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Generalized Likelihood Signal Resolution 
JOHN A. 

Absrrucr-This paper defines an M-ary generalized likelihood ratio 
teat (MGLRT) that overcomes Root’s early objection to the application 
of generalized likelihood ratio testing to the resolution of correlated 
signals. The proposed test extends the form of a conventional binary 
generalized likelihood ratio teat (GLRT) in a ‘manner that permits a 
generalization of the minimax properties of the binary test to the M- 
hypotheses case. When the estimated signals are orthogonal, the test 
reduces to a sequence of conventional binary tests duplicating the per- 
formance of a narrow-band matched filter envelope-detector receiver. 

I. INTRODUCTIQN 

A WAVEFORM r(t), 0 I t I T, is observed that 
contains an unknown number of signals in inde- 

pendent white complex Gaussian (WCG) noise w(t) having 
spectral height No. The individual signals have the form 
u,,s(t,a,), where a,, is an unknown complex amplitude, a,, is 
a real vector of either known or unknown parameters, and 
the function 8(&(e)) is known and identical for all signals. 
The receiver must determine the number of signals present 
and estimate the signal amplitudes and parameters. This 
situation imposes no particular problem if the estimated 
signals are orthogonal; multiple signal detection then sim- 
plifies to ‘a series of single signal-detection problems for 
which a conventional generalized likelihood ratio test 
(GLRT) works. Correlation among the signals upsets this 
simplicity and gives rise to the issue of signal resolvability, 
which is the topic of this paper. 

Various modifications of this problem have been dis- 
cussed in the literature. In an early paper [1], Helstrom 
obtained an expression for the m inimum probability of 
error in deciding which of two equally probable equal- 
energy radar signals of known parameters is present in 
additive white Gaussian noise. Nilsson [2] derived the form 
of Bayes’ processor for simultaneous estimation and detec- 
tion of radar returns from a collection of stationary point 
scatterers whose number, cross sections, and ranges are 
random variables. Root [3] obtained conditions that in- 
dicate when one could not expect to resolve two signals of 
unknown amplitudes and parameters and pointed out a 
difficulty in using a GLRT for that purpose. Ksienski and 
McGhee [4] discussed the problem of radar angular resolu- 
tion in the Bayes context using uniform cost functions for 
estimation and decision errors. This led them to a maximum 
likelihood test that contained the difficulties discussed by 
Root. In view of this, threshold tests based on the signal 
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amplitude estimates were proposed, and their utility was 
demonstrated experimentally. Helstrom [5] gave the mar- 
ginal detection probabilities of the individual signals for 
this type of decision with known parameters. Kemerait and 
Childers have contributed an interesting paper [6] in which 
cepstrum’techniques are employed for both signal detection 
and extraction. Computationally efficient suboptimum tech- 
niques are described by Lichtenstein and Young [7], [S]. 
The difficult problem of describing parameter estimation 
errors is considered by Selin [9]. 

The present paper shows that the signal resolution prob- 
lem can in fact be formulated in terms of an M-ary gen- 
eralized likelihood ratio test (MGLRT) that represents a 
natural extension of the binary GLRT to the M-hypotheses 
case. Subject to certain constraints, this test is m inimax with 
respect to variations in’ a priori signal amplitude statistics. 

II. PRELIMINARIES 

For the purpose of deciding the number of signals present 
in r(t), the receiver formulates M  hypotheses 

Hi: r(f) = n,(t) + W(t), i = 0, l;**, M  - 1 (la) 

in which r(t) contains exactly ki (typically i) individual 
signals under Hi: 

for i = 0 

*i(t) = “2, u,s(t,a,), for i = I, 2; . a, M  - 1 (lb) 

where 0 < k, c k2 < * * . < kM- 1. The parameter k,-tuple 
ha2, * * * ,ak,} = {a}i associated with hypothesis Hi is an 
element of an arbitrary space I = Wi of possible real 
k,-tuples. If each $Ji contains a single element, we have the 
known parameter problem. The amplitude k,-vector 
(ala2 - * - Us,)’ E Ui associated with hypothesis Hi is an 
unknown point in complex ki space % “. It is implicit in (1) 
that the values of the signal amplitudes a, and parameter 
vectors a, may differ with each hypothesis. The total number 
of hypotheses M  is given a priori or is forced by computa- 
tional constraints. 

