly formed condensed
instruction, and then proceed to condense
again starting with the next microinstruction
in the stream. What all this means is that
the HMO algorithm can produce, from a micro-
instruction stream which exercises HMi's hard-
ware in a purely serial fashion, a correspond-
ing condensed stream which exercises HMi's
hardware in a highly parallel fashion.

Unlike data transformers, data sinks,
which don't require "output call" bits, make
it difficult for the HMO algorithm to spot the
point where condensing must temporarily stop.
This problem can be solved by requiring that,
following the desired sink inputs, a succeed-
ing microinstruction appear containing a "i"
bitwhich actually excites, or causes, the
sinking of these preceding inputs. By con-
trolling sinks in this manner, these sinks
appear identical to data transformers as far
as the HMO algorithm is concerned. It always
sees a series of "input supplies" followed at
least one microcycle later by a microword
containing a control bit which, for trans-
formers, calls for passage of the transformed
data to some other point and, for sinks, causes
the actual sinking action to be performed.

Therefore, the HMO algorithm can now handle
transformers and sinks with equal facility.
The major hardware needed is a simple set of
combinational logic "inhibit" functions which
are driven both from the condensed instruction
being formed and from the next instruction in
the stream. At least one of these functions
is activated when the next instruction con-
tains an "output call" corresponding to "input
supplies" in the condensed instruction. Fur-
ther condensing is thus inhibited and the al-
gorithm starts anew on the next instruction.

Note that Fig. 2 allows the option of
either saving a condensed result for later use
(pre-pass compilation) or executing this re-
sult immediately without saving it (interpre-
tive execution). Interpretive execution would
be inefficient for all but extremely low-usage
microprograms, as it would require repeated
condensing of repeatedly executed blocks of
microcode. Therefore, all discussion that
follows assumes that the HMO algorithm is
being used as a pre-pass condensing compiler.

Fig. 3 contains two examples illustrating
the algorithm's use. Note that the second
example illustrates how the authors would
ideally like to handle conditional branch
microinstructions. This ideal method would be
essentially to allow the HMO algorithm to con-
dense along the "non-branch" path (i.e., the
path which is expected to be taken most of the
time). Then, later, the algorithm could be
restarted separately along the yet untouched
"branch" path.

Finally, Fig. 4 depicts one example of
the "inhibit" functions which provide the log-
ical signals to control the HMO algorithm.

II. INTEGRATING THE ALGORITHM INTO
THE MICROPROGRAMMABLE SYSTEM

While Section I. presented a brief over-
view of the basic HMO algorithm, this section
presents some intricate design problems in-
curred in evolving the algorithm into a well
integrated system component. Since the algo-
rithm is actually the final phase of the over-
all microcode compilation process, many of
these problems involve considerations of
whether to allocate a particular function to
the software compiler or to the hardware al-
gorithm. However, as will be seen, other
problems are not related to such an alloca-
tion and must be resolved on other bases.

A. Handling Conditional Branch Microinstruc-
tions

As stated in Section I., the second ex-
ample of Fig. 3 depicts an extreme, idealistic
scheme for handling conditional branches, a
scheme which allows condensing not only "up
to and including" conditional branches but
"past" them as well. The astute reader will
notice that, in the condensed code, the two
transfers "AIi÷PGC" and "AI2÷O" will[always
be performed, whereas, in the uncondensed
code, they would have been performed only if
the "non-branch" path were taken. Obviously,
such a situation could result in erroneous
results from the condensed code.

This problem can be solved by (i) allow-
ing room in the microinstruction format for
not only the normal section of control bits
but also for a conditional section of control
bits to be executed only if the "branch" path

269

is taken or by (2) simply prohibiting condens-
ing "past" conditional branches. Although re-
search results tend to favor solution (2), it
must be pointed out that the choice between
these two solutions is virtually unrelated to
the compiler versus algorithm allocation ques-
tion. Instead the choice here must be made
primarily on the basis of the tradeoff between
the complex microinstruction format (and re-
lated problems) of solution (i) and the slight
microprogram condensability loss of solution
(2) .

tion supplied to AII during the first instruc-
tion without first using the corresponding
added result (by passing adder output AOi
somewhere, for example), the transfer to AIi
in the first instruction is a "non-productive"
("negated" [i0]) transfer.

