
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 1984

A Microprocessor-Controlled Message Display System A Microprocessor-Controlled Message Display System

Paul D. Stigall
Missouri University of Science and Technology, tigall@mst.edu

Brian E. Lenharth

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
P. D. Stigall and B. E. Lenharth, "A Microprocessor-Controlled Message Display System," IEEE Micro, vol. 4,
no. 2, pp. 10 - 25, Institute of Electrical and Electronics Engineers; Computer Society, Jan 1984.
The definitive version is available at https://doi.org/10.1109/MM.1984.291315

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MM.1984.291315
mailto:scholarsmine@mst.edu

Microprocessors replace electromechanical components to make

this message display system both more efficient and less costly.

A Microprocessor-controlled
Message Display System

Paul D. Stigall

Brian E. Lenharth

University of Missouri-Rolla

Electronically controlled message systems which use
matrices of ordinary incandescent lamps have become

a common means of providing public information, from
time-and-temperature displays to stadium scoreboards.
The more sophisticated displays, which offer animation
and halftone pictures, need one or more computers for
real-time control. The smaller and simpler display
systems, however, have not benefited from these tech-
nological advances, but instead have relied largely on elec-
tromechanical components for their modest control re-
quirements. Our goal was to determine whether the
smaller systems could also benefit from the use of
microprocessors.

We chose to study the kind of message display system
typically used for public service and advertising messages.
This system has one or more banks of incandescent lamps
arranged in a matrix of 60-70 columns by seven or eight
rows. Approximately 12-15 characters of a message may
be displayed in a given frame, with a maximum message
length of 5-10 frames.

System design

After examining the available message display systems,
we decided which features would be most desirable in a

0272-1732/84/0400-0010501.00 (1984 IEEE10 IEEE MICRO

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

microprocessor-controlled message display system
(MCMDS). We wanted a system with

* three separate messages, each containing up to 100
characters;

* two separate displays: the main display (incandescent
lamps) and a compact console display (LEDs);

* a display matrix of 64 columns by seven or eight rows
of lamps;

* two display modes: a "segmented" display mode and
a "scrolled" display mode;

* capability to display message input on the console
without affecting messages on the main display;

* capability to call up any stored message;
* a digital thermometer and clock for generating time
and temperature data;

* a serial data line or fiber-optic cable for transmis-
sion between the control console and display; and

* a minimum of hardware components with as many
functions as possible performed by the system
software.

Our design of this system is shown in Figure 1. The main
processor receives and formats input from various
sources, including the keyboard, control switches, status
lights, temperature sensor, and time-of-day clock. It
stores display data in internal memory and, at the pro-
per time, transfers the data to the main and console
displays via serial data links. As each display processor
receives a message from the main processor, it translates
the message into the desired format and updates the
display. The use of three microprocessors may seem ex-
cessive for a system of this type, but we located one at
each display for a very good reason: a single serial data
line between the main processor and display eliminates
the expensive and bulky cables used in other systems. The
8-bit character representations used in the display are
compressed into 6-bit codes (through the elimination of
unused codes) for transmission over the serial line and
recreated at the display processor. This compression per-
mits a 25-percent reduction in transmission time com-
pared to systems that use cable.

After considering the available microprocessors, we
chose the Intel 8085: it is inexpensive, self-contained (ex-
cept for required memory, I/O, and event timing circuits),
and fast, and it has the speed and architectural features
to perform the required functions. One major factor in
choosing the 8085 was the availability of the Microkit
(now Futuredata) development system to aid in software
development. The Futuredata support software consists
of a text editor, assembler, and microemulator monitor
with the ability (via a hardware accessory) to program
2708-type EPROMs. (Despite the use of 2716 EPROMs,
only a single hardware adapter and software routine were
required to change from 2708 to 2716 programming
capability.)*

All circuitry for the MCMDS logic uses a single 5-volt
power supply. Previous generations of microprocessor cir-

*The Microkit 8085 development system was based on cassette tape and
sold in 1978 for $3850. Although this system is no longer available, any
one of several current personal computers with the abovementioned hard-
ware and software support could be used as a development system.

cuitry (the 8080 processor, 2107 RAMs, 2708 EPROMs,
etc.) required up to three separate supply voltages. This
created complexity and a greater possibility for failure.
The ability to use a 5-volt power supply was a welcome
contribution to our goal of keeping hardware to a
minimum.

