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Abstract-This paper generalizes time-discrete autoregressive source 
coding results of rate-distortion theory to  two dimensions. A 2-D dis- 
crete autoregressive source is defined and shown to produce a  2-D  wide- 
sense Markovian field. The rate distortion function of the source is 
then obtained under assumption of Gaussian field statistics and a 
squared  error fidelity criterion. A procedure for generating an ensemble 
of 2-D codewords whose statistics satisfy the variational equations for 
R(D)  is given. These 2-D codewords are, by space-time mappings, 1-D 
tree codes, and it is noted that a tree coding theorem of Jelinek, Berger, 
Davis  and  Hellman applies. The problem of instrumenting nearly opti- 
mum 2-D sequential encoding is discussed briefly. The paper stresses 
potential application to image coder design. 

1.  INTRODUCTION 

E FFORTS  to  apply Shannon’s rate-distortion  theory  to 
the derivation of optimum  intraframe image coders have 

heretofore dealt  primarily with. two-dimensional (2-D) block 
coders [l-31 . These have the necessary characteristic for  any 
optimum image coder of exploiting  two-dimensional field 
redundancy in order  to reduce transmitter  data  rate [4].  It 
would  appear that  block codes  provided the first application 
of rate-distortion  theory to image coder design partly because, 
historically,  corresponding  results for  I-D  block codes were 
relatively well known [SI .  Moreover, the  conceptual bridge 
between  block coding from one to  two dimensions is an easy 
one to cross.  Matters  are no longer so clear when one  attempts 
to generalize one-dimensional sequential coding to  two  dimen- 
sions.  What, after all, is a two-dimensional  “sequence” or a 
two-dimensional  “code tree”? 

On the  other  hand,  the first (and still most prevalent) 
intraframe image coders were sequential [ 6 ] .  These originated 
relatively independently of information-theoretic analyses: 
PCM,  DPCM, and ADPCM are all in  this class. Their  primary 
merit is a simplicity of instrumentation  that,  with few excep- 
tions  [7] , has  been achieved by making no  effort  to  exploit 
image redundancy in the direction orthogonal  to  the line 
scans. Rate-distortion derived sequential coders  for  1-D  proc- 
esses have been devised [8, 91,  but  no  attempt seems to have 
been  made to  apply these to the line scan processes ofimagery. 
The reason for this  may be partly because of claims that  the 
simpler intuitive coders perform nearly optimally [ lo ]  among 
the class of processors that act independently  on each picture 
line. It is interesting to  note, however, that Cutler’s ad-hoc 
delayed  source  encoder [ 111 exploits  a I-D code-tree search 
not unlike that of the  1-D  information-theoretic derived 
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coders.  Here,  however, redundancy among the  picture lines 
is ignored. 

To  help advance future  picture  coding research, it would 
appear  useful to have available a  theory  that describes opti- 
mum sequential coding of 2-D  discrete processes. Before out- 
lining our  approach to this  theory, we summarize the  pertinent 
definitions and results that have been  established in the 1-D 
sequential coding case [l2,  pp.  207-2411. These begin with an 
autoregressive source model. 

A discrete time autoregressive source of  order M is defined 
by the  1 -D  sequence { X , }  generated by 

where { z t }  is a white random sequence, a l ,  ... aM are auto- 
regression constants, and xo,   x-1,  ... xlAM are  initial  condi- 
tions.  One can view the sum  in (1) as the linear  minimum 
mean square error  estimate  of X ,  given  all x,, s < t ,  and  the 
term z t  as the resulting estimation  error, uncorrelated  with 
all x,, s < t. Thus  the  random sequence { x , }  is wide-sense 
Markov-M [13]. Gray [14]  found  that  for  independent 
N(0, u Z 2 )  random variables z t  the mean square error (MSE) 
rate distortion  function  of {x,} is  given parametrically by 

where Sx(o) is the effective  power spectrum of { x , }  

where a. e 1. Berger [12,  Thm. 6.3.41 has shown that  for dis- 
tortion D < inf S,(w), R(D) can be (approximately) achieved 
by  a  code having tree  structure of the  form illustrated  in 
Figure 1. Moreover, he has shown  how to generate an en- 
semble of such  tree  codes  in  which at least one  member 
achieves R(D). The  optimum source encoder.compares  the 
entire source output sequence { x t }  with every wordy  of its 
code  tree. When the particular codeword,yo,  that minimizes 
the squared error fidelity criterion is found,  the encoder 
transmits the corresponding path  map digits to  the receiver 
from which y o  is recovered. The  tree has (Y path digits per 
node  and f l  codeword  letters per branch.  Thusy, is transmitted 
at  rate R = fl-l log, (Y bits per t. Optimum source  encoding as 

versity of  New Brunswick, Fredericton, N.B., Canada. such is not  instrumentable since an exhaustive  search must 
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c 
Fig. 1 .  A Typical  Code  Tree. In the  tree  shown  there  are CY = 2 

branches per node  and p = 1 letters  per  branch.  Quantities yl, y 2 ,  
y3,  ..., jJ8 shown  denote  one of the 2* words of this  tree. This word 
is represented  by  path  map  sequence 10010110. 

be  made over every  word  of the  tree. Anderson and Bodie 
[9] consider  the design of  a  nearly optimum  instrumentable 
encoder  for  the 1 -D autoregressive  source. 

