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DESIGNING HMO, AN INTEGRATED HARDWARE MICROCODE OPTIMIZER 

James O. Bondi 

Department of Electrical Engineering 

Paul D. Stigall 

Departments of Electrical Engineering and Computer Science 

University of Missouri-Rolla 
Rolla, Missouri 65401 

ABSTRACT 

This paper discusses an algorithm for op- 
timizing the density and parallelism of micro- 
coded routines in microprogrammable machines. 
Besides the algorithm itself, the algorithm's 
uses, design integration problems, architec- 
tural requirements, and adaptability to con- 
ventional machine characteristics are also 
discussed and analyzed. Even though the paper 
proposes a hardware implementation of the al- 
gorithm, the algorithm is viewed as an integral 
part of the entire microcode generation and 
usage process, from initial high-level input 
into a software microcode compiler down to 
machine-level execution of the resultant 
microcode on the host machine. It is believed 
that, by removing much of the traditionally 
time-consuming and machine-dependent microcode 
optimization from the software portion of this 
process, the algorithm can improve the overall 
process. 

INTRODUCTION 

Since the advent of microprogrammable 
machines in recent years, a frenzy of research 
has occurred on developing good software com- 
pilers to generate user-designed microprograms, 
or microcode, for chosen target machines [i], 
[2]. The traditional argument against such 
compilers is that they will never be able to 
generate the completely compact microcode 
needed in a typical high-usage microprogram. 
The traditionalists thus conclude that the 
tedious and complex task of microprogramming 
is best left solely to the hardware designers 
[3], [4], [5], [6]. On the other hand, many 
machine users have long desired a machine 
whose instruction repetoire they could tailor 
to their particular needs [5], [6]. These 
users argue that a microprogram compiler would 
drastically reduce microcode production time, 
thus making even medium-to-low-usage, less 
highly compact microprograms practical [4]. 

Two important characteristics usually 
sought by proponents of such compilers are (i) 
a powerful, high-level input language and (2) 
a high degree of target-machine independence 
for the user. Typical versions of such com- 
pilers are structured in two basic phases con- 
ducive to these characteristics. The first 
phase is a complete compiler taking high-level 
input source into intermediate-level text. 
The second phase is a simple, direct transla- 
tor chosen by the user to transform this in- 
termediate text into actual microcode for his 
target machine [3], [7]. 

Although microprogram compilers such as 
those just mentioned have proved quite prom- 
ising, one particularly annoying problem re- 
mains. This problem is the compactness, or 
degree of optimization, of the microcode out- 

put versus the required compilation time. To 
be feasible, even medium-to-low-usage micro- 
programs require a fair degree of optimization. 
Furthermore, such microprograms require short 
compilation times to make them worthwhile pro- 
ducing. These two requirements are inherently 
conflicting, especially since microprograms and 
their formats are traditionally highly target- 
machine-dependent while the compiler attempt- 
ing to optimize these microprograms is design- 
ed to be highly target-machine-independent. 
In other words, it is extremely difficult to 
efficiently optimize a machine-dependent pro- 
cess by means of a machine-independent mecha- 
nism [2] , [7], [8]. 

One possible solution to this problem is 
to relieve the microprogram compiler of a 
large part o~ its optimization chores. The 
authors propose moving many local optimization 
duties out of the compiler and across the 
software-hardware boundary into the hardware 
realm of the target machine. The hardware 
microcode optimizer, HMO, is a simple hardware 
algorithm capable of condensing a sequence of 
essentially horizontal microinstructions to 
increase their bit density and parallelism. 
It is reasonable to expect that a hardware 
implementation of such a hardware-dependent 
process can be both fast and cost-effective 
[9]. Furthermore, by improving the efficiency 
of software microprogram compilers, the HMO 
algorithm can increase the practicality of a 
truly user-microprogrammable computer system. 

It must be stressed that the overall 
microcode optimization process being proposed 
in this paper would consist of two basic 
levels, or phases. The first level, performed 
by the software microprogram compiler, would 
be the more complex, global, primarily machine- 
independent type of optimization procedures. 
The second level, performed by the HMO algo- 
rithm and associated hardware (after receiving 
the software compiler's generated microcode), 
would consist ideally of as much as possible 
of the less complex, local, highly machine- 
dependent type of optimization. 