The quantities r(t), u,,s(t,a,), n,(t), and w(r) in (1) are the 
complex amplitudes [lo, p. 591 of their real narrow-band 
counterparts. Throughout this paper it will be assumed that 
the function s(t,( -)) is known, is the same for all signals, and 
is normalized 

s T ls(t,an)12 dt = 1 
0 

for every value assumable by a,. It will also be assumed that 
the ki signals present under Hi are algebraically independent. 
This condition is required if one is to have any hope of 
resolving individual signals. 
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In the sequel the waveforms r(z), s(t,a,), n,(t), and  w(t) 
will be  represented by N-vectors r, s(a,,) = s,, a,, and  w 
that are obtained by expanding their associated waveforms 
in N-term series of arbitrary complex orthonormal functions 
[ll, p. 244-J. It is assumed that the orthonormal function 
set used for this representation is complete on  [O,T] in the 
lim it N --, co. In subsequent  work we tacitly assume the 
lim it N + co whenever the result of this operat ion is well 
def ined [12, p. 2741. W e  denote the matrix of signal co- 
ordinate vectors under  H, as 

St = [SlS2 ***Skr] (3) 
and  use the symbol sPi to denote the space spanned by the 
column vectors of Si. The  asterisk (*) is used to denote 
matrix and  vector conjugate transposition. By these repre- 
sentations, (1) and  (2) become 

Hi: r = Q + W , i=O,l;**,M- 1  (W 
where 

i=O 
i = 1,2;**,M - 1  (4b) 

and  
l&l2 = 1. (5) 

Since w(t) is a  WCG process with covariance function 
N, 6(r), w is a  WCG vector with covariance matrix NoI. 

III. M-ARY GENERALIZED LIKELIHOOD RATIO TEST 

In terms of the vector representation (4), the problem of 
formulating an  M-ary hypotheses-testing rule is to optimally 
partition the space of all r N r(t) into M regions Z, such 
that a  decision Di N Hi occurs if and  only if r falls in 
region Z i. In the absence of prior probabilit ies on  a, a, and  
H, however, no  decision-theoretic solution is available even 
for the binary case with k, = 1  in which signal resolvability 
is not an  issue. For the binary case, however, a  GLRT gives 
useful results. Let p(r 1 (e)) denote the conditional prob- 
ability density function of r. Then the GLRT is 

max ln  p(r I a l 9  al ,  fh> “; 

c YlO 
UlPI P(r I HoI ~~ @a) 

where the symbol 3:; denotes D = H, or D = Ho de- 
pending upon the inequality satisfied. For data of the form 
(4), (6a) simplifies to 

I, = max ls*(al)r12 $ tlo = Noylo 
dl Ho 

(6b) 

which represents a  conventional narrow-band matched 
filter square-law envelope-detector receiver. It is well known 
[lo, sec. 9.81 that the performance of this receiver is op- 
timum in the Neyman-Pearson sense for known al, ar- 
bitrary signal energy lu112, and  uniformly random signal 
phase 8  = arg [a,]. Also, Z, is statistically independent of 
signal phase. Therefore, for known al, the GLRT receiver 
is the m inimax receiver with respect to variations in the a  
priori statistics of 0. In view of this successful performance 
in the binary case, one  is motivated to find a  generalization 
of the GLRT appropriate to M-ary hypotheses. 

One  approach to the generalization of (6) is to begin with 
the simpler problem in which: i) the parameters ai are 
known; ii) the amp litudes ai are random with known a  
priori densities p(q); and iii) the a priori probabilit ies of the 
Hi are not known. For these condit ions it is reasonable to 
use a  decision rule that maximizes conditional probabilit ies 
of correct decisions subject to constraints on  conditional 
probabilit ies of error. For this purpose let Pji denote the 
conditional probability of decision D, given that hypothesis 
Hj is true, and  let E denote the error event. Then  the prob- 
lem is to maximize Pii subject to constraints {P[E I Hj] = 
Bj; j #  i}, where the 8j are given constants, and  

P[ E I HiI = x  pin- n#j 
The solution follows directly using Lagrange mu ltipliers. 
Since P[E I Hj] = 1 - Pjj, fixing P[E) Hj] is equivalent 
to fixing Pjj. Therefore, it is equivalent to maximize 

c U’,, = c  4, [ p(r I f&J dr 09 ” n 
Jzn 

where A, is an  arbitrary positive constant and  the I,, n  #  i, 
are Lagrange mu ltipliers. This leads to the test: “Choose 
H,,,, if I,p(r 1 H,) > I,p(r I H,), for all n  #  m .” W e  write 
this test as 

