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Intraframe Sequential Picture Coding

JOHN A. STULLER anp BERND KURZ

Abstract—This paper generalizes time-discrete autoregressive source
coding results of rate-distortion theory to two dimensions. A 2-D dis-
crete autoregressive source is defined and shown to produce a 2-D wide-
sense Markovian field. The rate distortion function of the source is
then obtained under assumption of Gaussian field statistics and a
squared error fidelity criterion. A procedure for generating an ensemble
of 2-D codewords whose statistics satisfy the variational equations for
R(D) is given. These 2-D codewords are, by space-time mappings, 1-D
tree codes, and it is noted that a tree coding theorem of Jelinek, Berger,
Davis and Hellman applies. The problem of instrumenting nearly opti-
mum 2-D sequential encoding is discussed briefly. The paper stresses
potential application to image coder design.

1. INTRODUCTION

FFORTS to apply Shannon’s rate-distortion theory to

the derivation of optimum intraframe image coders have
heretofore dealt primarily with- two-dimensional (2-D) block
coders [1-3]. These have the necessary characteristic for any
optimum image coder of exploiting two-dimensional field
redundancy in order to reduce transmitter data rate [4]. It
would appear that block codes provided the first application
of rate-distortion theory to image coder design partly because,
historically, corresponding results for 1-D block codes were
relatively well known [5]. Moreover, the conceptual bridge
between block coding from one to two dimensions is an easy
one to cross. Matters are no longer so clear when one attempts
to generalize one-dimensional sequential coding to two dimen-
sions. What, after all, is a two-dimensional “sequence” or a
two-dimensional “code tree’?

On the other hand, the first (and still most prevalent)
intraframe image coders were sequential [6]. These originated
relatively independently of information-theoretic analyses:
PCM, DPCM, and ADPCM are all in this class. Their primary
merit is a simplicity of instrumentation that, with few excep-
tions [7], has been achieved by making no effort to exploit
image redundancy in the direction orthogonal to the line
scans. Rate-distortion derived sequential coders for 1-D proc-
esses have been devised [8, 9], but no attempt seems to have
been made to apply these to the line scan processes of imagery.
The reason for this may be partly because of claims that the
simpler intuitive coders perform nearly optimally [10] among
the class of processors that act independently on each picture
line. It is interesting to note, however, that Cutler’s ad-hoc
delayed source encoder [11] exploits a 1-D code-tree search
not unlike that of the 1-D information-theoretic derived
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. coders. Here, however, redundancy among the picture lines

is ignored. _

To help advance future picture coding research, it would
appear useful to have available a theory that describes opti-
mum sequential coding of 2-D discrete processes. Before out-
lining our approach to this theory, we summarize the pertinent
definitions and results that have been established in the 1-D
sequential coding case [12, pp. 207-241]. These begin with an
autoregressive source model.

A discrete time autoregressive source of order M is defined
by the 1-D sequence {x,} generated by

)

M
xtz—zakxt—k + 2y, r=1,2,-
=31

where {z,} is a white random sequence, aq, ' @y are auto-
regression constants, and xg, X1, " X1y are initial condi-
tions. One can view the sum in (1) as the linear minimum
mean square error estimate of x; given all x;, s <¢, and the
term z, as the resulting estimation error, uncorrelated with
all x,, s < t. Thus the random sequence {x,} is wide-sense
Markov—M [13]. Gray [14] found that for independent
N(O, 6,2) random variables z, the mean square error (MSE)
rate distortion function of {x,} is given parametrically by

1 + 7
Dy = —/ min (6, S (w))dw
2n)_n

1 f+m 1 S, (w)
R(Dg)=; max 0,510g2 p dw

—Tr

where S, (w) is the effective power spectrum of {x,}

M
k=0

where @ 2 1. Berger [12, Thm. 6.3.4] has shown that for dis-
tortion D < inf S, (w), R(D) can be (approximately) achieved
by ‘a code having tree structure of the form illustrated in
Figure 1. Moreover, he has shown how to generate an en-
semble of such tree codes in which at least one member
achieves R(D). The optimum source encoder compares the
entire source output sequence {x,} with every word y of its
code tree. When the particular codeword, y,, that minimizes
the squared error fidelity criterion is found, the encoder
transmits the corresponding path map digits to the receiver
from which y, is recovered. The tree has « path digits per
node and f§ codeword letters per branch. Thus y, is transmitted
at rate R = 71 log, a bits per . Optimum source encoding as
such is not instrumentable since an exhaustive search must

—2
Sx(w) = 022
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Fig. 1. A Typical Code Tree. In the tree shown there are o = 2
branches per node and g = 1 letters per branch. Quantities yq, yo,
¥3, = yg shown denote one of the 28 words of this tree. This word
is represented by path map sequence 10010110.

be made over every word of the tree. Anderson and Bodie
[9] consider the design of a nearly optimum instrumentable
encoder for the 1-D autoregressive source.