Processor support circuits were chosen from the selec-
tion of sophisticated multifunction integrated circuits
presently available. The use of these ICs helped minimize
the parts count and enabled us to use a simple high-level
software interface. The 8155 timer + RAM + I/O circuit
provides two or three I/O ports, a 14-bit timer for baud
rate and system timer generation, and a 256-byte
read/write memory-all needed to support the processor
in this application. Read/write memory in the main pro-
cessor (in addition to that provided by the 8155s) comes
from 2114 static RAMs. We chose static RAM over
dynamic because the added complexity required to im-
plement the dynamic RAM refresh circuitry far out-
weighed its price advantage. Program and constant data
for all processors are contained on Intel 2716 EPROMs,
each of which stores 2048 bytes.
To control the serial data lines between the main pro-

cessor and the displays, we used Intel 8251 universal syn-

Figure 1. Block diagram of MCMDS-the microprocessor-controlled
message display system.

April 1984 1 1

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

Wire-wrapped connections

Low-volume or prototype microprocessor systems
usually require an inexpensive method of circuit board
layout. The cost and time involved in using single-
sided, double-sided, or multilayer PC boards cannot
always be justified even though these boards may of-
fer more reliable connections, occupy less space, and
have a more pleasing appearance. Inexpensive circuit
board layout methods usually compromise ruggedness
and packaging density but can improve the ease of
servicing.

Wire-wrapping is one of the more popular construc-
tion techniques for inexpensive circuit boards that re-
quire solderless connections. Contact is made by tight-
ly wrapping a round wire around a square terminal: five
complete turns around the terminal give the electrical
connection a total of 20 contact points. The wire-
wrapping process can be broken into three steps:

* stripping insulation from one end of the wire,
* wrapping the wire around a terminal, and
* unwrapping the wire to correct mistakes or change
the design.

Wire-wrapping tools that perform all three steps
range from $8 for a manual tool1 to over $100,000 for
a fully automatic wire-wrap machine.2
Two popular forms of wire-wrapping, the standard

wrap and modified wrap, are illustrated here. The stan-
dard wrap winds only bare wire around the terminal;
the modified wrap winds a portion of insulated wire
around the terminal in addition to the bare wire, in-
creasing the connection's ability to withstand stress
and vibration.

Wire-wrapping has five main advantages as a con-
struction technique:

* It is inexpensive, even with the necessary tools.
In addition to tools and integrated circuits, the
materials include the board (as low as $5 to $10),
wire-wrap sockets ($.40 to $2), and the wire ($6 to
$7 per 100 ft.).'

* It is fast compared to techniques that require
soldering.

* It is easy to change bad components and salvage
components when the board is no longer needed.

* It is easy to make changes or corrections by un-
wrapping and correctly rewrapping the connection.
(Excessive unwrapping and rewrapping on the
same terminal, however, will "round" its edges,
reducing the number of reliable contact points.)

* It eliminates thermal shock introduced by
soldering.

Wire-wrapping also has several disadvantages:

* Noise and crosstalk are introduced by high-
frequency signals, parallel wires, and the length
of the wires themselves. However, noise can be
reduced with a point-to-point (or "rat nest") wire-
wrapping scheme, even though it is less attractive

STANDARD WRAP MODIFIED WRAP

than parallel wires. Circuitry using higher-
frequency signals can be isolated during board
layout, and connections can be kept as short as
possible.
Tracing a wire from point to point during debug-
ging can be difficult, especially with a rat-nest
wire-wrapping scheme. However, this problem can
be overcome by very gently tugging on one end of
the wire and watching for movement on the other
end. Color-coding the wires can also reduce con-
fusion-for example:

Yellow-
White -
Blue -

Red -

Black -

Address Lines
Data Lines
Control Lines
+ 5V Power
Ground

* Circuit boards with wire-wrap sockets and in-
tegrated circuits can be over one inch thick.