The basic HMO algorithm of Section I.
would, in fact, attempt to condense the two
transfers to AII together. This condensing
can be used beneficially to remove the "non-
productive" transfer as long as an appropriate
condensing technique is used. This technique
necessitates partitioning the control bits of

B. Paralleling of Completely Independent Tasks each microword into the mutually exclusive
input sets of each hardware register. For

Fig. 5 is an abstract example illustrating example, the AIi input set consists of con-
a possible condensing inefficiency. Note that
although the groups of uncondensed code in
examples (a) and (b) are equivalent, the con-
densed code in example (b) is more compact
than that in example (a). This variance is a
direct, but subtle, result of the HMO algo-
rithm's simple condensing scheme presented in
Section I. For example, the alert reader may
wonder why, in example (a), the algorithm

trol bits 8, 9, and 10 (see Fig. i). The
technique then consists of (i), for non-zero
input sets in the upcoming word to be con-
densed, writing this non-zero set over the
corresponding set in the accumulating con-
densed result and (2), for all-zero input
sets in the upcoming word to be condensed,
leaving the corresponding set in the accumu-
lating condensed result as is. If such a

could not have looked at least two instructions condensing technique is used (whenever the
ahead of "ACCUM÷DATAi" to recognize that, even
though "AIi÷ACCUM" is inhibited (by an accumu-
lator inhibit function) from condensing, "IN-
DEX+DATA2" could have been brought up past
"AIi÷ACCUM" and condensed onto "ACCUM÷DATAi."
Indeed, it appears that a scheme in which the
algorithm, during any given condensing step,
is allowed to look far ahead and propagate un-
inhibited instructions (or parts of instruc-
tions) up past inhibited instructions could
produce the compact condensed code of example
(b) directly from the uncondensed code of ex-
ample (a). However, suffice it to say that
research has demonstrated many intricate prob-
lems (hardware complexity, difficulty of as-
suring condensed code equivalency and proper
addressing) with such a scheme.

Rather than resort to such a "messy"
scheme, the software compiler can instead be
used to pretailor the code it feeds to the HMO
algorithm. The basic algorithm works more
efficiently when its input (uncondensed) code
is ordered so that completely independent tasks
do not follow one another in completely serial
fashion. Essentially, the code of Fig. 5 is
intended to show two such independent tasks, a

inhibit functions permit condensing), the
basic HMO algorithm can easily produce the
condensed result shown on the right of Fig. 6.
Thus, "non-productive" transfer removal can
be handled adequately, at least on a local
scale, by the hardware algorithm, without
special help from the software compiler.

III. ARCHITECTURAL REQUIREMENTS

As expected, easy and efficient imple-
mentation of the HMO algorithm dictates cer-
tain architectural characteristics as desir-
able. This section presents a summary of the
major characteristics so dictated.

A. General Characteristics

The architecture of HMi must be such
that all fundamental operations under micro-
programmed control consist of two elementary
steps which can be intuitively termed the
"starting" and "finishing" steps. As implied
in Section I., two such steps are found quite
naturally for data transforming units such as
the adder. However, much time and care went

multistep transfer of DATA1 to AIi and a multi- into the rather unusual main memory controller
step transfer of DATA2 to AI2. In example (a) shown in Fig. 1 so that even the data sinking
these tasks are arranged entirely sequentially operation of a "store into memory" consists
while, in (b), they are overlapped in a slight- of the needed two basic steps.
ly more parallel fashion, thus allowing the
basic algorithm of Section I. to produce a
more compact result. Therefore, it should be
the job of the software compiler to search
for such completely independent tasks, or code
groups, and reorder them as needed to ensure
they are not left completely sequential. Such
paralleling of independent tasks is a rela-
tively machine-independent, @lobal process
better suited to the software compiler than
the hardware algorithm.

C. Removing Non-Productive Transfers

Fig. 6 is another abstract example il-
lustrating a possible condensing problem.
Note that the first two instructions in the
uncondensed code both supply information to
adder input AII. In particular, because the
second instruction "writes over" the informa-

The "latching," or "register transfer,"
type architecture indicated in Fig. 1 is use-
ful for many reasons, some of which are (i)
it readily supports the "two-step" structure
mentioned above, (2) it gives the micro-
programmer (and the software compiler) much
freedom from hardware timing requirements
(e.g., freedom to supply the three adder in-
puts of Fig. 1 in sequential fashion, in
parallel fashion, etc.) and (3) it lends it-
self to pipelining slower microcontrolled
functions to various degrees (a technique
which research indicates may be useful in the
interest of machine speed).