The present paper generalizes the theory outlined above to
two-dimensional fields. A two-dimensional discrete autore-
gressive source (8) is defined in Section 2. Section 3 shows
that the field it produces is wide-sense 2-D Markov [15]. The
MSE rate distortion R, (D) for Gaussian field statistics is
obtained in Section 4. Section 5 gives the explicit genera-
tion procedure for the 2-D code tree ensemble leading to
R, (D), and discusses a nearly optimum instrumentable coder.
Most of the material in Sections 4-5 rely upon the techniques
of Gray and Berger as described in {12, pp. 207-241] of which
we assume the reader’s familiarity.

2. AUTOREGRESSIVE SOURCE MODEL OF
LINE SCANNED PICTURE

Figure 2 illustrates the raster index labeling convention that
is used in the source model definition. The raster is M + [
rows (or picture lines) by N + J + K columns, with row and
column indices (i, n) elements of the set

R={(mn)l1—-I<m<M1-J<n<N+K} (2)
where I, J, and K are non-negative integers. The raster is
partitioned into two regions:

(i) a line scan region defined by index set

L={mn)y1<m<M 1<n<N} (3a)
and

(ii) a border region defined by index set

B=RN[e=R—L. (3b)

Two-dimensional indices (m, n) in [ are associated with a
one-dimensional time index ¢ = 1, 2, -+, MN to represent the
one-to-one mapping of space onto time attendant with line
scanning in [. This mapping is given formally by

(m, n); = (¥(6), c(t)); 1 <r<MN, (4a)
where '
() = Int (t;1> + 1% (4b)
N
and
*The symbol Int [«] denotes the integer part of a.
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Fig. 2. Raster Sample Center Labeling Convention. Elements denoted
by e belong to the border set B of (3b). Those denoted by © belong
to the line scan set [ (3a). In the illustration / = 3,/ =2, K = 2.

ct)y=(¢~—-1)modN + 1. (4c)
Quantities #(¢) are c(r) are, respectively, the rth line and cth
columnin [ at ¢. The inverse of (4) is
t=(m—1)N+n; (m,n)e L. )
At this point it is convenient to introduce index sets
Sw, Sg. S and S as illustrated in Figure 3:

Sw={G): O0<i<LO<j<J} (6a)
Sg=1{G7) 1<i<I -K<j<-1} (6b)
S=SEUSw ' (6¢)

and
So=S—1(0,0). (6d)

Source autoregression constants are now defined as subscripted
constants a; with (7, /) in So. In the sequel we refer to the
spatial configuration of autoregression constants as the auto-
regression mask. Later notation will be simplified by also
defining constants a;; for (i, j) £ So as

ago =1 (7a)
and
a;=0 @GNES. (7b)

Quantities /, J and K in (2) and (6) are the smallest non-
negative integers for which all non-zero values of a;; have

indices (7, j) in Sq- »

We now define the discrete 2-D field producing autore-
gressive source by the equation that produces its 2-D output
field [x,,,] =X :

Xmn =" 22 aijxm—i,n—j+zmn; (mnmyel, (8

i.HE S,
where
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Fig. 3. Sets Sg, S,. S and Sy. These sets are defined in (6). Set So
comprises the indices of the autoregression constants a;;. The spatial
configuration of aijs (i,j)eSO, is called the autoregression mask.

() [zmn] is an M X N array of zero mean uncorrelated
random variables (r.v.’s), each having variance ¢,2;

(ii) the index (m, n)is related tor =1, 2, -, MN according
to (4); and

(iif) boundary values of the x,, are given for all (p. q) in
B. In the sequel the set of boundary values {x,, : (p, ¢) € B}
is called X'g. .

Insight into the generation of source outputs in time
Xp(ty,e(r) = X according to (8) follows from visualizing the
raster as skewed and then rolled into the form of a cylinder,
the raster lines now forming a helix (Figure 4a). There are N
values of ¢ per turn in this helix corresponding to the & indices
(m, n) per line in L. Boundary region B comprises the first
I turns of the helix as well as a vertical band with J + K vertices
per turn running the length of the cylinder. In the process of
field generation, the autoregression mask encounters boundary
elements x5, € Xpg periodically. It is this fact that makes
source (8) distinct from (1).