* The mechanical connection within the socket can
become damaged or corroded and is generally less
reliable than a soldered connection.

* Poor insertion into the sockets can result in
damaged pins on the integrated circuits.

When used correctly and for the right application, wire-
wrapping can be a valuable circuit board layout tech-
nique for microprocessor systems. More information
on wire-wrapping-as well as on other solderless
methods-is available in books3'4 and magazines.5

References

1. Digi-Key Catalog, Digi-Key Corporation, Thief River Falls,
MN, Jan. 1984.

2. Wire-Wrap Tools for Solderless Wrapped Connections,
Gardner-Denver, Grand Haven, Ml, 1983.

3. B. A. Artwick, Microcomputer Interfacing, Prentice-Hall,
Englewood Cliffs, NJ, 1980.

4. A. Clements, Microcomputer Design and Construction,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

5. A. Mangirei, "Wire-Wrapping and Proto-System Tech-
niques," Byte, Vol. 6, No. 5, May 1981, pp. 152-170.

IEEE MICRO12
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

chronous/asynchronous receiver/transmitters (USARTs).
In this application, the communication on the data line
operates in a synchronous mode, transmitting 6-bit
characters at 19,200 baud. By using USARTs we
eliminated the program's-and programmer's-concern
with timing, synchronization, parallel-to-serial conver-
sion, etc.
The MCMDS software is as important as the hardware.

The main software timing control is a system interrupt
occurring every 100 milliseconds. This causes the system
to execute a complete cycle of the control software in this
time period so that both displays, including time and
temperature information, can be updated as necessary and
control switch and keyboard interrupts can be handled.
Thus the speed and complexity of each software routine
had to be considered when each hardware option was con-
sidered. The system software was written in assembly
language. Although this was less convenient than a higher-
level language, it provided the most compact and effi-
cient code. Structured programming techniques were used
in software generation.

Implementation of the system

The electronic hardware of the MCMDS was im-
plemented in a modular fashion. We used wire-wrapping
techniques1 for the main and display processors since it
is not time- or cost-effective to design and fashion printed-
circuit cards for a single-use application. We did,
however, use printed-circuit cards for the circuitry of the
display; these plugged directly into a printed-circuit
display motherboard. We were especially careful to
eliminate noise and crosstalk during the layout and wir-
ing of the unit.
Main processor. The most complex entity in the

MCMDS is the main processor (Figure 2). Built around
an Intel 8085 microprocessor, it receives input from the
keyboard, console control switches, and an analog-to-
digital converter wired to a temperature sensor. The pro-
cessor provides output to the console status lights and
to two serial data lines which transmit formatted display
data to the display processors.
The heart of the processor is the 8085 and its associated

buffers, address and device decoders, program memory,
and read/write memory. The eight low-order address lines
(which on the 8085 are multiplexed onto the same pins
as the data lines) are separated by an 8212 eight-bit in-
put/output port. This port latches and buffers these lines
in synchronization with the 8085's address latch enable
line. Other address and control lines are buffered and/or
inverted by 8T97 and 8T98 circuits, respectively. Low-
power Schottky (74LS series) integrated circuits are used
in timing, device-selection, and address-decoding cir-
cuitry. Programs and constant data are stored in 2716
EPROMs. Data storage is provided by 2114 RAMs (each
of 1024 x 4 bits); 512 bytes of RAM are provided in the
two 8155 RAM + I/O + timer circuits. Memory address
assignments are listed in Table 1.

Operation of the main processor requires a number of
timing signals derived from the 8085 clock output (3.072

Figure 2. MCMDS main processor block diagram.

Table 1.
MCMDS main processor memory assignment.