B. Microinstruction Formats

AS the control section format, a horizon-
tal, unencoded control section having one bit
per register transfer is ideal. This arrange-

270

ment readily supports a neat, two-level reali-
zation of the algorithm's inhibit functions,
allowing these functions to be driven directly
from the control register (Fig. 2) and from
the control memory output lines feeding the
control register.

Concerning microinstruction addressing
schemes, flexibility is the key requirement.
Research has shown that employment of the al-
gorithm in its simple, one-pass Section I.
form yields condensed instructions which are
linked together but interspersed with remain-
ing groups of "garbage" instructions. During
run time, execution will proceed by "leap
frog" style jumps which circumvent these gar-
bage instructions. Thus, at the very minimum,
a scheme employing one complete "next address"
in each microword (Fig. 2) is needed (as op-
posed to, say, the sole use of a separate
microprogram counter, or pointer, register).

As suggested in Section II., use of the
ideal conditional branch condensing philosophy
of Fig. 3 necessitates a quite complex micro-
instruction format, but, if one prohibits
condensing "past" conditional branches, many
instruction formats between this extremely
complex one and the required minimal one of
Fig. 2 become possible. However, no matter
what overall instruction format is chosen,
research indicates it is in all cases desir-
able, though not always necessary, to have the
"branch" path address be completely indepen-
dent of the "non-branch" path address.

C. Control Memory Characteristics

Although many types of control memory can
be used, one arrangement well suited to sup-
porting the HMO algorithm is to use the same
memory type (and speed) for both main and
control memories. This arrangement, used in
varying degrees on the IBM 360/Model 25 [ii]
and the Burroughs B 1700 [12], helps to achieve
realization of the Section I. assumption that
one control memory microcycle is sufficient
to complete any elemental machine operation.

Of the many possible methods which can be
used to actually implement the HMO algorithm,
a firmware implementation's flexibility is
particularly attractive. A feasible firmware
implementation can be realized by using two
separate control memories (or, at least, two
separate memory sections), one containing the
HMO algorithm plus other factory-fixed rou-
tines and the other containing the user's
microprograms. While condensing, the factory-
fixed, restricted-access memory would be op-
erating on the contents of the user-accessible
memory. Again, this control memory arrange-
ment employing both fairly-restricted and
easily-accessible memories has been used in
varying degrees on real production machines
like the Burroughs B 1700 [12] and the Micro-
data 1600 [13].

IV. ADAPTATIONS FOR PERFORMANCE ENHANCEMENT

Up to this point, the simplifying Section
I. assumption that one microcycle is suffi-
cient time for all elemental machine opera-
tions has not been questioned. Obviously,
such an assumption, if adhered to rigidly and
inflexibly, could result in a control memory
cycle too long to allow acceptable machine
performance.

This section presents some techniques
which can help prevent such possible perfor-

271

mance degradation. Basically, these techniques
allow cycling of control memory at a reason-
able, chosen speed rather than restricting it
to cycling at least as slowly as the slowest
elemental operation under its control. While
the techniques of the first two subsections
are modifications of HMi's execution hardware,
the technique of the last subsection is a mod-
ification of the basic HMO algorithm itself.

A. Use of Programmed Wait Loops

By incorporating "busy" signal indicators
into those operations which are of longer
duration than the control memory cycle, con-
ditional branch microinstructions can be made
to branch to an "increment-the-PGC-and-then-
go-to-FETCH" routine. Thus, conditional
machine instructions for such operations can
be microprogrammed so as to simply skip the
next machine instruction whenever the desired
operational facility is still "busy" from some
previous use.

For example, consider I/O operations.
With such machine instructions available, it
is a simple matter to program an I/O "trans-
fer/idle" (or "wait") loop at the machine
instruction level. (Note that, given a rich
enough addressing scheme for conditional
branch microinstructions, there is no real
reason why such "wait" loops could not also be
implemented at the microinstruction level.)