The close connection between sources (8) and (1) is illus-
trated in Figure 4b in which an (analog) shift register is used to
store quantities x; needed to produce x;. Note that the source
does not produce outputs in region B but uses the given
boundary values to periodically load the first J + K register

- cells. One can visualize the 1-D shift register as spiralling down
the cylinder as time proceeds, with the individual register
contents remaining geometrically adjacent to their field
element values on the cylinder. In this configuration, the 1-D
register has (V +J + K)I + J storage elements. The memory of
the source, however, is actually N/ + J since no more than
NI + J quantities stored in the register are previously produced
source outputs. By visualizing a register length equal to the
larger value (N + J + K) + J, we obtain a simple way to
visualize the dependency of x, upon both the previously gen-
erated outputs and the given elements in Xg.

Stability tests for two-dimensional equations similar to
(8) are described in [16-19]. In the sequel we assume that
the process [x,,,] becomes asymptotically stationary for
(m, n) sufficiently removed from the raster boundaries for
M — oo, N - oo_In this case a standard calculation reveals that
the process is characterized by an effective 2-D power spectrum:

Sx(wlv wZ) =

(9a)

glwy, ws)

where
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1 2

I J .
| X, errenren

02" 1 k=0 1=—K

(9b)

8wy, w2) =

_ Analysis of the statistical structure of X is facilitated by

‘use of vector notation. Let x be the MN element column

vector of the x;:

x & (xyxg  XyN)T (10a)
and similarly, with z; = z,(4),c (1)

z 2(zy29 zyn)T. (10b)
Equation (8) then assumes the matrix form

Ax=z+b (1)

where A4 is a lower triangular MN X MN matrix having block
form

Ag
Ay Ay
. A,
A= , (12a)
Ar
A
O \AI Ay Ag
;0 4d; —k O
4= VX W), (12b)
aiJ\ ai,_K
O a5 éziO

and b is a vector of linear combinations of the elements in
Xg- Since the boundary elements are given constants and z
is zero mean, b determines the mean of x, n, according to

n=A"1p (13)
where A~1 exists since det A = agoM¥ equals unity. The
covariance matrix of x is

Ky = E{(x —m)x —n)T} = 0,2[ATA4] 1. (14)

3. MARKOVIAN PROPERTIES OF X |

Discrete 2-D Markovian fields are described by Woods {15].
In this section it is shown that the x,,, produced by (8)
satisfy Woods’ conditions for a 2-D Markovian field. It is this
property that makes (8) an intuitively reasonable linear model
for sampled images.
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Fig. 4.

3.1 Preliminaries

Denote the (i, j)th scalar entry of ATA by 8, and the
(u, V)th scalar entry of 4 by §,,. Some thought will reveal
that element &,, is the (1, g)th entry of the (m, p)th N X N
submatrix of A, where n, ¢q, m and p are respectively c(u),
c(v), Hu) and r(v). Inspection of (12a-b) then indicates that

Euv = Bru)y—r(v), c()—c (@) (15)
and therefore, by the rule of matrix multiplication
MN .
Bij = E @r(k)y—r(i)c (k)—c ()r(k)—r(),c(k)—c (j)- (16)

k=1
As k takes values 1, 2, -+, MN, (r(k), c(k)) takes values (1, 1),

(1, 2), -, (M, Nyin [ according to mappings (4b-c). Therefore
(16) may be rewritten as ’

M N
Bi= 2 D) m—rtyn—c(irm—r(),n—c >
m=1 : : .

n=l

an

Computation of f;; is shown graphically in Figure 5, where
B; is seen as the two-dimensional autocorrelation of the
autoregression mask (including @go). The sum of lagged
products in computing f;; is taken over indices (m, n) € L
and for this reason f;; is in general not a function of only
Ar = i) — r(§) and Ac = (i) — ¢()). It can be seen from the
figure, however, that for (i, j) sufficiently interior to the
“borders” of L, §;; assumes the simpler form

I J
V= D, D, Guu@usarveac 2 $(Ar, Ac). (18)
u=0 v=—K

The function ¢(p, q) equals zero for (p, g) outside the
region {| p | < I, { g | <J + K} and can also equal zero for
other (p, q) depending upon the values of the autoregression
constants. In subsequent work it will be convenient to denote
the set of (p, ¢) for which ¢ isnon-zeroas C={(p, q) : ¢(p, q) #