STARTING ENDING LENGTH MEMORY MEMORY
ADDRESS ADDRESS (BYTES) TYPE UTILIZATION

0000 07FF 2048 EPROM (#1) PROGRAM/TABLES
0800 OFFF 2048 EPROM (#2) PROGRAM/TABLES
1000 17FF 2048 EPROM (#3) NOT USED
1800 1FFF 2048 EPROM (#4) NOT USED
2000 23FF 1024 RAM (#1) MESSAGE STORAGE
2400 27FF 1024 RAM (#2) MESSAGE STORAGE
2800 2BFF 1024 RAM (#3) NOT USED
2C00 2FFF 1024 RAM (#4) NOT USED
3000 33FF 1024 RAM (#5) NOT USED
3400 37FF 1024 RAM (#6) NOT USED
3800 3BFF 1024 RAM (#7) NOT USED
3C00 3FFF 1024 RAM (#8) NOT USED
4000 40FF 256 RAM (8155 #1) VARIABLES
4100 41FF 256 RAM (8155 #2) PROGRAM STACK

April 1984 13

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

Table 2.
MCMDS main processor input/output address assignments.

I/O ADDRESS DEVICE PORT FUNCTION

00 8155 #1 - COMMAND/STATUS REGISTER
01 8155 #1 PA TEMPERATURE A/D INPUT
02 8155 #1 PB KEYBOARD INPUT
03 8155 #1 PC I/O SYNCHRONIZATION BITS
04 8155 #1 - TIMER REGISTER (LOW-ORDER)
05 8155 #1 - TIMER REGISTER (HIGH-ORDER)
10 8155 #2 - COMMAND/STATUS REGISTER
11 8155 #2 PA CONTROL SWITCH INPUT
12 8155 #2 PB STATUS LAMP OUTPUT
13 8155 #2 PC DEVICES READY AND TIMER
14 8155 #2 - TIMER REGISTER (LOW-ORDER)
15 8155 #2 - TIMER REGISTER (HIGH-ORDER)
20 8251 #1 D DATA REGISTER
21 8251 #1 C COMMAND/STATUS REGISTER
40 8251 #2 D DATA REGISTER
41 8251 #2 C COMMAND/STATUS REGISTER
- 8085 SOD CLOCK INTERRUPT CLEAR

+15 VDC

AD580 +5 VDC

5k +2.5 VDC VCC

.~ I 5_ lVREF/2
15k 5k

ADC804

1 W X ~~~~~~~~~CABLE

+ ~ ~ ~ ~~+I

AD590K
TEMPERATURE

SENSOR

Figure 3. Temperature sensor analog interface.

MHz). To create the 19,200-Hz baud rate for the
USARTs, we used the timer in one of the 8155s to divide
the processor clock by 160. The timer in the second 8155
divides this figure by 1920 to create the 0.1-Hz interrupt,

which controls execution of the software. This figure is
again divided by 600, generating a one-pulse-per-minute
update of the time-of-day clock. To facilitate rapid set-
ting of the time, a latch and gate enable the insertion of
the 0.1-Hz clock on the time input. In addition to the
above timing signals, the USARTs require a clock input
at least 30 times the baud rate in synchronous operation.
This is created by using two flip-flops to divide the system
clock by four, yielding a 768-kHz USART clock.
The system control switches (I/O address 11) and status

lights (I/O address 12) are connected to ports A and B
of the second 8155 circuit (Table 2). The switches con-
nect directly to the port; the status lamp outputs are buf-
fered by 7404 circuits to provide current to the LEDs.
The keyboard encodes the keys into an 8-bit output