AP(r I Hi> 3  ijP(r I Hj), i > j = 0, l;**, M - 2 (9) 
I 

where nV is the complement of H,. It is evident from (9) 
that the decision process requires M - 1  binary decisions, 
since if any I,p(r I H,) is less than another, hypothesis H, 
is excluded from further consideration. Dividing both sides 
by p(r I Ho) and taking logarithms, (9) becomes 

In Ai 2  In A j  + Yi j ,  i > j = 0, l;.., M - 2 (10) 
Bi 

where An is the likelihood ratio 

An = p(r I f&J 
p(r I HO) ’ 

n = 0, l;.., M  - 1 (11) 

and  
yij = lnkj - In&. (12) 

W e  note that the test thresholds in (12) are related by 

Yij = n=$+l Yn,n-13 i > j = 0, 1; * *, M  - 2. (13) 

There are M - 1  Lagrange mu ltipliers 2, that relate to the 
Yij and, therefore, to the determination of the P[E I Hj]. 
When the yij can be  found to satisfy the original conditional 
error constraints, {P[E ( Hi] = /Ij; j #  i>, a solution to 
the maximization problem exists, and  the test is com- 
pletely specified. From the symmetry of (8), one  sees that 
for any choice of thresholds constrained by (13) each Pii, 
i = 0, 1;.*, M - 1, will be  the maximum possible of any 
receiver having the same P[E ) Hi]. (A more r igorous proof 
of this property is given in [13].) 
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D4 “3 D2 DI 

Fig. 1. MGLRT logic for M = 5 hypotheses. 

Considering now unknown a,a, we are motivated by the 
structure of the generalized Neyman-Pearson test (10) to 
define an MGLRT by (lo), where An of (11) is replaced by 
the generalized likelihood ratio 

A n = max P(~Ia,~~4nJJn), n=o 1 
a,,(a)?l lo I KJ 

2 ,***, M - 1 (14) 

and the yij are an arbitrary set of thresholds related by (13). 
It is implicit in (14) that the maximization with respect to 
the k,-tuple {a}, is over the space g,, of possible parameter 
k,-tuples. For data of the form (4) the generalized likelihood 
ratio becomes 

A, = max exp $ Re [a,*~] - i l&&J2 , 
%,(a)n 0 0 

n = 0, l;.., M - 1. (15) 

The value of a, for which An is maximum is the maximum- 
likelihood amplitude estimate 

en = [sn*sJ-ls”*Y (16) 

where [Sn*S,J-1 exists by assumption of algebraic inde- 
pendence of the s(t,a,). It can be seen from (16) that if the 
true signal is a,, = &a,,, then 4 = a, + e where the 
estimation error e is zero mean complex Gaussian with 
covariance iVo[Sn*S,]-l. Substitution of (16) into (15) 
yields 

n = 0, l;*., M - 1 (17) 

where Q, is the idempotent Hermitian matrix 

Qn = { :“[s.*s., - lsn*, n=O 
n = 1,2;.., M - 1. (18) 

From (17) and the idempotence of Q,, (10) becomes 
- 

zi z lj + tij, i > j = 0, 1;. *, M - 2 (19) 
G 

where 

and 

1, = max lQ,~l’ 
(4” 

(20) 

t i j  = NOYii .  (21) 

The decision logic of (19) is illustrated in Fig. 1 for M = 5 
hypotheses. 

It is easily verified from the form of Q, in (18) that Q,r is 
the projection of Y onto the column space’Y, of S,, and 
from (4b) and (16) that this projection is the estimated 
composite signal a,. The statistic Z, is the energy in this 
projection. Therefore, the search for {a}, to maximize Z, 
may be interpreted as a search for that signal space Y”,({&}& 
that contains the maximum energy. 