IEEE TRANSACTIONS ON COMMUNICATIONS, MAY 1977

Conceptualizations of Equation (8): (a) in terms of the autoregression mask; (b) equivalent using 1-D shift register
of length (V + J + K)M + J. In the illustration, / =3,/ =2, K = 1.

c(i)-K cli)+J
1 2 ¥cli) oo N n
1
2
1= N - = _
o e B ri)
- Rk N
r{i) . EII . !
I~ - 'L_____‘__: Pj)+1
rli}+1 4
m i
3 ]
m ¥ cij) cljledT
cljr-K
Fig. 5. Graphical Interpretation of Equation (17) for the (i, ))th ele-

ment Bj; in ATA. The sum of lagged products is taken over all (m, n)
in

0}. Tt will also be convenient to let the least integer upper
bound of the set {xp2 + ¢2: (p, q¢) € C} be denoted by P.

3.2 Two Sided Representation of X |
Define an MN X MN matrix H by

H=I-0,2K,1

3 O_u 2
=/ — ) ATA 19)
02
where
I J -1
0,2=0,2 Z E a;;? . (20)
i=0 j=—K
Define an MN component random vector # according to
x=Hx +u. 21
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It follows from definitions (19)<21) that

Kew =K [ -H]T=0,%] (22)
and
Ku :Uu‘?[[_H] = Uu41<x—1 (23)

where K, and K, are, respectively, cross and autocovariance
matrices of u.

Direct evaluation of the matrix product in (21) reveals that,
except for a width P border interior to the line scan region,
field elements x,, ,, are given by

Xmn = EZ hijxm—i,n'—j + Unn (243)
GnNeC
where
o, \?
hpq = qu | ¢(p: q), (P: Q)e C: (24b)
Oz

with ¢(p, q) and 0,2 as in (18) and (20). The u,,, appearing
in (24a) are the elements in # of (21) corresponding to mapping
(4b-c). Equation (24a) expresses X,,, in terms of a linear
combination of 1ts immediate surrounds to a deptthlus the
non-white “noise” u,,,. This is Woods’ “two-sided” repre-
sentation of a discrete 2-D Markov-P process, and we have
consequently shown that the process generated by (8) is 2-D
(wide-sense) Markov-P, {15, 20]. The “one-sided” representa-
tion of the process is, of course, that of equation (8).

It has been noted [20] that an arbitrary Markov-P 2-D
discrete field requires a one-sided representation in which
element x,,, depends upon every x;; in previously generated
lines to a depth P lines above x,,,,. It has been shown in [20]
that Markov processes having separable K, require autore-
gression constants g;; that are non-zero only in Sy — (0, 0).
By including Sp in our definition (8), we have provided a
mechanism by which arbitrary Markov processes can be ap-
proximated by a one-sided representation in which the depend-
ency of x,,, on past x;; does not extend to the raster borders.

4. THE RATE DISTORTION FUNCTION

This section derives the rate distortion function R (D) of
source (8) for Gaussian z,,, under a squared error fidelity
criterion. As is well known, R, (D) is the least number of bits
per source letter necessary and sufficient to reproduce X |
with an average MSE D. For discussions of fidelity criteria and
the Gaussian assumption in application to picture coding, see
{1,21-23].

Let y denote an MN element random vector of reproduced
picture elements corresponding to0 V,,,, (m, n) € L. The
arithmetic average squared error resulting when random x
of (11) is reproduced as y is

Punbe y)=— 2 (e~ )% (25)

Let p(x | (+)) and g(y | (+)) denote respectively the (condi-

489

tional) probability density functions of x and y and p(x, y) =
p(x)q(y- 1 x) denote their joint density function. We define the
rate distortion function of (8) by

R,.(D)= lim Ry n(D) (26a)
X2z
where
Ryn@)=— inf 1(g) (26b)
qE@p
with
Op =19y I x, XB):
/ / dx dyp(x | XR)q(y | x, XR)omun®x, )< D
(26¢)
_ q(y |x, Xg)
(@) —f/dx dyp(x | XB)q(y | x, XB) logy WO X Xp)
(26d)