along with a strobe line, but the code is not the standard
ASCII. The eight lines are connected to port B of the first
8155, which operates in a strobed-input mode (ALT4).
The strobe line from the 8155 is routed through two
monostable multivibrators, delaying the strobe pulse ap-
proximately 5 milliseconds to compensate for keyboard-
switch bounce. We determined this time delay by ob-
serving the keyboard signals with an oscilloscope. The
"buffer full" signal from 8155 input port B is connected
to a bit of port C on the second 8155; this enables the
software to determine if a key has been pressed. Figure
3 shows the temperature input circuitry to the MCMDS.
The temperature sensing element is an AD590 two-
terminal temperature transducer which provides a PTAT
(proportional to absolute temperature) current output of
one microampere per degree Kelvin.2 (The less-expensive
LM334 can be made to perform the same function, but
it is less accurate.3) An AD580 provides a stable 2.5-V
reference to the circuitry. An operational amplifier with
good DC stability (an LF356) and associated resistors pro-
vide current-to-voltage conversion of the transducer
signal, as well as gain and offset adjustment of the
transducer output. The compensated signal present at the
input of the analog-to-digital converter (an ADC804) is
scaled and offset so that zero volts corresponds to - 40°F
(-40°C) and maximum input (5V, which corresponds
to a converter output code of FF) is 212°F (100°C). Thus,
a 1-bit change in the converter's output indicates a change
of 1 F, which corresponds to a 19.61 -millivolt change at
the input of the converter.

If we assume that the gain and scale trims are proper-
ly adjusted, there are two major factors affecting the ac-
curacy of the AD590 temperature transducer and
ADC804 converter. The ADC804 has a specified accuracy
of one least-significant bit (which in this application cor-
responds to 1°F), and the mid-priced AD590-K has an
accuracy of 1.1°F (when using both gain and scale ad-
justments). The resulting uncertainty of about 20 could
have been reduced to 0.80 by using parts with tighter
tolerances (such as the AD590-M and ADC801), but their
high cost made them impractical for our purposes.
The main processor provides two serial outputs-one

to the console display and the other to the main display.
Each serial line is controlled by a separate 8251 USART
programmed to operate in synchronous mode at 19,200
baud. The clock signals are generated by the timing cir-

cuitry previously described. There are a number of ways

IEEE MICRO14

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

to connect transmitters and receivers; we used a single
wire, since the distance was less than one foot. For longer
spans, fiber-optic data links provide reliable connection
with freedom from interference pickup, ground loops,
and generation of radio frequency interference. (The
Hewlett-Packard HFBR-1500/2500 is good up to five
meters; the HFBR-0200, to 500 meters.4)

Display processors and displays. The configuration of
the display processors is much simpler than that of the
main processor, due to their reduced I/O and computing
requirements. We used a single 8155 for RAM and tim-
ing, a 2716 EPROM for program and data table storage,
and an 8251 for serial data reception. Figure 4 illustrates
the console display with its three functional components.
The interface decodes the address and provides eight buf-
fered "section-enable" lines (each section contains eight
columns of the display). These in turn are provided with
three buffered data lines to the section controllers. Each
section controller contains a 7442 decoder to decode the
section-enable and low-order address lines into individual
"column-enable" signals. In addition, the data lines are
buffered to provide sufficient drive capability for eight
display columns. Each display column has two 7475 4-bit
latches, which are clocked by the appropriate column-
enable line. The display data stored in the latches are
displayed on the LED display. The LEDs are driven
directly from the complemented outputs of the latches.
The processor interface, section controllers, and data

latches of the main display are identical to those of the
console display. However, since the main display uses
120V incandescent lamps and the console display uses
LEDs, the method used to drive the lamps must differ.
As Figure 5 shows, we used thyristors (triacs) in the main
display to provide line voltage switching for the incandes-
cent lamps. To eliminate any potential hazards due to the
connection of the microprocessor and associated con-
troller components to the alternating current mains, we
used optical isolators to provide separation. These
Motorola circuits (MOC3031)5 have self-contained zero-
voltage switching circuitry to synchronize the triac turn-
on with the zero crossing of the mains. This eliminates
RFI from the unsynchronized switching of the triacs.