B. Incorporation of Established Hardware Per-
formance Enhancement Techniques

If control memory is to be cycled at a
rate too fast to allow one-cycle completion of
some slower elemental operations, then several °
established hardware techniques can be employ-
ed to help avoid the implied timing hazards
which could result during execution. For ex-
ample, "request/reply" control interfacing
can be used to ensure that control memory
idles while awaiting the results of slower,
previously initiated elemental microcontrolled
operations.

On the other hand, an adaptation of the
Tomasulo algorithm [14], [15] can be employed
so that the microprocessor need not often be
idled unproductively. Instead of idling the
microprocessor can pass appropriate "tags" to
the intended destinations of the yet unavail-
able results and simultaneously mark such
destinations as "busy awaiting information."
When later available, the actual information
itself would then be passed to all appropri-
ately "tagged" units and the associated "busy
bits" turned off. This Tomasulo type hard-
ware can permit a rapidly cycled control
memory to proceed executing even in the face
of temporarily unavailable information, with
thepossible beneficial side effect of elim-
inating the use of temporary storage stations
called for in the microcode being executed.

While the other techniques of Section
IV. are essentially means of compensating for
(during execution) microprograms which were
condensed under the "one-microcycle assump-
tion" even in situations where this assump-
tion is not completely valid, pipelinin~ [15]
can be a useful technique in increasing the
validity and practicality of the "one-micro-
cycle assumption." That is, rather than sim-
ply shortening the control memory cycle,
pipelining can be used in conjunction with
such shortening to simultaneously shorten the

required time of slower microcontrolled opera-
tions. For example, by insisting that the AOI
register of Fig. 1 be a real physical latching
register (which has not been assumed thus far),
the overall process of addition (from operand
source registers to result destination regis-
ters) would then consist of three elemental
stages instead of the present two stages.
Thus, pipelining yields more, but shorter,
elemental micro-operations for a given pro-
cess, making the "one-microcycle assumption"
easier to meet even if the control memory
cycle is shortened.

C. Use of Different "Fields of View" for
Different Inhibit Functions

Unlike the other techniques already pre-
sented, the following technique proposes
dropping the "one-microcycle assumption" of
the basic HMO algorithm and giving the algo-
rithm the capability to ensure different
length "timing gaps" (in its output stream of
condensed microcode) for different length
elemental microcontrolled operations. By set-
ting each inhibit function's "field of view"
equal to the number of microcycles needed to
complete the machine operation scrutinized by
that inhibit function, appropriate "timing
gaps" for all such operations can be produced
(where "field of view" is the number of micro-
instructions an inhibit function can look
ahead from the condensed result being formed
in the condensing register).

Specifically, by employing a first-in-
first-out stack (through which microinstruc-
tions are sequenced up to the condensing
register), inhibit functions could be driven
both from the condensing register and from a
particular stack position appropriate to the
desired "field of view." For example, the
second position in the stack would be used to
create a "field of view" of two for those
operations requiring two control memory cycles
for completion.

CONCLUSION

This paper has proposed a hardware algo-
rithm which could enable a microprogrammable
machine to do its own local, machine-dependent
optimization of user-written microprograms,
leaving the global, machine-independent opti-
mization to an associated software compiler.
In fact, one software microprogram compiler
could efficiently serve a group of logically
different, but architecturally similar,
machines, each possessing an implementation of
the HMO algorithm enabling it to do its own
machine-dependent condensing and "cycle
squeezing." Such a system should be the ideal
environment for a software compiler which can
efficiently serve several different machines
but still present the user with a maximum
degree of machine independence as he writes a
microprogram for a particular, chosen machine.

Section I. presented the algorithm in
very basic form and described its optimiza-
tion approach of transforming microinstruction
streams exhibiting serial machine hardware
utilization into equivalent condensed streams
exhibiting highly parallel hardware utiliza-
tion [16]. Then, Section II. discussed some
of the subtle design details involved in
evolving the algorithm into a true system
component that works well with other system

components. Next, Section III. presented some
architectural characteristics suitable to the
algorithm's implementation. It is encouraging
to note that these characteristics are not
exotic ones. On the contrary, many are found
on real production machines, thus implying
cost effectiveness. Finally, Section IV. dis-
cussed both possible modification of the basic
algorithm and also incorporation of existing,
established hardware algorithms and control
techniques as useful means of ensuring an
acceptable level of machine performance.