Paralleling Berger [12, p. 225], the initial step in obtaining an
explicit form for R,(D) is to show that Ry, (D) does not
depend upon the border values Xg. This is done by introducing
a new MN vector w, given (in analogy to (11)) by
Ay =w+b. Q27
In (27), the statistics of y are governed by ¢(y | Xg), and b is
the vector of linear combinations of elements in X g. Since 4 is
invertible, it follows that for given X g, the mutual information
between x and y equals that between z (in(11)) and w. By
steps identical to those in [12, p. 266] one can now write
equivalent expressions for Qp and J(g) in which Xg does not
appear, thereby arriving at the desired conclusion that Ry, (D)
does not depend upon Xg.
Since X'g has no influence on Ry, n(D), subsequent analyses
can assume b = 0 for which (11) becomes
Ax =1z, (28)
Ry n(D) for a Gaussian source of the form (28) under a
MSE fidelity criterion is well known [12, p. 277}:

1 MN
Dy=— min {6, A 29
0 MNZ‘_,I 19, Ne] (292)

E

A
Ryn(Dg) = 2 !:O —logy <Bk>] (29b)

where the A, are the eigenvalues of K. To obtain R, (D) of
(26a) we must take the limit (M, N} — (oo, °°). The reciprocals
of the A, are by (14) the eigenvalues of a,~247T 4. Paralleling

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 14:19:56 UTC from IEEE Xplore. Restrictions apply.
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[12, pp. 277-231] the solution is to find a (here block)
Toeplitz matrix I' having eigenvalues asymptotically equally
distributed to those of 474. As will be shown, the required
matrix is given by

T=[y;], MNXMN,

(30)
where the 7;; are given by (18) forall 1 <i<MN, 1 <j<MN.
By (4), Ar = r(i) — r(j) is constant for given i — j and gN +
I<i<gN+N, g'N+1<j<qg'N+N;and Ac = ¢(i) — c(j)
is constant for given i — j Since v;; is a function of only
(4r, Ac), it follows that T is indeed block Toeplitz in M2
blocks of size N X N.

We obtain the eigenvalues, say a,, of I" by considering the
ith row of the eigenvector equation a¢ = I'¢:

MN
§=0 vk i=1,2,MN (31a)
j=1
from whi.ch
MN
ety ey = E olr@) — (), c(@ — c(N] &rGy, ey (B1b)
=1
and
agmn - E E ¢(pr Q)Em—*p n-—q» (m, }’Z) € l—
D= m—l g=n—1
(31¢)
By defining &; 2 O for (i, /) € L this becomes
+1 +(J+K)
abpp = o(p, Q)Sm—p,n—q‘ (32)

p=—I g=—(J+K)

The 2-D version [24] of the Toeplitz distribution theorem
[12, p. 112] can now be invoked to reveal that the eigenvalues
of I" are distributed asymptotically as

J
2 n

m=0 n==K

2
—j(mwq+nwo) —
n€ ¢ 1 2 ’022g(°~’1, w2)> |

M, N) = (2, =), (33)

for wq, wsy in the square [—m, m]2. The right hand side of
(33) follows from (9b). It follows from Appendix 1 that the
eigenvalues of ATA are also distributed asymptotically as in
(33). This, (9a) and (29) in turn imply that rate distortion
function (26a) has the parametric form

+m
1y |
D6=<2——> //min [0, Si(wy, wy)] dwy dws
ris

(34a)

R.(Dg)= <—> // max( —log, S (w@l' w2)>dw1 desy.

(34b)
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Gray [14] has shown that for 1-D autoregressive source (1),
R.(D) = R,(D) for 0 < D < Dy = inf Sz(w), and R(D) >
R.(D) for D > Do. We prove in Appendix 2 that a similar
result applies to 2-D autoregressive source (8), namely

o 2
R.(D)= —1og2 -;—; 0<D<Dy=infS,(w;,ws)
(35a)
and
1 0,2
Rx(D)>§log2 - D>Dy. (35b)

5. IDEAL TREE ENCODING

A random ensemble of tree codes p that achieves R(D) for
the 1-D source (1) for D < Dy was found by Berger [12]. In
this section we outline a nearly parallel analysis for the 2-D
field. The analysis for the 2-D case encounters two difficulties
that do not anse for 1-D fields, and these are emphasized in
the sequel.