MCMDS software

As mentioned earlier, the MCMDS software was writ-
ten in Intel 8085 assembly language, converted to object
machine code, and programmed onto the system
EPROMs using the Microkit development system and
associated software.** Structured programming tech-
niques were used as extensively as possible. The ensuing
descriptions will follow the functional lines of the
software.
Main processor program. As the system is turned on,

a hardware reset on the 8085 initiates program execution

**A detailed program listing is available from the author for a $20 copy-
ing, handling, and mailing charge (outside the United States add $5.00).
See the address following Professor Stigall's biography.

Figure 4. Console display and interface block diagram.

120 VAC

39

FROM
DISPLAY
LATCH

0.01

Figure 5. Circuit for logic control of the incandescent display lamp.

April 1984

ADDRESS BUS (AO-A15)
DATA BUS (DO-D7 PROCESSOR

CONTROL BUS
-___--___ ------________ __ ,--------- __

INVERTER ADDRESS
BUFFER BUFFERS

A3-A15 AO-A2
INTERFACE

ADDRESS
8 LINES DECODE

8 LINES

Uw , SECTION ENABLE ---4-----
INVERTER | COLUMN SELECT SECTION
BU FFER DECODER CONTROLLER

8 LINES (8 TOTAL)
8 LINESI

COLUMN
_$ DATA LATCHES; ENABLE

DISPLAY
{18 LINES (64 TOTAL)

RLEDs AND +5 VDC

15

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Flowchart of the main program.

16 IEEE MICRO

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

at location zero in memory. This begins the turn-on
routine, which performs a number of initialization tasks:

* setting the programmable timers on the two 8155s
to their proper values,

* clearing console lights,
* clearing the read/write memory,
* initializing the USARTs,
* setting certain data values in the system, and
* initializing the system stack.

Upon completion of these tasks, control is passed to the
main control routine.
Main program. The central system software routine,

MAINPGM (Figure 6), is executed 10 times per second
and is triggered by an interrupt generated on the 8085's
RST7.5 interrupt line by the 10.0-Hz clock. It begins by
inputting the current data values of all peripherals (time-
of-day clock, control switches, keyboard and temperature
converter) and their status (empty or data-ready) and stor-
ing them for future reference. The display update soft-
ware timers are then decremented.
When it is time to update the display (counter equals

zero), subprogram UPDTDSP is called to perform this
task. If a message is currently being entered on the
keyboard, and if the keyboard had a waiting character
when input at the beginning of MAINPGM, ENTR-
CHAR is called to handle the input of this character. But
if no message is currently being entered, and if a control
switch was depressed indicating a request to enter a
message, ENTMESS is called to set up for message en-
try (assuming there is no conflicting pending request for
message entry). If the system is in a message entry mode,
the console display is updated to show what is being
entered into the message buffer rather than what is on
the main display. Finally, the time and temperature buf-
fers are updated (if an "update time" input was asserted),
and MAINPGM (and the processor) are put into a halt
state awaiting the next RST7.5 interrupt.
Message selection and display. The display timer's

countdown to zero causes the main program to update
the display (UPDTDSP).

Figure 7 shows how UPDTDSP determines the status
of the displays and updates them accordingly. If the
display done flag (DISPDON) is set, the routine looks
for the next message to display and sets the system
pointers to display that message-any of three possible
messages or the time and temperature, as determined by
the positions of the console switches. After it is deter-
mined whether the display is segmented or scrolled, INC-
SEG or INCSCR (respectively) is called to update the
display.
The increment-segmented display, INCSEG (Figure 8),

is the most complex routine in the system. Before each
display is changed, the message storage area is searched
beginning at the point where the last segment ended.
INCSEG looks for the longest segment-preferably of
whole words-shorter than 64 columns and centers it on
the display.