I. DESCRIPTION OF BASIC HMO ALGORITHM 

Consider how the major internal hardware 
components of a computer are involved with 
the flow of data, or information, through-out 
the machine. With respect to the HMO algo- 
rithm, the following classification of such 
components is useful: (i) a fixed source, or 
data constant (e.g., a pseudo-register which 
supplies a hardwired constant of 0 or 1 to 
other components), (2) a data transformer 
(e.g., an adder, shifter, working register, 
main memory during a load-from-memory instruc- 
tion, etc.), or (3) a data sink (e.g., main 
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memory during a store-into-memory instruction). 
However, since the production of data constants 
is a fixed operation, with no inputs on which 
to perform a function, HMO need not be con- 
cerned with such constants. Their control is 
inherently covered in the control of the trans- 
formers and sinks to which they supply inputs. 

Concerning the control of active, func- 
tional components such as transformers and 
sinks, two major areas of interest are the 
supplying of inputs and the callin~ for out- 
puts, with only the former area actually being 
needed for sinks. If we consider now a flex- 
ible microprogrammable architecture such as 
that shown in Fig. i, these two areas become 
nothing more than particular groups of hori- 
zontal microinstruction bits controlling ap- 
propriate register transfers. One other area 
of interest for both transformers and sinks is 
timing, or the time interval required for them 
to complete their respective functions. This 
timing requirement implies a certain needed 
minimal distance between some microinstruc- 
tions, or microwords, in any microinstruction 
stream. Assume for now that the microcycle 
time of HMi in Fig. 1 is such that this needed 
distance is only one microcycle. This means, 
for example, that it is acceptable for one 
microword to excite an adder "input supply" 
and the microword immediately following to 
excite the corresponding adder "output call." 

Notice that the "latching" type architec- 
ture of HMi affords the microprogrammer virtu- 
ally complete timewise independence of when 
inputs are supplied to a data transformer such 
as the adder. He may, in fact, "latch" in 
adder inputs during different microcycles. 
All he must do is make certain all desired in- 
puts are fed at least one microcycle before he 
calls for the corresponding transformer output. 
Thus, the HMO algorithm can simply sequence 
through a stream of microinstructions, con- 
densing (essentially combining) all micro- 
instructions containing "input supply" bits 
into one instruction, until it reaches the 
point where the next instruction contains an 
"output call" bit corresponding to the already 
condensed "input supplies." At this point, 
the algorithm must temporarily stop condensing, 
save (or execute) the newly formed condensed 
instruction, and then proceed to condense 
again starting with the next microinstruction 
in the stream. What all this means is that 
the HMO algorithm can produce, from a micro- 
instruction stream which exercises HMi's hard- 
ware in a purely serial fashion, a correspond- 
ing condensed stream which exercises HMi's 
hardware in a highly parallel fashion. 

Unlike data transformers, data sinks, 
which don't require "output call" bits, make 
it difficult for the HMO algorithm to spot the 
point where condensing must temporarily stop. 
This problem can be solved by requiring that, 
following the desired sink inputs, a succeed- 
ing microinstruction appear containing a "i" 
bitwhich actually excites, or causes, the 
sinking of these preceding inputs. By con- 
trolling sinks in this manner, these sinks 
appear identical to data transformers as far 
as the HMO algorithm is concerned. It always 
sees a series of "input supplies" followed at 
least one microcycle later by a microword 
containing a control bit which, for trans- 
formers, calls for passage of the transformed 
data to some other point and, for sinks, causes 
the actual sinking action to be performed. 

Therefore, the HMO algorithm can now handle 
transformers and sinks with equal facility. 
The major hardware needed is a simple set of 
combinational logic "inhibit" functions which 
are driven both from the condensed instruction 
being formed and from the next instruction in 
the stream. At least one of these functions 
is activated when the next instruction con- 
tains an "output call" corresponding to "input 
supplies" in the condensed instruction. Fur- 
ther condensing is thus inhibited and the al- 
gorithm starts anew on the next instruction. 

Note that Fig. 2 allows the option of 
either saving a condensed result for later use 
(pre-pass compilation) or executing this re- 
sult immediately without saving it (interpre- 
tive execution). Interpretive execution would 
be inefficient for all but extremely low-usage 
microprograms, as it would require repeated 
condensing of repeatedly executed blocks of 
microcode. Therefore, all discussion that 
follows assumes that the HMO algorithm is 
being used as a pre-pass condensing compiler. 