5.1 The Ideal Codeword Ensemble

A calculation identical to that in [12, p. 237] reveals that
codewords y = A~ 1w + A—1h (27), having statistics solving
the variational equation for Ryn(Dg) (29), § < min Ay,
result for

K, =0,21 — DAAT. (36)
Since the eigenvalues of K, are 0,2(1 — D/)\;) it follows that
K, is positive definite for D < min A,. This, in turn implies
[25] that a urique invertible lower triangular matrix B exists
such that :

BBTg,2 =K, 37

" for arbitrary 6,2 > 0. Therefore the process w can be obtained

by a linear causal transformation on a white Gaussian vector
v, with var {v,} = 0,2, t=1,2, ", MN:

w = Bu. (38)

Efforts to obtain an exact implementation of B for the 2-D
case at hand encounter certain difficulties that do not arise for
1-D fields. The problem can be seen by rewriting (36) in terms
of 2-D indices ¢ = (¥(?), c(¢)). A calculation similar to that of
(31) gives the following expression for the covariance u(Wy, ,,
wij) of W, and wy;, i, n) € L, (G, /)€ L:

( mnr

2
11) =0, 8mi8nj

2 Eam—v n—a%—p,j—q-

p=1 ¢=

(39)

The last term of (39) has a graphical interpretation similar to
that for B;; (17) of Figure 5. Except for certain (m, n) and (, /)
in a width P border interior to the line scan region, (39)
assumes the simpler form
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,U(Wmn, Wij) = Ozzémignj —D¢(m - i' n _]) (40)

The 2-D Fourier Transform of (40) gives the effective power
spectrum of the w,, ,:

Sy(wy, wa) =0,2(1 — Dg(wq, W2)) (41)
where g(w;, wg) is given by (9b) and wy and wy are in [—m,
7] . One can interpret the problem of finding a practical filter to
implement (38) as that of obtaining a 2-D filter B(w;, wa)

which when driven with white noise yields the process described
by (41),ie.,

| B(wy, w3) 120,2 = 0,2(1 —Dg(wy, wa)). (42)
A problem in deriving “one-sided” B(w;, ws) from (42) is
that there is no factorization theorem for 2-D polynominals
[16]. However, it appears possible to obtain simple causal
implementations that closely approximate | B(wq, waq) |2
of (42). An example of this is given by the popular scene
covariance model

H(¥mp, Xij) = 0y 2 plm i1+ In ]

(43)

for which [20] So = {(0, 1), (1, 0), (1, D}, ag1 = @19 =
—p,a31 = p?,and

0.2 =(1-p2)"20,2 (44)
The parameter Dy of (35a) resulting from (43) is
0,2
Dy = R 45
o a+ 0 (45)

Four and five tap 2-D transversal filter approximations to
B(wq, wg) for p = 95 are shown in Figure 6. Here the tap
gains b;; were calculated to minimize the sum squared error
€2 between the stationary 2-D covariance terms of (40) and
that of the process provided by the filter approximation.
For sophisticated design techniques for 2-D filters, see [18,
26].

It is interesting to compare the rate R, (D) =R (D) for the
2-D process characterized by (43) with that (say R, (D)) of an
encoder that operates independently on successive line scans.
An individual line scan of the 2-D process is characterized
by the equation

Xy = PX7r 1 + er

T=1,2," 46)

in which {Z;} is a sequence of independent MO, ¢,2) r.v.’s
with

02 =(1-p2)0,2. (C¥))]
Process x, of (46) has MSE rate distortion [12, p. 233]
1 o

where
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FILTER COEFFICIENTS

b,, = -0.0611 b, = 0.1263

11 10
bOl = 0.1263 bOO = 0.8611
CORRELATION REQUIRED
-0.0564 0.1131 ~0.0564
0.1131 0.7734 0.113)
-0.0564 0.1131 ~0.0564
CORRELATION OBTAINED
-0.0526 0.1010 0.0159
0.1010 6.7772 0,1010
0.0159 0.1010 ~0.0526

2
TOTAL SQUARED ERROR & = 0.01114

(a)
FILTER COEFFICIENTS
b = -0,0651 b = 0.1441 = -0.
N 10 bl,—l 0.0892
b01 = 0.1570 b00 = 0.8466

CORRELATICN REQUIRED

-0.0564
0.1131
-0.0564

0.1131
0.7734
0.1131

-0.0564
0.113]1
-0.0564

CORRELATION OBTAINED

0.0 -0.0551 0.1118 -0.0529 -0.0140
0.0058 ©.1107 0.7745 0.1107 0.0058
-0.0140 ~0.0529 0.1118 +=0.0%51 0.0

TOTAL SQUARED ERROR 82 = 0.00051

(b)

Fig. 6. Four and Five Tap 2-D Transversal Filter Approximations to
B(wq, ws): (@) Four tap, (b) Five tap. The quantity €2 is the total
squared error in the corresponding covariance approximation. In
each case, p = 0.95,0, =0, = 1,and D = 0.0626.

