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An FFT algorithm operating on a 16-bit microcomputer
can calculate a 256-point transform as much as 10 timesfaster

than a similar algorithm on an eight-bit microcomputer.

A Performance Study of 16-bit
Microcomputer-implemented

FFT Algorithms

P. D. Stigall, R. E. Ziemer, and L. Hudec

University of Missouri-Rolla

Microcomputers have been used in many applications
to yield a more cost-effective solution and increase flex-
ibility. Such an application is digital signal processing, in
which computers are suitable for many tasks including
filtering and control. One form of digital filtering is per-
formed with the aid of a fast Fourier transform, or FFT,
algorithm. This study investigates the performance-in
terms of execution time-of Gold-Bially FFT algorithms'
implemented on a 16-bit microcomputer, the SBC
86/12A manufactured by Intel Corporation. This par-
ticular FFT algorithm is convenient for microcomputer
implementation because it is organized on an array basis.
The algorithms perform the FFT calculations for radix 2
or 4 and a variable number of input data samples up to
1024. FFT computation times for the 16-bit SBC 86/12A
are compared with those of two previously implemented
eight-bit systems.2'3

FFT algorithms with arbitrary radixes

Quite often, the FFT algorithms employed in signal
processing applications involve elementary computa-
tions-referred to as butterflies-which produce two out-
put words from two input words. Such an algorithm is
termed a radix-2 algorithm and its use implies that the
transformed sequence is composed of 2n members. Sup-
pose an N-point discrete Fourier transform, or DFT, is
desired, in which Nis a composite number which can be
factored into the product of integers

N=N1N2 Nm

where Nis not necessarily a power of two. For example, if
N= 64 and m = 3, we might factor N into the product
64 =4 x 4 x 4 so that the 64-point transform can be viewed
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as a three-dimensional 4 x 4 x 4 transform. Such an ap-
proach is sometimes taken for several reasons. First, each
elementary computation (i.e., each four-point transform
in the above example) may involve fewer multiplications,
additions, or memory cycles than the equivalent number
of radix-2 operations. Second, this approach allows one
to parallel operations using additional hardware and
thereby completely overlap memory cycles and computa-
tion cycles, thus making more efficient use of processor
hardware. Third, the procedure can be formulated as a
series of matrix computations, making it easier to imple-
ment the FFT as a concurrently programmed algorithm.

To further explain this approach, suppose that N can
be represented as the product of two integers

N=N1 N2.

(If N1 and N2 are both composite, they can be further
broken down into the products of other integers.) The
data to be transformed can then be arranged into a two-
dimensional array, and DFTs can be done on each row in-
dividually. Each element of the resulting array of
numbers is then multiplied by a "twiddle factor," which
is an appropriate power of WN= exp[ -j27r/N]. The
resulting matrix is then transformed column by column to
obtain the final result.

If N is a prime number, making factorization of N
impossible, the original signal can be zero-padded in such
a way that the resulting new composite number of points
can be factored. IfN can be expressed as N= rm, and if
the algorithm is carried out by means of a succession of
r-point transforms, the resulting FFT is called a radix-r
FFT. In a radix-r FFT, an "elementary computation,"
denoted EC, consists of an r-point DFT followed by
multiplication of the r output quantities by the ap-
propriate twiddle factor. The number of ECs required is

C = Nlog,N,r

which clearly decreases as r increases. Of course, the
complexity of an EC increases with increasing r. For r = 2,
the EC (the butterfly mentioned previously) consists of a
single complex multiplication and two complex addi-
tions, while for r =4, the EC requires three complex
multiplications and several complex additions.
To see how the radix-r FFT algorithm is developed in

this fashion, we begin with the more general case where
the composite number Nfactors asN=LM. Let n and k in
the DFT sum be represented as

k=Me+ m,n =Lr+s
(s,=O, 1., L- 1;
r,m=O,l, ...,M-l).

Using this index notation, the DFT sum can be written as

M-1 L-1
X(Lr+s) = S S X(Mf+m)WN(Mf+m)(Lr+s)

m=0 e=o

r=O, 1, . . . M- 1,
s=O, 1, . . . L-1.

Now,

(MQ+ m) (Lr+s) =MLrQ+ Mes +Lrm + ms,

and

WNMLrC = WNNfr= 1.