It will be useful in the sequel to rewrite the MGLRT in 
the form 

4 
lij 2 tij, i > j= O,l;.*,M - 2 (22) 

a 

where 
lij = max min r*Qijr = Zi - lj (23) 

. wt (alj 
with 

Qij = Qi - Qj. (24) 

It is interesting to note that (19) can also be “derived” 
from the Bayes test for the random a,a case obtained by 
Nilsson [2] upon replacing Nilsson’s conditional mean 
signal estimates by maximum likelihood estimates and his 
thresholds by arbitrary Yij that satisfy (13). The two “der- 
ivations” of the proposed test lend some encouragement for 
its use. However, this is countered by Root’s [3] objection 
to applying a GLRT to the signal resolution task: for any 
i > j, hypothesis Hi includes hypothesis Hj as a special 
case, where ki - kj of the signals have zero amplitudes. 
Therefore, for zero tij, the GLRT will always select Hi 
(eventually HM- J rendering its application useless. Since 
either decision Hi or Hj can occur for tij > 0, however, 
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Root’s objection seems more concerned with the threshold independent of 1, = Iw,12. Spherical symmetry of p(w,) 
values used than with the basic test structure. In fact, the implies that <, points uniformly in all directions of Y, in 
same considerations apply to the conventional binary the sense that the statistics of the projection of c,, onto 
GLRT described by expression (6). any fixed unit vector tf E Y, do  not depend on  r. Since &Y,, 

IV. PROPERTIES OF M-ARY GENERALIZED LIKELIHOOD 

Preliminary insight into the significance of test (19) is 
obtained by considering the implications of the previous 
observation that I,, is the energy in the signal space 9”. The  
energy in any space does not depend upon the particular 
coordinates assumed to define that space. (Note the in- 
variance of Q , to the transformation S,, -+ S,T, where T is 
nonsingular.) Therefore, it is the space itself rather than the 
coordinates s(a,) that enters the decision rule, and  hy- 
potheses (4) are equivalent to 

Hi: r = ni + w (25) 
where ni is any (i.e., an  unknown) vector in Y,. The  im- 
plication of unknown a,, therefore, is that no  vector, and  
hence no  direction, in Yi is preferred a priori. This suggests 
the following. 

Theorem 1: If the an  are known and the a,, are random 
with spherically symmetric probability density functions 
(pdf’s) p(QJ, then L = (1,; ZJ = 1; . ., M  - l} is a  set of 
sufficient statistics for decision D. Conversely, if any p(Q,) 
is not spherically symmetric, then L is not a  sufficient set. 

Proof: Writing 

p(v = ~(4 I HMY I L  Hn> 
p(r I Ho) PU, I HOMY I 4, Ho) 

(26) 

where (1~) specifies r, it follows that 1, is a  sufficient 
statistic if and  only if 

P(Y I 4, HA = P(Y I L, Ho). (27) 
r is the sum of its projections on  Y, and  the complementary 
space Sp,‘, i.e., 

r = r, + r, (28) 
where 

rn = Q,r (294 
and 

r, = [I - Q,]r. (29b) 

is a  unit vector, equality holds in (32) if and  only if this 
property is retained when &, is condit ioned on  I,, and H,,. 
Given H,, and 1, one has 

and 
H,: r, = dl2, + w, = fi 5, (33) 

(34) 

Since w, is independent of a,, and  I,, is given, the joint 
characteristic function @(o,,w,) of the random variable 
pair (Re {r*&,}, Im {r*&}) equals the product of the joint 
characteristic functions a1(01,w2) and 02(01,w2) of the 
pairs (Re {q*Q,l&>, Im {04,&>) and (Re {q*w,J&, 
Im {$*w,/JI,}), respectively, 

w34,w,) = ~,b,,~,>@,b,,~,). (35) 

Since w, is spherically symmetric, @2(w,,w2) does not 
depend on  1. If p(QJ is spherically symmetric, @ ,,(w,,o,) 
and  hence @(w,,o,) will not depend on  q. Therefore, 
spherical symmetry of p(&) implies spherical symmetry of 
p(& I l,, H,), and equality holds in (32). Conversely, absence 
of spherical symmetry in p(Q,) implies that @r(w,,o,) and  
hence @(01,w2) depends on  q. Therefore, if p(QJ is not 
spherically symmetric, neither is p(<, I l,,, H,) and it cannot 
equal ~(5, I L  HoI. Q.E.D. 

It is interesting to pursue the implications of spherical 
symmetry in p(Q,) further. Under spherically symmetric 
p(QJ equality holds in (27) and  the general ized Neyman- 
Pearson test (10) assumes the form 

fi(Q 2. fjCzj) + Yij, i>j=O,l;*.,M-2 (36) 

where 

(37) 

the parameters being assumed known. Under hypothesis H, 
The vector r, can be  expressed in terms of its length and for given a,,, the quantity 1, = 1112, + w,j2 is the sum 

lQ,rl = 4, and  a  unit direction vector <, of the absolute squares of k, independent complex Gaussian 
random variables each having variance No and nonzero 

r, = 41, 5,. (30) complex mean.  The  conditional density functionp(1, I H,,, a,) 