This segment is found by incrementing the display
pointer to the first nonblank column of the message not

yet displayed. The end pointer is set 64 columns past the
display pointer and backed toward the display pointer
until a word boundary (multiple blank columns) is found.
If no word boundary is found, the first blank column
separating two characters is used.
When the beginning and end of the next display seg-

ment are found, the entire segment is moved to the work
area and centered. If the segment represents the end of
a message, INCSEG increments the display counter and
begins the message again. After the message has been
displayed the maximum number of times allowed (three),
the DISPDON flag is set.
Compared to the INCSEG routine, INCSCR is a

relatively simple operation (Figure 9). The display shows
the same message as in the previous display, with one ex-
ception: it is shifted one column to the left, with the col-
umn at right filled in by the next blank in the message
storage area. Leading or trailing blanks are supplied as
needed. The end of message is handled in a manner
similar to that used in the INCSEG routine.
The two output routines DSPMAIN (Figure 10) and

DSPCONS are nearly identical, differing only in the I/O
ports which they address (the main and console display,
respectively). Each routine polls the USART status
register until the USART indicates it is ready to accept
a data byte for transmission. Bytes are then transferred
from the message work area to the USART until all 64
bytes (plus the display mode command byte) are sent.
Message input and storage. When MAINPGM has

determined a valid "enter message" request, routine
ENTMESS (Figure 11) is called. ENTMESS sets the
message entry pointers to the appropriate message area.
System status flags are then set to indicate the entry of
a message, followed by an update of the console display
lamps. Before returning control to the caller, ENTMESS
clears the message work area on the console display for
the next message.
When the message entry procedure is initiated, the

keyboard handler (Figure 12) performs the work of
message entry. ENTRCHAR is entered each time the
main program detects an input from the keyboard. The
routine first checks to see if the character is an "end-of-
message" character; if so, the message entry is terminated.
The message is also terminated if it has reached the end
of its storage area. By pressing the backspace key, the
programmer can delete the last character entered; press-
ing the space bar inserts a space. If the character is none
of these special characters, it either is a legal character
or is disregarded as illegal.
The 8-bit code input from the keyboard makes possi-

ble a character set of 256 characters. Since there are only
64 allowed in this system, a translation to an internal
character code of smaller scope (6 bits) is desirable to
minimize character table storage requirements. This in-
ternal code combines four low-order bits from the
keyboard code with two high-order bits from
CHARTAB1. The four low-order bits of the keyboard
code are used as an index into CHARTABI. Once the
internal character representation is found, CHARTAB2
is consulted to find the index into CHARTAB3.
CHARTAB3 contains the column-by-column 6-bit en-
coding of the display pattern for every character in the

April 1984 17

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

Figure 7. UPDTDISP flowchart.

18 IEEE MICRO

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

Figure 8. INCSEG flowchart.

April 1984 19

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

Figure 9. INCSCR flowchart.

20 IEEE MICRO

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

message (up to five columns per character). These codes
are transferred to the message storage area, where the
message is assembled.

Time and temperature input handlers. Every time the
main program finds the time-of-day clock input set, it
calls the update-time subprogram (UPDTTIME). As the
flowchart in Figure 13 shows, this subprogram uses four
counters to store the current time. (CLKA, CLKB,
CLKC, and CLKD represent tens of hours, hours, tens
of minutes, and minutes, respectively.) The counters are
incremented using modulo-six, -ten, or -twelve addition
as appropriate. With the aid of routine MTSUB, UPDT-
TIME takes the current time data from CHARTAB3 and
assembles it in the time-and-temperature message storage
area.
When the time update is completed, another sub-

program is called to update the temperature on the display
(Figure 14). This routine, called UPDTTEMP, retrieves
the 8-bit output of the temperature A/D converter from
temporary storage in INPUTOI. If the temperature has
changed since the last temperature update, the routine
updates the display accordingly. If there has been no
change in temperature, control is returned to the main
program.
To update the temperature display, the program must

first translate the value from the A/D converter to a value
representing the current temperature in degrees Fahrenheit
and Celsius. This is done with a table (TEMPTAB) con-
taining a 3-byte encoding of the temperature in degrees
Fahrenheit and Celsius for each value output by the con-
verter. These values are handled in a manner similar to
UPDTTIME: calls to MTSUB move the display represen-
tation of the numbers to the message area.