Since the algorithm presented in this
paper is new and untried, many practical
questions still remain unanswered. For ex-
ample, since the algorithm itself and the
horizontally microcontrolled architecture of
HMi were developed jointly to complement each
other, the algorithm's usefulness in direct
application to significantly different hard-
ware layouts (such as a strictly vertically
microprogrammable machine) is uncertain at
this time. Similarly, until the HMO algo-
rithm and an associated software compiler are
actually built and implemented so that the
exact areas of software/hardware cooperation
and separation in the overall microcode opti-
mization process can be specifically deter-
mined, it would be extremely difficult, if
not futile, to attempt to derive meaningful,
precise numerical evaluation measures of the
algorithm's efficiency or performance. In-
deed, the lack of appropriate, precise evalu-
ation measures to guide the design of novel
developments is more often the case than not
[17]. As a result, the designer must. often
rely, at least initially, on less precise,
more subjective tradeoffs and decisions (such
as those of Section II.) to guide his work.

ACKNOWLEDGEMENT

The authors wish to thank C. V.
Ramamoorthy for his helpful comments and sug-
gestions offered to aid in the preparation of
this paper.

REFERENCES

[1] R. K. Clark, "Mirager, the "Best-Yet"
Approach for Horizontal Microprogramming,"
Proceedings of ACM '72, Association for
Computing Machinery, New York, 1972,
pp. 554-560.

[2] M. Hattori, M. Yano, and K. Fujino,
"MPGS: A High-Level Language for Micro-
program Generating System," Proceedings
of ACM '72, Association for Computing
Machinery, New York, 1972, pp. 572-581.

[3] S. G. Tucker, "Microprogram Control for
System/360," IBM Systems Journal, Vol.
6, No. 4, pp. 222-241, 1967.

[4] R. H. Eckhouse, Jr., "A High-Level
Microprogramming Language (MPL)," AFIPS
Conference Proceedings, 38 (SJCC 1971),
pp. 169-177.

[5] R. F. Rosin, "Contemporary Concepts of
Microprogramming and Emulation," Com-
puting Surveys, Vol. I, No. 4, pp. 197-
212, Dec., 1969.

[6] M. J. Flynn and R. F. Rosin, "Micropro-
gramming: An Introduction and a View-
point," IEEE Transactions on Computers,
Vol. C-20, No. 7, pp. 727-731, July,
1971.

[7] S. S. Husson, Microprogramming: Princi-

272

ples and Practices, Englewood Cliffs,
N. J.: Prentice-Hall, Inc., 1970, pp.
125-144.

[8] C. V. Ramamoorthy, M. Tabandeh, and M.
Tsuchiya, "A Higher Level Language for
Microprogranmning," MICRO 6 The Sixth An-
nual Workshop on Microprogramming, Col-
lege Park, Maryland, Sept., 1973 (Pre-
prints), pp. 139-144.

[9] H. Falk, "Hard-Soft Tradeoffs," IEEE
Spectrum, Vol. ii, No. 2, pp. 34-39,
Feb., 1974.

[i0] R. L. Kleir and C. V. Ramamoorthy, "Op-
timization Strategies for Microprograms,"
IEEE Transactions on Computers, Vol. C-
20, No. 7, pp. 783-794, July, 1971.

[ii] C. G. Bell and A. Newell, Computer Struc-
tures: Readings and Examples, United
States of America: McGraw-Hill, Inc.,
1971, pp. 567-569.

[12] Burroughs B 1700 Systems Reference Manual,
Preliminary Edition, Burroughs Corpora-
tion, Systems Documentation, Technical
Information Organization, TIC-Central,
Detroit, Michigan, 1972, pp. 1.7-1.8,
i.i0, 3.1.

[13] Microprogramming Handbook, Second Edi-
tion, Microdata Corporation, Santa Ana,
California, 1971, pp. 317-318.

[14] R. M. Tomasulo, "An Efficient Algorithm
for Exploiting Multiple Arithmetic Units,"
IBM J. of Res. and Dev., Vol. ii, No. i,
pp. 25-33, Jan., 1967.

[15] M. J. Flynn, "Very High-Speed Computing
Systems," Proceedings of the IEEE, Vol.
54, No. 12, pp. 1901-1909, Dec., 1966.