Hence, Equation 1 can be rearranged into the form

M-1 L-1
X(Lr+s) + E WNLmrWNms E X(Mf+m) WNMs2i(2)

m=0 e=o

Defining

(1)

(output unscrambled)
Eq.(a); Col. 0

Col. 1
Col. 2
Col. 3

Eq.(b); Col. 0
Col. 1
Col. 2
Col. 3

Eq.(c); Col. 0
Col. 1
Col. 2
Col. 3

Eq.(d); Col. 0
Col. 1
Col. 2
Col. 3

L-1
q(s,m) = E x(Mf+m) (WNM)(s,

go
(3)

the DFT sum of Equation 2 can be written as

M-1
X(Lr+s) = E q(m,s) W ms(W L)mr,

M=O
(4)

where it is important to note two points: First, for any
fixed m, q (s, m) can be interpreted as a DFT of each row
of the array of x(n)s arranged as

x(O) x(M) x(ML-M)

x(l) x(M+ 1) x(ML-M+±1)
[x(n)]= .I

Lx(M- 1) x(2M- 1) x(ML -1)

(5)
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Table 1.
Results of transformation of array [q(s,m)W16msl = [q(s,m)l.
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Since each is an L-point transform, the proper complex
exponential multiplier to be used is

WL =expf -j27r/L]
=exp[-j2irM/(ML)I= WNM, (6)

which checks with Equation 3. Second, each element of
the array (q(s,m)] is multiplied by the twiddle factor
WNsm = WNms (i.e., WN is raised to the power of the pro-
duct ofthe row and column indices), and an M-point DFT
is performed on each column. (Note the reversal in the in-
dices for [q (m,s) I in Equation 4 as compared with Equa-
tion 3.) The proper Wto be used is

WM=exp( -j27r/M)
=expf(-j2irL/(ML)I= WNL, (7)

which checks with Equation 4. In this fashion, the
N-point DFT is broken down into a series of L-point
DFTs followed by a series of M-point DFTs, where
N=ML.
To better understand how the DFT is done by taking

this approach, consider the example below.

A Gold-Bially DFl computation. Consider N= 16,
L=M= 4, andx ( k) = cos(rk/2). Arranging the data into
a 4 x 4 array, we have

I1 I 1 1

[x(k) ] = _I _I _I _ I

where x(O), x(l), x(2), and x(3) occupy the first column,
and so on. Applying Equation 3 to each row, we obtain

3
q(s,m)= E x(4f+m)1e-r1/2]sf.

e=o

Thus, the four-point EC is

q(O,m)=x(m) +x (4+m) +x(8+m) +x (12+m)
q(l,m)=x(m) -jx(4+m) -x(8+m) +jx(12+m)
q(2,m)=x(m) -x (4+m) +x(8+m) -x (12+m)
q(3,m) =x(m) +jx(4 + m) -x(8 +m) -jx(12 + m).

modification by the twiddle factor. The final step is to
transform the array (q(s,m) W16ms] = [q(s,m)] column
by column in accordance with Equation 4. (Note the in-
dex reversal in Equation 4 on q(m,s). ) The EC is iden-
tical to that used to obtain [q(s,m)]. The results are
presented in Table 1.

System structure

The implementations of the Gold-Bially FFT algo-
rithms for radix 2 and radix 4 were done on the 16-bit Intel
SBC 86/12A, interfaced to a microcomputer develop-
ment system, the MDS-225, also manufactured by Intel.
The SBC 86/12A is a single-board computer which in-
cludes an Intel 8086 CPU, 32K bytes of dual-port RAM,
and sockets for 16K bytes of PROM. The SBC is used
for calculating the FFT algorithms, while the develop-
ment system is used for software development, for input
data generation, and as an intelligent communication
terminal.
The FFT algorithms are written in Intel ASM 86

assembly language to allow two parameters to be
chosen-radix and FFT size. The flowchart for this pro-
gram is shown in Figure 1. (A detailed program listing is
available from the author-see address following Pro-
fessor Stigall's biography, page 66.) A rectangular win-
dow is assumed, thus avoiding additional multiplica-

(a)
(b)
(c)
(d)