Control software for the display processor. Compared
to the main processor's software routines, the display pro-
cessor's software is simple (Figure 15). The display pro-
cessor performs only three tasks:

* inputting a string of 65 six-bit characters (64 encod-
ed display column values, plus a display mode con-
trol character) from the USART,

* translating the encoded values into the actual display
representation, and

* updating the screen display.

When execution of the display processor is initiated by
the turn-on reset of the CPU, system memory, the display,
and the USART are initialized by the program. Because
the display is connected to the system as 64 1/0 ports,
with the display columns having different addresses, the
output routine is transferred to read/write memory. This
allows the program to change the I/O address.specified
by the output instruction.
The display processor next begins execution of the main

program loop, synchronizing the USART to the main pro-
cessor's transmitter. The USART inputs characters until
a valid display mode control character is found. It then
inputs 64 display "characters," which are decoded (us-

ing the character translation table TRANTB) and out-
put to the display. This sequence repeats as long as the
display processor is operating.

Figure 10. Display output routine flowchart.

April 1984 21

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

Figure 11. Enter message request handler flowchart.

22 IEEE MICRO

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

Figure 12. Flowchart of the ENTRCHAR routine.

April 1984 23

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

Figure 14. UPDTTEMP flowchart.

MCMDS: efficient and inexpensive

The Microprocessor-controlled Message Display
System shows that microprocessors can be an efficient
and cost-effective alternative to the electromechanical
components normally used in message displays. The low-
cost prototype will be even less expensive to produce in
volume, giving it a substantial edge over similar message
display systems currently in production.
The MCMDS is simple to operate and requires virtually

no operator training. By eliminating mechanical com-

ponents and adjustments, it should provide long-term
reliability.

References
1. Adolph Mangirei, "Wire-Wrapping and Proto-System Tech-

niques," Byte, Vol. 6, No. 5, May 1981, pp. 152-170.

2. AD590 Two-Terminal IC Temperature Transducer, Analog
Devices Corporation, Norwood, MA, 1979.

3. Linear Databook, National Semiconductor Corporation,
Santa Clara, CA, 1982.

4. Optoelectronics Designer's Catalog, Hewlett-Packard Cor-
poration, Palo Alto, CA, 1981.

5. Motorola Semiconductor Master Selection Guide, Motorola,
Inc., Phoenix, AZ, 1981.

IEEE MICRO

Figure 13. UPDTTIME flowchart.

24

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

Figure 15. Flowchart of the display processor program.

Paul D. Stigal1 is a professor of electrical
engineering and computer science at the
University of Missouri-Rolla, which he
joined in 1970. His research interests in-
clude computer architecture and systems,
digital signal processing, microprocessor
and minicomputer applications, digital cir-
cuits, and fault-tolerant computing. He is
the author of several technical publications
and the principal investigator on several
research projects.

Before joining the university, Stigall worked for McDonnell
Douglas, the Navy Electronics Laboratory, and the Collins Radio
Company. He was also an instructor at the University of
Wyoming.

Stigall received the BSEE from the University of Missouri-
Rolla in 1962 and the MS and PhD in electrical engineering from
the University of Wyoming in 1965 and 1968. A registered pro-

fessional engineer in Missouri, he is a member of ACM, Eta
Kappa Nu, Tau Beta Pi, and Sigma Xi, and a senior member
of the IEEE.

Stigall's address is the Department of Electrical Engineering,
University of Missouri-Rolla, Rolla, MO 65401.

Brian Lenharth has recently accepted a posi-
tion with the Lake Stevens Division of
Hewlett-Packard. While completing his
MSEE requirements at the University of
Missouri-Rolla, he was an engineer-with
the Department of the Army. He is in-
terested in practical applications of
microprocessors and in instrumentation
development.

April 1984 25
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 19:03:01 UTC from IEEE Xplore. Restrictions apply.

	A Microprocessor-Controlled Message Display System
	Recommended Citation

	A Microprocessor-controlled Message Display System