Fig. 3 contains two examples illustrating 
the algorithm's use. Note that the second 
example illustrates how the authors would 
ideally like to handle conditional branch 
microinstructions. This ideal method would be 
essentially to allow the HMO algorithm to con- 
dense along the "non-branch" path (i.e., the 
path which is expected to be taken most of the 
time). Then, later, the algorithm could be 
restarted separately along the yet untouched 
"branch" path. 

Finally, Fig. 4 depicts one example of 
the "inhibit" functions which provide the log- 
ical signals to control the HMO algorithm. 

II. INTEGRATING THE ALGORITHM INTO 
THE MICROPROGRAMMABLE SYSTEM 

While Section I. presented a brief over- 
view of the basic HMO algorithm, this section 
presents some intricate design problems in- 
curred in evolving the algorithm into a well 
integrated system component. Since the algo- 
rithm is actually the final phase of the over- 
all microcode compilation process, many of 
these problems involve considerations of 
whether to allocate a particular function to 
the software compiler or to the hardware al- 
gorithm. However, as will be seen, other 
problems are not related to such an alloca- 
tion and must be resolved on other bases. 

A. Handling Conditional Branch Microinstruc- 
tions 

As stated in Section I., the second ex- 
ample of Fig. 3 depicts an extreme, idealistic 
scheme for handling conditional branches, a 
scheme which allows condensing not only "up 
to and including" conditional branches but 
"past" them as well. The astute reader will 
notice that, in the condensed code, the two 
transfers "AIi÷PGC" and "AI2÷O" will[ always 
be performed, whereas, in the uncondensed 
code, they would have been performed only if 
the "non-branch" path were taken. Obviously, 
such a situation could result in erroneous 
results from the condensed code. 

This problem can be solved by (i) allow- 
ing room in the microinstruction format for 
not only the normal section of control bits 
but also for a conditional section of control 
bits to be executed only if the "branch" path 
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is taken or by (2) simply prohibiting condens- 
ing "past" conditional branches. Although re- 
search results tend to favor solution (2), it 
must be pointed out that the choice between 
these two solutions is virtually unrelated to 
the compiler versus algorithm allocation ques- 
tion. Instead the choice here must be made 
primarily on the basis of the tradeoff between 
the complex microinstruction format (and re- 
lated problems) of solution (i) and the slight 
microprogram condensability loss of solution 
(2) . 

tion supplied to AII during the first instruc- 
tion without first using the corresponding 
added result (by passing adder output AOi 
somewhere, for example), the transfer to AIi 
in the first instruction is a "non-productive" 
("negated" [i0]) transfer. 

The basic HMO algorithm of Section I. 
would, in fact, attempt to condense the two 
transfers to AII together. This condensing 
can be used beneficially to remove the "non- 
productive" transfer as long as an appropriate 
condensing technique is used. This technique 
necessitates partitioning the control bits of 

B. Paralleling of Completely Independent Tasks each microword into the mutually exclusive 
input sets of each hardware register. For 

Fig. 5 is an abstract example illustrating example, the AIi input set consists of con- 
a possible condensing inefficiency. Note that 
although the groups of uncondensed code in 
examples (a) and (b) are equivalent, the con- 
densed code in example (b) is more compact 
than that in example (a). This variance is a 
direct, but subtle, result of the HMO algo- 
rithm's simple condensing scheme presented in 
Section I. For example, the alert reader may 
wonder why, in example (a), the algorithm 

trol bits 8, 9, and 10 (see Fig. i). The 
technique then consists of (i), for non-zero 
input sets in the upcoming word to be con- 
densed, writing this non-zero set over the 
corresponding set in the accumulating con- 
densed result and (2), for all-zero input 
sets in the upcoming word to be condensed, 
leaving the corresponding set in the accumu- 
lating condensed result as is. If such a 

could not have looked at least two instructions condensing technique is used (whenever the 
ahead of "ACCUM÷DATAi" to recognize that, even 
though "AIi÷ACCUM" is inhibited (by an accumu- 
lator inhibit function) from condensing, "IN- 
DEX+DATA2" could have been brought up past 
"AIi÷ACCUM" and condensed onto "ACCUM÷DATAi." 
Indeed, it appears that a scheme in which the 
algorithm, during any given condensing step, 
is allowed to look far ahead and propagate un- 
inhibited instructions (or parts of instruc- 
tions) up past inhibited instructions could 
produce the compact condensed code of example 
(b) directly from the uncondensed code of ex- 
ample (a). However, suffice it to say that 
research has demonstrated many intricate prob- 
lems (hardware complexity, difficulty of as- 
suring condensed code equivalency and proper 
addressing) with such a scheme. 