In keeping with array notation, the second argument of
q (s, m) indicates the row. Applying this EC to the array
[x(k)], we obtain the array

r4
l

[4(s,m)]= |-4

0 0
0 0
0 0
0 0

0
0
0
0

The next step, according to Equation 4, is to multiply by
the twiddle factor W6ms. Since both nonzero factors in I
the [q(s,m)] array are in the s=0 row, there is no Figure1.FlowchartfortheFFTsimulationprogram.
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Windows and their properties

Sampling the spectrum of a finite-duration time-
domain signal implies a periodic extension of that
signal in the time domain. Unless the signal is periodic
with an integer number of periods within the sampling
interval, or window, or unless it smoothly approaches
zero at each end of the interval, the resulting discon-
tinuities generate additional spectral components.
This phenomenon is referred to as spectral leakage.
The reason for spectral leakage can be traced directly
to the discontinuities implied at either end of the
sampled signal. To minimize spectral leakage, data
samples can be multiplied by nonrectangularwindows
which approach zero smoothly at the beginning and
end of the sampling interval. Several window func-
tions are available. A few common ones and their pro-
perties are listed in the table below. Their effects on a

Various windows and their characteristics.*

cosine signal with a noninteger number of cycles
within the sampling interval are shown in the accom-
panying figure. In general, these results show that it is
not possible to simultaneously have a narrow main-
lobe and low sidelobes for a window. However, some
windows provide a better compromise between these
two parameters than others.

1. F. J. Harris, "On the Use of Windows for Harmonic
Analysis with Discrete Fourier Transform," Proc. IEEE,
Vol. 66, No. 1, Jan. 1978, pp. 51-83.

2. H. H. Nuttull, "Some Windows with Very Good Sidelobe
Behavior," IEEE Trans. Acoustics, Speech and Signal
Processing, Vol. ASSP-29, No. 1, Feb. 1980, pp. 84-91.

The effects of various windows on
the spectrum of a sampled cosine waveform.

Highest 3-dB width Coherent
Window sidelobe frequency; [gw(n/N

level; dB bins [EW2(n)]
1. Rectangular

w(n)=1,n=0, ..,N-1 -13 0.89 1.0

2. Triangular
w(n) = 2(n + 0. 5)/N
w(N - n - 1) = w(n)

n=0,1,2, ,N/2 -27 1.28 0.5

3. Hanning
w(n) = 1 [1 -cos (2(n + 0.5)7r)

2 N
n=0,1,2,. -N-1 -32 1.44 0.5

4. Hamming
w(n) =.54

-0.46 cos(2r(n+0.5))
N

n=0,1,2,. . N-1 -43 1.30 0.54

5. Blackman
w(n)=0.42-0.5 cos(2'Y(n+0'5)

N-1
n=0,1,2, ..-N-1 -58 1.52 0.46

6. Kaiser-Bessel =2;
w(n) = 10(7rafl)/10(7rcx) -46 1.43 0.49

where = 2.5;
-57 1.57 0.44

(3= 1~ (2fl+1 -1)2 ac=3.0;
N -69 1.71 0.40

n=0,1,2,. -N-i1 =3.5
-82 1.83 0.37

lo(x) = modified
Bessel
function;
order zero.

*See Harris.1 For a correction to, and extension of, Harris' results, see Nuttull.2
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tions on the input to the FFT. (For an overview of nonrec-
tangular windows, see box at left.) Some of the program
features are described below.

Data representation. Each complex data sample is
represented as two 16-bit two's-complement binary
numbers. Since a popular and practical size for A/D and
D/A converters is 12 bits, the integer range of the data
samples is limited to - 2048 to + 2047. The most signifi-
cant bit is the sign bit, while the eleven least significant bits
are used for data.

Data structure. The complex data samples are stored as
double words in memory in the following order:

* Radix 4-data are stored as a two-dimensional array
with N/4 rows and 4 columns.

* Radix 2-data are stored as a two-dimensional array
with N/2 rows and 2 columns.

Twiddle factors. The exponential values of the complex
twiddle factor required for the Gold-Bially FFT algo-
rithms are derived from a table containing the cosines of
angles in the first quadrant with an increment of ir/512.
Each value in the table has a 16-bit accuracy, or a max-
imum error of ±7.6 x 10 -6.