2
Oz

D, RV (49)
Therefore from (35), (44), (47) and (48) the increase in
minimum transmission rate for independent coding of line
scans with distortion D < min (Dg, Dy) is R1(D) —Ry(D) =
1/2 logy (1 — p2)~1. For .90 < p < .99 this is an increase of
1.2 to 2.7 bits per pel. This result should be compared to
Davisson’s in [1].

An ideal tree-code ensemble for source (8) with (M, N) —
(0, ) and D < Dy can be obtained by a procedure identical
to that for 1-D source (1) [12, p. 239]. One first chooses
integers « and f8 for rate 7 logy & = R, (D) forsome D < Dy.
A tree having a branches per node and §letters per branch is then
populated with independent N0, ¢,2) r.v.’s. Each word of
the resulting whire code tree is then transformed by (38)
to produce a corresponding non-white vector w. This in
turn is transformed by A~ (as in (27)) to produce a cor-
responding codeword y. This final operation can be imple-
mented in two dimensions by using the w,,, as inputs to
the same recursion relation (8) used to generate the x,,,. The
set of codewords {y} so obtained then constitutes a typical tree
code in the ensemble for which (35) applies. (Figure 7 illus-
trates the codeword generation procedure for @ =2, =1.)
The rate required to transmit a word from any tree in this
ensemble is clearly $—1 logs o = R,. The proof that at least
one code tree {¥} in this ensemble exists for which p(x, y)
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Fig. 7.

Optimum Codeword Generation. (/ = 1,/ = 1, K = 0.) Since B is lower triangular, the system it represents is

causal. Variates Up,,, and wyy,,, are not defined in B.
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Suboptimum Codeword Generation. (I = 1,J =1, K = 0.) The transformation B is approximated by a space-

mn

invariant 2-D transversal filter. Quantities v,,,, (m, n)eb, are taken as zero.

converges in probability to D = R, as (M, N) — (o0, )
results from considerations similar to those for 1-D source (1)
[12, p. 240 and 27, 28].

Code trees {y} having statistics nearly equal to those of
{y} canbe generated by using the approximation to B described
previously. Figure 8 illustrates the generation of a single word
» of such a tree by filtering white array [v,,,] with 2-D
transversal filter b;; to produce [Wp,,]. The statistics of
[Wyr] will nearly equal those of [w,,,] except for (m, n)
within a width P border interior to [. This implies that the
increased distortion resulting from {p} will appear primarily

near the raster boundaries. Therefore for large M and N the
average distortion p(x, p) will approach D of (35). The effective
power spectrum of the codeword process can be deduced from
Figure 8 as

J —
Sy(wy, wp) =8, (wy, w3) E PR CU R REY 2
k=0 1==K
(50)
which is by (9) and (41)
Sy(wy, wg) =S, (wq, wo) —D. (51)
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Fig. 9. Perspective Plots of S, and S, ~ | B |2 corresponding to Equation (50), for p = 0.95, D =0.06260,2. Sy is
given by Sy = Sy — D.

This result parallels that for the 1-D case [12, p. 238]. From
(51) follows that in its asymptotically stationary region,
process Xx,,, can be expressed as the sum of optimum y,,,
plus an independent white process having power D. Figure 9
illustrates typical S, S, and S, for the source characterized
by (43). Note that filter b;; has the effect of suppressing the
higher frequency components that would otherwise be present
in the code tree. Conventional tree encoders such as DM and
DPCM are well known to cause “granularity” noise in their
scene estimates. This noise may be viewed as a “jitter” at f,/2
in their codeword options. Filter b;; may be viewed heuristically
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as optimally smoothing (in two dimensions) a similar jitter
that would otherwise also be present in [y,,,].

5.2 Instrumentation Considerations

Anderson and Bodie [9] consider the problem of instru-
mentable encoding of a 1-D autoregressive source. Their means
to an instrumentable encoder include: (a) quantization of
MO, 0,2) variate v; into « possible levels g1, g2, = qa
(one method of choosing these is given by Max [29]); and (b)
replacement of exhaustive tree search with a suboptimum but
effective method of exploring the tree. The g; resulting from
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(2) then become effectively the « path letters per node of
the code tree. Generation (and reconstruction) of any codeword
is accomplished simply by applying the path map sequence to
a digital filter. Anderson’s (M, L) algorithm [12, pp. 216-219]
is one means of exploring the tree.