Rather than resort to such a "messy" 
scheme, the software compiler can instead be 
used to pretailor the code it feeds to the HMO 
algorithm. The basic algorithm works more 
efficiently when its input (uncondensed) code 
is ordered so that completely independent tasks 
do not follow one another in completely serial 
fashion. Essentially, the code of Fig. 5 is 
intended to show two such independent tasks, a 

inhibit functions permit condensing), the 
basic HMO algorithm can easily produce the 
condensed result shown on the right of Fig. 6. 
Thus, "non-productive" transfer removal can 
be handled adequately, at least on a local 
scale, by the hardware algorithm, without 
special help from the software compiler. 

III. ARCHITECTURAL REQUIREMENTS 

As expected, easy and efficient imple- 
mentation of the HMO algorithm dictates cer- 
tain architectural characteristics as desir- 
able. This section presents a summary of the 
major characteristics so dictated. 

A. General Characteristics 

The architecture of HMi must be such 
that all fundamental operations under micro- 
programmed control consist of two elementary 
steps which can be intuitively termed the 
"starting" and "finishing" steps. As implied 
in Section I., two such steps are found quite 
naturally for data transforming units such as 
the adder. However, much time and care went 

multistep transfer of DATA1 to AIi and a multi- into the rather unusual main memory controller 
step transfer of DATA2 to AI2. In example (a) shown in Fig. 1 so that even the data sinking 
these tasks are arranged entirely sequentially operation of a "store into memory" consists 
while, in (b), they are overlapped in a slight- of the needed two basic steps. 
ly more parallel fashion, thus allowing the 
basic algorithm of Section I. to produce a 
more compact result. Therefore, it should be 
the job of the software compiler to search 
for such completely independent tasks, or code 
groups, and reorder them as needed to ensure 
they are not left completely sequential. Such 
paralleling of independent tasks is a rela- 
tively machine-independent, @lobal process 
better suited to the software compiler than 
the hardware algorithm. 

C. Removing Non-Productive Transfers 

Fig. 6 is another abstract example il- 
lustrating a possible condensing problem. 
Note that the first two instructions in the 
uncondensed code both supply information to 
adder input AII. In particular, because the 
second instruction "writes over" the informa- 

The "latching," or "register transfer," 
type architecture indicated in Fig. 1 is use- 
ful for many reasons, some of which are (i) 
it readily supports the "two-step" structure 
mentioned above, (2) it gives the micro- 
programmer (and the software compiler) much 
freedom from hardware timing requirements 
(e.g., freedom to supply the three adder in- 
puts of Fig. 1 in sequential fashion, in 
parallel fashion, etc.) and (3) it lends it- 
self to pipelining slower microcontrolled 
functions to various degrees (a technique 
which research indicates may be useful in the 
interest of machine speed). 

B. Microinstruction Formats 

AS the control section format, a horizon- 
tal, unencoded control section having one bit 
per register transfer is ideal. This arrange- 
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ment readily supports a neat, two-level reali- 
zation of the algorithm's inhibit functions, 
allowing these functions to be driven directly 
from the control register (Fig. 2) and from 
the control memory output lines feeding the 
control register. 

Concerning microinstruction addressing 
schemes, flexibility is the key requirement. 
Research has shown that employment of the al- 
gorithm in its simple, one-pass Section I. 
form yields condensed instructions which are 
linked together but interspersed with remain- 
ing groups of "garbage" instructions. During 
run time, execution will proceed by "leap 
frog" style jumps which circumvent these gar- 
bage instructions. Thus, at the very minimum, 
a scheme employing one complete "next address" 
in each microword (Fig. 2) is needed (as op- 
posed to, say, the sole use of a separate 
microprogram counter, or pointer, register). 