Overflow check. An overflow occurs when the sum of
two numbers is equal to or greater than 8, since there are
only three bits to represent the integer part. An overflow
check is performed before each addition by temporarily
adding the integer parts. If the result is greater than 6, all
data are divided by the radix, and the number of scalings
is incremented by 1. This scaling factor is printed out
when the FFT is completed.

Input/output. The two parameters, radix and FFT
size, are entered by the user. The output of the program
includes the FFT input data, the results, the execution
time, and the scaling factor.

The execution times are in seconds. The scaling opera-
tions result from checking and preventing overflow, as
discussed above. The two different inputs are (1) a set of
data samples of a sine function with one period and an
amplitude of 2047 units, and (2) a set of data samples of
random numbers from - 2048 to + 2047.3 When random
data are used for an input, the results are averaged for ten
different random sets of data.

Comparison with eight-bit microcomputers. Table 3
compares the execution times of three different micro-
computer implementations of the previously discussed
Gold-Bially FFT algorithms. The Futuredata (Microkit
8/16) is a microcomputer development system with 16K
bytes of RAM, a keyboard, a CRT display, and a tele-
printer. Its shortest execution time for an instruction is
two microseconds. It has no hardware multiplication.
The System 80/20, manufactured by Intel Corporation,
includes a single-board computer (an SBC 80/20), 2K

Table 2.
Timing and scaling operations for different-sized FFTs on a 16-bit

microcomputer (SBC 86/12A).

NUMBER OF EXECUTION TIME NUMBER OF
SAMPLES (SECONDS) SCALING OPERATIONS

RADIX 4 RADIX 2 RADIX 4 RADIX 2
1024 1.98* 3.43 5 9

(1.90)** (3.33) (3.60) (6.60)
512 - 1.53 - 8

(1.49) (6.00)
256 0.390 0.679 4 7

(0.370) (0.659) (3.00) (5.40)
128 - 0.296 - 6

(0.291) (5.00)
64 0.071 0.126 3 5

(0.068) (0.120) (2.10) (4.00)
32 - 0.0520 - 4

(0.0509) (3.60)
16 0.0109 0.0204 2 3

(0.0106) (0.0201) (1.90) (3.00)
*Sine data used for an input.
"Random data used for an input (average of 10 input sets).

System performance

Many applications in digital signal processing require
FFT algorithms to operate in a fixed time period. This is
especially true in real-time processing, where new data is
sampled at regular intervals. Hence, the execution time of
FFT algorithms on a modern 16-bit microcomputer is an
important performance measurement.

16-bit microcomputer performance. Table 2 gives the
execution times and the number of scaling operations for
two different data inputs and a given number of samples.

Table 3.
Timings for different-sized FFTs implemented on different

microcomputer systems.

NUMBER
OF

SAMPLES
1024
256
64
16

EXECUTION TIME (SECONDS)
FUTUREDATA SYSTEM 80/20 SBC 86/12A

RADIX 4 RADIX 2 RADIX 4 RADIX 2 RADIX 4 RADIX 2
19.41 * 22.95 - - 1.90 3.33
3.788 4.389 1.293 1.447 0.370 0.659
0.687 0.772 0.195 0.229 0.068 0.120
0.118 0.117 0.046 0.043 0.011 0.020

*Random data used for an input (average of 10 input sets).
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bytes of RAM, 2K bytes of EPROM (on which the FFT
program resides), and a teleprinter. It also has a math
board capable of fixed- and floating-point operations.
Both the Microkit 8/16 and the System 80/20 use an eight-
bit microprocessor, the Intel 8080. The third microcom-
puter in the comparison is the 16-bit SBC 86/12A de-
scribed previously.

Sixteen-bit microcomputers have yielded economical
solutions to previously uneconomical applications. As
demonstrated in this article, an FFT algorithm operating
on a 16-bit microcomputer can calculate a 256-point
transform in less than 400 milliseconds. This is approx-
imately 3.5 (using an external-multiply board) and 10 (us-
ing a software-multiply routine) times faster than a
similar algorithm implemented on eight-bit microcom-
puters having the same accuracy.The 16-bit implementa-
tion's speed would be very desirable for applications in-
volving human interaction.

The execution time of the Gold-Bially FFT algorithm
depends on the radix and on the type of input data. In
some applications other window functions, rather than
the rectangular window function implemented here, may
be desirable. E
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