Setting y = (&,r,) then permits specification of r by (I,,y). 
has, as is well known, the form q,,(6; I&(“) where the func- 

It remains to establish the condit ions for which 
tion q”((*);( .)) is given in (48). Since ~(1, I H,, a,) depends 
only on  the energy in a,,, it also follows that ~(1, I H,, 

P(C,, r, I 4,, HA = P(C,, r, I L  HoI. (31) laJ2) = q,n(l,;IQz,12). Under the null hypothesis we have 

Because w is WCG, r, is independent of H and r,,, there- 
similarly, ~(1, I Ho) = q,,,(l,,;O). Therefore, 

fore, of H, <,, and  1,. Therefore, (31) becomes ~(4 I & I%l”) 
P(& I L  Hn) = P(&, I 1nv Ho). (32) ~(4 I Ho) 

Under Ho, r,, equals the projection w, = Q ,w of w onto Y,. = WJ ev 
Since w,, is WCG, its pdf is spherically symmetric with c, 
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The function ~(1, I H,, If2,l”)/p(l, I Ho) is monotonically in- 
creasing in I,,, for every I&&l’. Considering binary hypotheses 
with M = 2, therefore, one then finds that the optimum 
testfr(lr) 2 ylo of (36) is identical to the MGLRT 1, 2 tIo 
of (19), for t 10 = fl-i(ylo). Therefore, the MGLRT is 
optimum in the Neyman-Pearson sense for binary hypoth- 
eses under known parameters and arbitrary spherically sym- 
metric p(&). By inspection of (36) and (38), however, it is 
clear that for M 2 3 the sufficiency of L does not imply 
optimality of (19) for arbitrary spherically symmetric p(&2,). 

If (19) is to be optimum for M 2 3, the first degree 
presence of the 1, and the form of (13) requires that the 
likelihood ratio An = p(r I HJp(r I Ho) have the form 
b, exp (al,/N,), where a and b, are positive constants in- 
dependent of r. This and the whiteness of r under Ho in 
turn implies 

AL = {1,,121,. . .&-1,M-d is a set of independent random 
variables, with moment generating functions given by 

E{ew [uli+l,iI I ffm) = exp {“Ei+l,i,m/(l - ~No)) 
(1 _ vNo)(ki+‘-ki) 

(444 

where 
Eij,,, = &&,,*Q,&&, = Ei, - Ejm VW 

and 
Em = lQ,Rt12. (44c) 

The quantity E,,, is the energy in the projection of Sz, 
onto Y,. 

p(r I H,) = b,’ exp 
l 

- i r*[I - aQ,]r (39) 
0 1 

where the constant b,’ is determined by the condition 
J!zp(r I H,)dr = 1. Since 

j [Z - aQ,] = [M,Q, + NoI]-’ (40) 
0 

where 

M, = ??- N, 
l-a (41) 

(39) can be written as 

p(r I H,) = b,‘exp {-r*[M,Q, + NoI]-‘r}. (42) 

It is easy to show that the pdf (42) results from r = flL, + w, 
if and only if a priori a, is complex Gaussian with zero 
mean and covariance matrix M,Q,. For such fiL,, a standard 
calculation reduces (10) to 

ii g lj + tij’, i>j=O,l;*.,M-2 (43a) 
-g 

where 

Proof: Because ,40i+1 3 Yi, a basis for Yi+i may be 
obtained by augmenting the orthonormal basis for ,40, say 
(4,; u = 1,2;* *,ki}, with ki+I - ki orthonormal func- 
tions{&; 0 = ki + l;.., ki+ r} that are orthogonal to 9,. 
The quantity Q. l+l,ir = Qi+,r - Qir is the difference vec- 
tor between the projections of r onto Yi+l and 9,. There- 
fore, 

ki+l 
Q i+l,i = ,=$+, 4&v* (45) 

and 
kici 

li+l,i = “=F+, 14”*r12* 

Each basis 4, enters only one element in AL. Because of 
this and the fact that w is WCG, AL is a set of independent 
random variables. The expression for the moment generat- 
ing function (44) follows from (46) in a straightforward 
manner using material in [S, ch. VII]. Q.E.D. 

It follows from (44) and [14] that I,, i > j, has condi- 
tional pdf 

where 
Alij I HnJ = qki-kj(lij; EijnJ (47) 

t. ’ - N cj- 0 “4\: 
0 

No ( (ki - kj) In No i 
0 

Mo + In Aj - In &) . 