[16] A. K. Tirrell, "A Study of the Applica-
tion of Compiler Techniques to the Gen-
eration of Micro-Code," Proc. of ACM
SIGPLAN-SIGMICRO Interface Meeting,
Hirriman, New York, May, 1973 (Preprints),
pp. 67-85.

[17] W. T. Wilner, "Design of the Burroughs
B 1700," AFIPS Conference Proceedings,
41 (FJCC 1972), pp. 489-497.

273

PGC - Program Counter, IRA - In~tructlon Register
Address Portlon,

MIR - Memory Input Register,
MOR- Memory Output Register,
eto.

pr_r AnIIRA AOi ACCUM P&C 0 ~ORIN.DEX 0 0 3.
4 A~,~UM'" , '~ ,o 7 ,, ,, ~ '

MEM. L.~A_.~_J I M Z R I I A Z ~ J I ~ , z 2 I l!_:l ~1'" , ; F . , .

, , ~0/. , - s

t/.5~i.~Y pseuao ~eB~a%e~s. C / L~_~/kOi~O. ;
NOTE: The #'s indicate the microinstruction bit controlling

a transfer.

Fig. 1 Subset of HMi (Hypothetical Machine l)

Masee, Rea,~e," I

.

Iha-& ('~J'4fe) Upc°';"]

Fig. 2 Flow Chart of Basic HMO Algorithm

274

Phe fo]]owln6 example illustrates condensinE of an "add" with
dlrect address that performs ACCUM~-ACCUM + MEM(IRA);

MAR ~-IRA :~

g

u n c o n d e n s e d
mlcrocode

~AI2 *MOR; AIi *ACCUM; CI +0~

~ACCUM . A O i ; ~

condensed
microcode

The following example i]lustrates essentlally how the author
hopes to handle conditional branch mlcrowords. The example
is a "mem. increment and sklp next instr, if result is O"
instruction. Note that "EFF ADDR" means Effective Address.

MAR +EFF ADDR;9

q n ÷o b
Isets MIR" ~'~
]durln6 dai ~
Lrest °re "~ "k~~.qlb

NOT~: No re~.A~
ixfers are d6ne~a.. .'~-q~J,',Z ~'l
here, only a~-J~-- A~ ~ ~ ~t

ton Aolz, snCF ~ ~ J /
,adder cond# ~AI2 + O b ~ /
code w h l c ~ C~ " - ^ J "~"

Lis 1 Iff~ ~PGC ÷AOI; -~-
~AOi~O.F ~

L ___3
unc ondensed
mIorocode

condensed
mlcrocode

MAR÷EFF ADDR D

->~AI2 *MOR; AII 4-0; CI4-1 2

t)

Fig. 3 Some "Before & After" Examples

275

I n k ~ b l t
A&&~r

~% . #I I - e ~ t 5uppI,es
(

I ~ Control Bit I
---- from condensed

lormeG In
k~=7 ~nstr[n. beln6

Master Re6.

%%

Output Coils"
I

f- -.,

• I ~ from next
/ upcomin5

\ ~ mlorolnstr'n --~ =z,%1%,~

e~ .~. ~ Loolcal OR
L_~" --> Lookal AND

NOTE: Refer to Fig.'s 1 & 2 for explanation of
"Master Reg.", various control bit #'s, etc.

NOTE: "Inhibit" functions for other components in HMi
are formed in a similar manner to the one shown
above for the adder.

Fig. 4 '~Inhibit" Function Example

ACCUI~ +DATAi; D ACCUM ~-DA PAl ;~

~DATA2 p

~AI2 ~INDEX; AI2 ~ I'~TDEX;
k, v) k _ .~ . J

uncondensed mlcrocode (a) condensed microcode

ACCUM~-DATA1;)~ ~Qn~D~ ~ ACCUM~DATAI; INDEX+DATA2;~

IN~DEX+DAT~2 ;~j |

,. J - - t . , ;
uncondenzed microcode (b) condensed mlcrocodo

Fig. 5 Paralleling Independent Tasks

AI 1 ~r ACCUM ;~? G-°~d--e~-se

 A *P°c 5 J
~MAR ~AO 1 ;

uncondenzed
microcode

L J
condensed
mlcrocode

Fig. 6 Non-Productive Transfer Removal

276

	Designing HMO, an Integrated Hardware Microcode Optimizer
	Recommended Citation

	tmp.1680206913.pdf.JkvlT