As suggested in Section II., use of the 
ideal conditional branch condensing philosophy 
of Fig. 3 necessitates a quite complex micro- 
instruction format, but, if one prohibits 
condensing "past" conditional branches, many 
instruction formats between this extremely 
complex one and the required minimal one of 
Fig. 2 become possible. However, no matter 
what overall instruction format is chosen, 
research indicates it is in all cases desir- 
able, though not always necessary, to have the 
"branch" path address be completely indepen- 
dent of the "non-branch" path address. 

C. Control Memory Characteristics 

Although many types of control memory can 
be used, one arrangement well suited to sup- 
porting the HMO algorithm is to use the same 
memory type (and speed) for both main and 
control memories. This arrangement, used in 
varying degrees on the IBM 360/Model 25 [ii] 
and the Burroughs B 1700 [12], helps to achieve 
realization of the Section I. assumption that 
one control memory microcycle is sufficient 
to complete any elemental machine operation. 

Of the many possible methods which can be 
used to actually implement the HMO algorithm, 
a firmware implementation's flexibility is 
particularly attractive. A feasible firmware 
implementation can be realized by using two 
separate control memories (or, at least, two 
separate memory sections), one containing the 
HMO algorithm plus other factory-fixed rou- 
tines and the other containing the user's 
microprograms. While condensing, the factory- 
fixed, restricted-access memory would be op- 
erating on the contents of the user-accessible 
memory. Again, this control memory arrange- 
ment employing both fairly-restricted and 
easily-accessible memories has been used in 
varying degrees on real production machines 
like the Burroughs B 1700 [12] and the Micro- 
data 1600 [13]. 

IV. ADAPTATIONS FOR PERFORMANCE ENHANCEMENT 

Up to this point, the simplifying Section 
I. assumption that one microcycle is suffi- 
cient time for all elemental machine opera- 
tions has not been questioned. Obviously, 
such an assumption, if adhered to rigidly and 
inflexibly, could result in a control memory 
cycle too long to allow acceptable machine 
performance. 

This section presents some techniques 
which can help prevent such possible perfor- 
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mance degradation. Basically, these techniques 
allow cycling of control memory at a reason- 
able, chosen speed rather than restricting it 
to cycling at least as slowly as the slowest 
elemental operation under its control. While 
the techniques of the first two subsections 
are modifications of HMi's execution hardware, 
the technique of the last subsection is a mod- 
ification of the basic HMO algorithm itself. 

A. Use of Programmed Wait Loops 

By incorporating "busy" signal indicators 
into those operations which are of longer 
duration than the control memory cycle, con- 
ditional branch microinstructions can be made 
to branch to an "increment-the-PGC-and-then- 
go-to-FETCH" routine. Thus, conditional 
machine instructions for such operations can 
be microprogrammed so as to simply skip the 
next machine instruction whenever the desired 
operational facility is still "busy" from some 
previous use. 

For example, consider I/O operations. 
With such machine instructions available, it 
is a simple matter to program an I/O "trans- 
fer/idle" (or "wait") loop at the machine 
instruction level. (Note that, given a rich 
enough addressing scheme for conditional 
branch microinstructions, there is no real 
reason why such "wait" loops could not also be 
implemented at the microinstruction level.) 

B. Incorporation of Established Hardware Per- 
formance Enhancement Techniques 

If control memory is to be cycled at a 
rate too fast to allow one-cycle completion of 
some slower elemental operations, then several ° 
established hardware techniques can be employ- 
ed to help avoid the implied timing hazards 
which could result during execution. For ex- 
ample, "request/reply" control interfacing 
can be used to ensure that control memory 
idles while awaiting the results of slower, 
previously initiated elemental microcontrolled 
operations. 

On the other hand, an adaptation of the 
Tomasulo algorithm [14], [15] can be employed 
so that the microprocessor need not often be 
idled unproductively. Instead of idling the 
microprocessor can pass appropriate "tags" to 
the intended destinations of the yet unavail- 
able results and simultaneously mark such 
destinations as "busy awaiting information." 
When later available, the actual information 
itself would then be passed to all appropri- 
ately "tagged" units and the associated "busy 
bits" turned off. This Tomasulo type hard- 
ware can permit a rapidly cycled control 
memory to proceed executing even in the face 
of temporarily unavailable information, with 
thepossible beneficial side effect of elim- 
inating the use of temporary storage stations 
called for in the microcode being executed. 