Wb) 

We summarize these results in the following theorem. 

Theorem 2: If M = 2 and {a}l is known, the MGLRT 
is optimum for arbitrary k, and arbitrary spherically sym- 
metricp@,). If M 2 3 and the parameters are known, the 
MGLRT is optimum if and only if each a,, is apriori WCG 
in Yspn with E{lf2,12} = k,M,, where MO is a positive scalar. 

Attempts to describe the performance of the MGLRT 
for arbitrary signal configurations have not been successful. 
However, tractable results have been obtained in the special 
case for which the signal spaces are related by ,401 c 
92 C” * c Y,-. r. These results have special importance 
since they lead to statements concerning certain minimax 
properties of (19). 

Theorem 3: If in the known parameter case the signal 
spaces are related by Yspl c 9, c * * * c YM-l, then 

- 

qn(X;E) = k E lo (~)(n-l)‘z exp (-x*) I,-, (+I, 

and 
E # 0 (48a) 

:I (48b) 
where x 2 0. 

Because the MGLRT satisfies Theorems 2 and 3, it is the 
minimax test with respect to variations in the conditional 
probabilitiesp(a, I {a},, {Ei,; i = 1; * *, M - l}), if 9, c 
9, C” * c Y,- 1. This statement can be demonstrated 
in a conventional manner [15, p. 2641 as follows. If the a 
are known and if 9, c 9, c * * * c r4pM-r, then by The- 
orem 3, a2, enters the statistics of the 1, only through 
(Ein ; i = I,-.*, M - l}; therefore, the MGLRT per- 
formance does not depend on p(a,, I {a,}, {Ei,; i = 1,. . *, 
A4 - 1)). Furthermore, the performance of any other re- 
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ceiver is inferior to that of the MGLRT for p(Q) as 
described in Theorem 2. Therefore, no  other receiver per- 
forms as well as the MGLRT for most adverse p(a, I {a,}, 
{Ein ; i = I;-*, M  - 1)) when 9, c 57, c * *. c 9’,.-,. 
Hence the MGLRT is a  m inimax as claimed. This result 
general izes the m inimax properties of the binary test (6) to 
the M-ary case. The  simplest example of this generalization 
is given by the binary case H,,H, in which k, is an  arbitrary 
positive integer. Here the test 

4 2 t10 (49) 
Ho 

is m inimax with respect to variations in p(a, I aI, B,,), 
where E,, = lfi2,12. The  receiver operat ing characteristic 
follows easily from (47) 

p, = Qk, 
[J W W  

pF = 1 
s 

O" tkt-le-t dt 
W l) y,o 

Wb) 

where Q ,(x,y) is the general ized Marcum Q  function [lo, 
p. 2451 

Qk(x,y) = lrn z (:)“-’ exp (- y] I,-,(xz) dz. 
Y 

(51) 
W e  emphasize that the m inimax property discussed in 

the preceding paragraph requires Y, c Y, c * . * c sP,- 1. 
If the signal spaces are not related in this manner,  the 
property as stated does not apply. It is easy to show more 
general ly that, because w is WCG, the statistics of the I,, are 
invariant to the transformation a,,, --) &,ej*. Therefore, the 
MGLRT is m inimax with respect to variations in p(8) for 
known a. Attempts to find other condit ions for which the 
MGLRT may be  m inimax have been frustrated by the 
difficulty in obtaining a  general  closed form for the joint 
characteristic function of the 1,. 

Theorem 4  is motivated by the question of how to select 
the MGLRT thresholds. Interestingly, a  solution to this 
problem is most easily obtained when the parameters are 
unknown. 

Theorem 4: Let the parameter spaces g’, permit the pos- 
sibility of orthogonal (~(a,)}, and  let gi+l 3  W , for 
i = 1,2;**, M-2.Letki=i,fori= 1,2;.*,M- 1. 
Then  the MGLRT reduces to a  sequence of conventional 
binary tests as in (6) provided: i) the estimated signal co- 
ordinates {s(a)} are orthogonal; and  ii) the test thresholds 
are given by tij = (i - j)t,,. 