It appears possible to apply similar ideas to the encoding
of 2-D sources. In fact, with variates v,,, replaced by their
quantized versions an encoder bearing some resemblance to
the 2-D predictor encoder of Connor et al. [7] begins to
emerge. Connor found that the pictures resulting from his 2-D
schemes were “markedly improved” over those which used
only a 1-D prediction. The theory of this paper suggests that
further improvement will result by the incorporation of a
tree search algorithm. The potential of a 1-D tree search in
picture coding applications has been stressed on intuitive
and experimental grounds by Cutler [11]. In order to exploit
the statistical dependencies in images, its seems clear that
exploration into the code tree should somehow proceed in
both the horizontal and vertical directions. Methods by which
this might be accomplished are presently being explored.

APPENDIX 1

The eigenvalues of matrices AT4 = [8;] (17) and I' =
[vi;] (18) are shown to be asymptotically equally distributed
as (M, N) - (oo, ). The proof is based upon Theorem 6.3.1
and associated definitions in Berger [12, pp. 228-229].

Let £ and E denote the largest magnitude entries of ATA
and T respectively:

I -

E'Smax | 8;1=, > @, (A.la)
i i=0 <=k

E&max |y;|=FE. (A.1b)

i.J

Let {a,'} and {a,} be the sets of MN eigenvalues of 474 and
I" respectively. The magnitude of the eigenvalues can be upper-
bounded by the row norms of the corresponding matrices
[30}:

lo, | <max X |6y <41 +K)E = B, (A.22)
i j

|, | <max D)1, I<4IJ +K)E=B. (A2b)
i J

From (A.1)-(A.2) one has:
(i) strong norms
IlATA | 2 max |, |<B, (A.3a)
n

IT 112 max | o, | <B, (A3b)

n

(ii) weak norms

IATAIé«/

S
2
<
2,

18; 12 <2E'\IJ+K)<B,
(A4a)

5=
W
ki
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=
=

1 N MN
IFIé«//%— Ly 12 <2EVIU +K) <B.

' (A4b)

]
ant
-~

]
un

Let £ = [e;] be the MN X MN difference matrix £ =
ATA — T. Denote the largest magnitude entry by Eg. Then

Ep Smax |e; S E + E=2E.
iJ

(A.5)

From (17), (18), and Fig. 5, elements ¢;; can be non-zero only
for points (r(i), c(@)), (r(), ¢(f)) within a width K left (column)
border interior to [, a width I bottom (row) border interior to
L, and a width J right (column) border interior to L. There are
MK +J) + (N — K — J)I points (i), c(7)) in this region, and
B;; and v;; are both zero for (Ar, Ac) outside the (27 + 1)(2J +
2K + 1) element region { | Ar | <1, | Ac | <J + K}. The weak
norm of E'is accordingly

1 MNMN
|E12 |— le; |12
U s |

<2E«/(21+ 1)(2J + 2K + 1)[M(K+J)+(N—K—J)I],

MN
(A.6a)
and
lim {E|=0. (A.6b)
M—>oo
N—>oc

Properties (A.3), (A.4), and (A.6) establish that the sequence
of matrices {47A} and {I'} exhibit mutual approximation
{ATA} ~ {T'} for both M and N approaching . By use of
Theorem 6.3.1 in [12] we find, with limyxy - «» | ATA <
B < oo from (A .4a), that the eigenvalues of AT4 and I' are
asymptotically equally distributed.

APPENDIX 2

To establish (35a), take 8 < inf S(w;, wy) for which (34)
becomes D =8, and ’

1 1/1)\2
Ry (D)=~ log, (0 /D) — 5(;)

. //Ing (0,2/5(wq, wg)) dwq dwsy. (B.1)

S(wy, wa) is related to the autoregression constants by ).
Upon defining Z; = %1, Z, = ¢“2, and a(Zy, Z») =
3o ek mnZi ™ 2", the integral in (B.1) becomes

a2,

1'=¢ :
1 Zo1=1 722

The function a(Z;, Zp) has zeros at values of Z; equal.to say,
Zi1, Zi2, =, Z11, which are themselves functions of Z,. Some

straightforward analysis then yields

10g2. la(Zy, Z5) 12 4

4. B.2
i 1 (B.2)

1Z11=1
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=17 12=1722 7 1Z41=1

A basic theorem of Shanks [16-18] can now be used to de-
duce that for a stable recursion relation (8), all Z;; have mag-
nitudes less than unity for all 7, on | Zo | = 1. Because of this,

logy | 2y — 44 12
ik

I= d7,. (B3)

the contour integral around | Z; | = 1 vanishes exactly as in

{12, eq. 6.3.60]. R (D) of (B.1) accordingly reduces to (35a).
Inequality (35b) follows directly as in [12, p. 233] upon
repeated application of Jensen’s inequality.
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