While the other techniques of Section 
IV. are essentially means of compensating for 
(during execution) microprograms which were 
condensed under the "one-microcycle assump- 
tion" even in situations where this assump- 
tion is not completely valid, pipelinin~ [15] 
can be a useful technique in increasing the 
validity and practicality of the "one-micro- 
cycle assumption." That is, rather than sim- 
ply shortening the control memory cycle, 
pipelining can be used in conjunction with 
such shortening to simultaneously shorten the 



required time of slower microcontrolled opera- 
tions. For example, by insisting that the AOI 
register of Fig. 1 be a real physical latching 
register (which has not been assumed thus far), 
the overall process of addition (from operand 
source registers to result destination regis- 
ters) would then consist of three elemental 
stages instead of the present two stages. 
Thus, pipelining yields more, but shorter, 
elemental micro-operations for a given pro- 
cess, making the "one-microcycle assumption" 
easier to meet even if the control memory 
cycle is shortened. 

C. Use of Different "Fields of View" for 
Different Inhibit Functions 

Unlike the other techniques already pre- 
sented, the following technique proposes 
dropping the "one-microcycle assumption" of 
the basic HMO algorithm and giving the algo- 
rithm the capability to ensure different 
length "timing gaps" (in its output stream of 
condensed microcode) for different length 
elemental microcontrolled operations. By set- 
ting each inhibit function's "field of view" 
equal to the number of microcycles needed to 
complete the machine operation scrutinized by 
that inhibit function, appropriate "timing 
gaps" for all such operations can be produced 
(where "field of view" is the number of micro- 
instructions an inhibit function can look 
ahead from the condensed result being formed 
in the condensing register). 

Specifically, by employing a first-in- 
first-out stack (through which microinstruc- 
tions are sequenced up to the condensing 
register), inhibit functions could be driven 
both from the condensing register and from a 
particular stack position appropriate to the 
desired "field of view." For example, the 
second position in the stack would be used to 
create a "field of view" of two for those 
operations requiring two control memory cycles 
for completion. 

CONCLUSION 

This paper has proposed a hardware algo- 
rithm which could enable a microprogrammable 
machine to do its own local, machine-dependent 
optimization of user-written microprograms, 
leaving the global, machine-independent opti- 
mization to an associated software compiler. 
In fact, one software microprogram compiler 
could efficiently serve a group of logically 
different, but architecturally similar, 
machines, each possessing an implementation of 
the HMO algorithm enabling it to do its own 
machine-dependent condensing and "cycle 
squeezing." Such a system should be the ideal 
environment for a software compiler which can 
efficiently serve several different machines 
but still present the user with a maximum 
degree of machine independence as he writes a 
microprogram for a particular, chosen machine. 

Section I. presented the algorithm in 
very basic form and described its optimiza- 
tion approach of transforming microinstruction 
streams exhibiting serial machine hardware 
utilization into equivalent condensed streams 
exhibiting highly parallel hardware utiliza- 
tion [16]. Then, Section II. discussed some 
of the subtle design details involved in 
evolving the algorithm into a true system 
component that works well with other system 

components. Next, Section III. presented some 
architectural characteristics suitable to the 
algorithm's implementation. It is encouraging 
to note that these characteristics are not 
exotic ones. On the contrary, many are found 
on real production machines, thus implying 
cost effectiveness. Finally, Section IV. dis- 
cussed both possible modification of the basic 
algorithm and also incorporation of existing, 
established hardware algorithms and control 
techniques as useful means of ensuring an 
acceptable level of machine performance. 

Since the algorithm presented in this 
paper is new and untried, many practical 
questions still remain unanswered. For ex- 
ample, since the algorithm itself and the 
horizontally microcontrolled architecture of 
HMi were developed jointly to complement each 
other, the algorithm's usefulness in direct 
application to significantly different hard- 
ware layouts (such as a strictly vertically 
microprogrammable machine) is uncertain at 
this time. Similarly, until the HMO algo- 
rithm and an associated software compiler are 
actually built and implemented so that the 
exact areas of software/hardware cooperation 
and separation in the overall microcode opti- 
mization process can be specifically deter- 
mined, it would be extremely difficult, if 
not futile, to attempt to derive meaningful, 
precise numerical evaluation measures of the 
algorithm's efficiency or performance. In- 
deed, the lack of appropriate, precise evalu- 
ation measures to guide the design of novel 
developments is more often the case than not 
[17]. As a result, the designer must. often 
rely, at least initially, on less precise, 
more subjective tradeoffs and decisions (such 
as those of Section II.) to guide his work. 
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PGC - Program Counter, IRA - In~tructlon Register 
Address Portlon, 

MIR - Memory Input Register, 
MOR- Memory Output Register, 
eto. 

pr_r AnIIRA AOi ACCUM P&C 0 ~ORIN.DEX 0 0 3. 
4 A~,~UM'" , '~ ,o . . . . .  7 ,, ,, . . . .  ~ '  . . . .  