Proof: For orthogonal {s(h)}, ii becomes 

Z i = max lQir12 
{ah 

= Is*(h,)r12 + Is*(bi2)r12 + . . * + Is*(&Jrl' (52a) 

where we have arbitrarily labeled the & for 

Is*(6?,)r12 2 Is*(&,)r12 2 * - * 2  lS*(&Jr(2. W W  

Since ii is associated with the maximum energy (ki = i)- 
dimensional space ,40, and  we are considering orthogonal 
s(h), then ii+ 1 will have the form 

li+l = max IQi+zr12 (aIt+ 1  
= Is*@,)r12 + - * - + IS*(&i)r12 + IS*(di+l)r12 (53a) 

where the first i terms equal  those in (52a) and 

lS*(61i+Jr12 I IS*(Qr12. W) 
W ith tij = (i - j)t,,, the form of ii ensures that if the 
lower inequality is satisfied in li+I 2 ii + ti+l,i, then 
D = Di immediately. Satisfaction of the upper  inequality 
implies the next test li+Z >< li+l + ti+2,i+l. It follows that 
the resulting sequence of tests, beginning with 1, >< tIo, is 
a  series of conventional binary GLRT’s. Q .E.D. 

The  condit ions on  the gi stated in Theorem 4  are en- 
countered frequently in practice; they are a  generalization 
of the condit ions normally arising in the problem of un- 
known signal arrival times on  [O,T]. Theorem 4  provides a  
simultaneously simple and reasonable argument for setting 
thresholds as tij = (i - j)t,, for such gi: in the event that 
the s(a) are orthogonal, these threshold values result in con- 
ventional receiver operation. The  theorem also demonstrates 
that tij > 0  does not necessari ly bias the test against the 
many-target hypothesis. Each dimension in pi introduces 
an  independent noise sample in ii; tij > 0 may be  viewed 
as arising because of this. In view of this result, it appears 
reasonable in the known parameter case to set tij = 
(ki - kj)tlo for general  gi. This is also suggested by (43b) 
with li = lj, which represents the Bayes m inimum P[E] 
receiver subject to the condit ions of Theorem 2  for equally 
probable P[H,,]. Alternatively, for small M one may com- 
pute M-ary receiver operat ing characteristics for general  tij. 
The problem of optimally choosing the thresholds for 
arbitrary M  for condit ions not covered by Theorem 4  
remains essentially unsolved, however, since it is l inked to 
the difficult and  unsolved problem of describing the 
MGLRT performance for general  signal configurations. 

V. CONCLUSION 
In summary, we have shown in this paper  that the form 

of the binary GLRT can be  extended in a  logical manner  to 
include mu ltiple hypotheses containing correlated signals. 
W e  were unable to analyze the test performance in the 
general  case but have noted condit ions for which the test is 
opt imum and other condit ions for which it is m inimax. A 
pleasing property is that the MGLRT reduces to a  sequence 
of conventional binary GLRT’s for uncorrelated signal 
estimates, and  this property has provided a  rationale for 
selecting the test thresholds. Perhaps the most important 
contribution of this effort is the disclosure of an  explicit 
GLRT structure that has mean ingful application to the 
problem of signal resolution. 

ACKNOWLEDGMENT 

I am grateful for several helpful questions and criticisms 
from the anonymous referees. 

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 14:24:38 UTC from IEEE Xplore.  Restrictions apply. 



282 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. R-21, NO. 3, MAY 1975 

REFERENCES 

[l] C. W. Helstrom, “The resolution of signals in white, gaussian 
noise,” Proc. IRE, vol. 43, pp. 1111-1118, Sept. 1955. 

[2] N. J. Nilsson, “On the optimum range resolution of radar signals 
in noise.” IRE Trans. Inform. Theory, vol. IT-7, pp. 245-253, Oct. 
1961. ’ 

[3] W. L. Root, “Radar resolution of closely spaced targets,” IRE 
Trans. Mil. Electron., vol. MIL-6, pp. 197-204, Apr. 1962. 

[4] A. A. Ksienski and R. B. McGhee, “Radar signal processing for 
angular resolution beyond the Rayleigh limit,” Radio Electron. 
Eng., pp. 161-174, Sept. 1967. 

[5] C. W. Helstrom, Statistical Theory of Signal Detection, 2nd ed. 
Elmsford, N.Y.: Pergamon, 1968. 

[6] R. C. Kemerait and D. G. Childers, “Signal detection and extrac- 
tion by cepstrum techniques,” IEEE Trans. Inform. Theory, vol. 
IT-18, pp. 745-759, Nov. 1972. 

[7] M. G. Lichtenstein and T. Y. Young, “The resolution of closely 
spaced signals,” IEEE Trans. Inform. Theory, vol. IT-14, pp. 288- 

181 
I91 

[lOI 
1111 
WI 
[I31 

I141 

1151 

293, Mar. 1968. 
T. Y. Young, “A recursive method for signal resolution,” IEEE 
Trans. Aerosp. Electron. Syst., vol. AES-5, pp. 4651, Jan. 1969. 
I. Selin, “Estimation of the relative delay of two similar signals of 
unknown phases in white Gaussian noise,” IEEE Trans. Znform. 
Theory, vol. IT-lo, pp. 189-191, July 1964. 
A. D. Whalen, Detection of Signals in Noise. New York: 
Academic, 1971. 
H. L. Van Trees, Detection, Estimation, and Modulation Theory, 
Part 3. New York: Wiley, 1971. 
-, Detection, Estimation, and Modulation Theory, Part I. New 
York: Wiley, 1968. 
J. B. Thomas and J. K. Wolf, “On the statistical detection prob- 
lem for multiple signals,” IRE Trans. Znform. Theory, vol. IT-S, 
pp. 274-280, July 1962. 
G. A. Campbell and R. M. Foster, Fourier Integrals for Practical 
Applications. New York: Van Nostrand Reinhold, 1954. 
J. Wozencraft and I. Jacobs, Principles of Communication En- 
gineering. New York: Wiley, 1965. 

Noncoherent Detection of Periodic Signals 
ROBERT M. GAGLIARDI, MEMBER, IEEE 

Abstract-In this paper the optimal Bayes detector for a general 
periodic waveform having uniform delay and additive white Gaussian 
noise is examined. It is shown that the detector is much more complex 
than that for the well-known cases of pure sine waves (i.e., classical 
noncoherent detection) and narrow-band signals. An interpretation 
of the optimal processor is presented, and several implementations are 
discussed. 

C LASSICAL noncoherent detection is generally under- 
stood to be the detection of a sine wave with random 

phase or time delay in additive Gaussian noise. The problem 
is well documented in communication texts, and the Bayes 
optimal detector has been derived as both a matched en- 
velope detector and a quadrature correlator-squaring device. 
These results have been expanded to include narrow-band 
bandpass signals as well [l]. However, the extension to a 
general noncoherent problem involving the detection of an 
arbitrary periodic signal with random time delay has re- 
ceived little attention. The most relevant documentation 
appears in the radar literature, where the problem is 
formulated as noncoherent detection of a periodic train of 
arbitrary radio frequency (RF) pulses [2], but in all cases 
the narrow-band assumption is imposed in order to derive 
an interpretable solution. 

In this paper the general noncoherent problem is 
examined, with the objective of determining the processing 
required by the optimal detector. It should be pointed out 
that a particular case of practical interest occurs when the 
periodic signal is a baseband square wave. 

Manuscript received April 30, 1974; revised October 31, 1974. 
The author is with the Department of Electrical Engineering, 

University of Southern California, Los Angeles, Calif. 90007. 

Let p(t) be a general periodic deterministic signal having 
period to and bounded energy. The signal is observed for 
T seconds with a random delay z in the presence of additive 
white Gaussian noise n(t). The observation time T will be 
taken as an integer multiple of to for convenience, although 
the results become accurate approximations if T >> to. The 
observable can, therefore, be written as 

u(t) = p(t - z) + n(t),’ t E (0,T). (1) 

For the noncoherent problem, we assume z is uniformly 
distributed over (O,t,). The optimal (Bayes) detector for the 
signal is desired. Mathematically, the Bayes detector is that 
which computes the generalized likelihood ratio A obtained 
by averaging over z. For the observable of (I), this becomes 

A = C 1: exp [-& lo’ v(t)p(t - 2) dt] dz (2) 

where No is the one-sided noise level and C depends upon 
u(t) but not on z. Since C can be computed without the use 
of p(t), it is brought along simply as a constant in sub- 
sequent equations. This property of C also depends on the 
assumption concerning the relation of observation time and 
signal period. Since p(t) is periodic, it admits a Fourier 
expansion, which allows its delayed version to be written as 

p(t - z) = 2 ak sin k 2 t + $k - k0 
[O 1 (3) 

k=O to 

where (ak,t+Gk) are the harmonic amplitudes and phases of 
p(t) and 8 p 2nz/t, is the uniformly distributed phase 
variable over (0,27r). The delay r, therefore, introduces a 
random phase to each harmonic of p(t), but note that these 
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