MEM. L.~A_.~_J I M Z R I  I A Z ~  J I ~ , z 2  I l!_:l ~1'" , ; F . , .  

, , ~0/. , - s . . . . . . .  

t/.5~i.~Y pseuao ~eB~a%e~s. C / ...... L~_~/kOi~O. ; 
NOTE: The #'s indicate the microinstruction bit controlling 

a transfer. 

Fig. 1 Subset of HMi (Hypothetical Machine l) 

Masee, Rea,~e," I 

. 

Iha-& ('~J'4fe) Upc°';" ] 

Fig. 2 Flow Chart of Basic HMO Algorithm 
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Phe fo]]owln6 example illustrates condensinE of an "add" with 
dlrect address that performs ACCUM~-ACCUM + MEM(IRA); 

MAR ~-IRA :~ 

g 

u n c o n d e n s e d  
mlcrocode 

~AI2 *MOR; AIi *ACCUM; CI +0~ 

~ACCUM . A O i ; ~  

condensed 
microcode 

The following example i]lustrates essentlally how the author 
hopes to handle conditional branch mlcrowords. The example 
is a "mem. increment and sklp next instr, if result is O" 
instruction. Note that "EFF ADDR" means Effective Address. 

MAR +EFF ADDR;9 

q n  ÷o b 
Isets MIR" ~'~ 
]durln6 dai ~ 
Lrest °re "~ "k~~.qlb 

NOT~: No re~.A~ 
ixfers are d6ne~a.. .'~-q~J,',Z ~'l 
here, only a~-J~-- A~ ~ ~ ~t 

ton Aolz, snCF ~ ~ J /  
,adder cond# ~AI2 + O b ~  / 
code w h l c ~  C~ " - ^ J  "~" 

Lis 1 Iff~ ~PGC ÷AOI; -~- 
~AOi~O.F ~ 

L ___3 
unc ondensed 
mIorocode 

condensed 
mlcrocode 

MAR÷EFF ADDR D 

->~AI2 *MOR; AII 4-0; CI4-1 2 

t ) 

Fig. 3 Some "Before & After" Examples 
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I n k ~ b l t  
A&&~r 

~% . #I I - e ~ t  5uppI,es 
( 

I ~  Control Bit I 
---- from condensed 

lormeG In 
k~=7 ~nstr[n. beln6 

Master Re6. 

%% 

Output Coils" 
I 

f- -., 

• I ~ from next 
/ upcomin5 

\ ~ mlorolnstr'n --~ =z,%1%,~ 

e~ .~. ~ Loolcal OR 
L_~" --> Lookal AND 

NOTE: Refer to Fig.'s 1 & 2 for explanation of 
"Master Reg.", various control bit #'s, etc. 

NOTE: "Inhibit" functions for other components in HMi 
are formed in a similar manner to the one shown 
above for the adder. 

Fig. 4 '~Inhibit" Function Example 

ACCUI~ +DATAi; D ACCUM ~-DA PAl ;~ 

~DATA2 p 

~AI2 ~INDEX; AI2 ~ I'~TDEX; 
k, v ) k . . . . .  _ .~ .  J 

uncondensed mlcrocode (a) condensed microcode 

ACCUM~-DATA1;)~ ~Qn~D~ ............. ~ ACCUM~DATAI; INDEX+DATA2;~ 

IN~DEX+DAT~2 ;~j | 

,. J - -  t . ,  ; 
uncondenzed microcode (b) condensed mlcrocodo 

Fig. 5 Paralleling Independent Tasks 

AI 1 ~r ACCUM ;~? G-°~d--e~-se 

 A *P°c 5 J 
~MAR ~AO 1 ; 

uncondenzed 
microcode 

L J 
condensed 
mlcrocode 

Fig. 6 Non-Productive Transfer Removal 
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