The  present  paper generalizes the  theory  outlined above to  
two-dimensional  fields.  A  two-dimensional  discrete  autore- 
gressive source (8) is defined  in  Section 2. Section 3 shows 
that  the field it  produces is wide-sense 2-D  Markov [ 151 . The 
MSE rate  distortion R,(D) for Gaussian field statistics is 
obtained in Section  4.  Section  5 gives the  explicit genera- 
tion  procedure  for  the 2-D code  tree  ensemble  leading to 
R,(D), and discusses a nearly optimum  instrumentable  coder. 
Most of  the material  in  Sections  4-5 rely upon  the  techniques 
of  Gray  and Berger as  described in [ 12, pp.  207-2411  of which 
we assume the reader's  familiarity. 

2. AUTOREGRESSIVE SOURCE MODEL OF 
LINE SCANNED PICTURE 

Figure 2  illustrates  the raster  index  labeling  convention that 
is used in the  source  model  definition.  The raster is M + Z 
rows  (or  picture lines) by N + J + K columns,  with  row  and 
column  indices (m, n )  elements  of  the  set 

where I ,  J, and K are  non-negative  integers. The raster is 
partitioned  into  two regions: 

(i) a line scan region  defined  by  index  set 

L = {(m, n):  1 <m <M, 1 <n < N } ,  (3 a> 

and 

(ii) a border region defined  by  index  set 

Two-dimensional  indices (m, n )  in L are  associated with  a 
one-dimensional  time  index t = 1, 2,  .-, MN to  represent  the 
one-to-one  mapping of space onto  time  attendant  with line 
scanning  in L. This  mapping is given formally  by 

(m, n)t  = (r(t), c(t));  1 < t <MN, ( 4 4  

where 

and 

. l l 0 0 0 0 0 0 0 0 0 0 0 0 . .  

. ~ ~ 0 0 0 0 0 0 0 0 0 0 0 0 . .  

. 1 ~ 0 0 0 0 0 0 0 0 0 0 0 0 . .  
0 0 0 0 0 0 0 0 0 0 0 0 . .  

0 0 0 0 0 0 0 0 0 0 0 0 . .  
. ~ ~ 0 0 0 0 0 0 0 0 0 0 0 0 . .  
. ~ ~ 0 0 0 0 0 0 0 0 0 0 0 0 . .  

0 0 0 0 0 0 0 0 0 0 0 0 . .  
0 0 0 0 0 0 0 0 0 0 0 0 . .  2 1  0 0 0 0 0 0 0 0 0 0 0 0 . .  

m '  

Fig. 2. Raster  Sample  Center  Labeling  Convention.  Elements  denoted 
by belong to  the  border  set 8 of (3b).  Those  denoted  by o belong 
to the  line  scan  set L (3a).  In  the  illustration I = 3, J = 2, K = 2. 

c( t )  = (t - 1) mod N + 1. ( 4 ~ )  

Quantities r(t)  are c( t )  are, respectively, the  rth  line  and  cth 
column  in L at t. The inverse of  (4) is 

t = ( m - l ) N + n ;  ( m , n ) € L .  (5) 

At this  point  it is convenient to  introduce  index  sets 
Sw, S E ,  S and So as  illustrated  in  Figure 3: 

S w  ={( i , j ) :  O < i < Z ,  O < j < J }  (6 a) 

S E  {(i, j ) :  1 < i <Z, -K < j  < -I}  (6b) 

S = S E u S W  (6c) 

and 

so = S - (0,O). (6 d) 

Source  autoregression  constants  are  now  defined as subscripted 
constants aij  with (i, j )  in So. In the sequel we refer to  the 
spatial  configuration of autoregression constants as the auto- 
regression mask. Later notation will be  simplified by also 
defining  constants aij  for (i, j )  e SO as 

aoo = 1 (7a) 

and 

Quantities Z, J and K in (2) and (6) are the smallest non- 
negative  integers for which all non-zero values of aij  have 
indices (i, j )  in So. 

We now define the  discrete  2-D  field  producing  autore- 
gressive source  by  the  equation  that  produces  its  2-D output 
field [x,,,] -XL: 

*The  symbol  Int [ C Y ]  denotes  the  integer  part of 01. where 
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Fig. 3 .  Sets s ~ ,  s,. s and SO. These  sets  are  defined in ( 6 ) .  Set SO 
comprises  the  indices of the autoregression constants aij .  The  spatial 
configuration  of aij ,  (i,j)&, is called the autoregressiotl mask. 

(i) [z,,] is an M X N array  of  zero  mean  uncorrelated 
random variables (r.v.’s), each having variance uz2; 

(ii) the  index (m. n )  is related to  t = 1 , 2 ,  ..., MN according 
to (4);  and 

(iii) boundary values  of the xpq are given for all (p. q )  in 
8 .  In the sequel the  set  of  boundary values {xpq : (p, q )  E 8 )  
is called X R .  

Insight into  the  generation of source  outputs in time 
x ~ ( ~ ) , ~ ( ~ )  xt  according to (8) follows  from visualizing the 
raster as skewed  and then rolled into  the  form  of  a  cylinder, 
the  raster  lines  now  forming a helix  (Figure  4a).  There  are N 
values  of t per turn in this  helix  corresponding to  the N indices 
(m. n)  per  line in L .  Boundary region 8 comprises the first 
Z turns  of  the helix as  well  as a vertical  band  with J + K vertices 
per turn  running  the  length  of  the  cylinder. In the process  of 
field generation,  the autoregression  mask encounters  boundary 
elements x p a  E X 8  periodically. It is this  fact that  makes 
source (8) distinct  from (1). 

The close connection  between  sources (8) and (1) is illus- 
trated in Figure 4b in which  an  (analog)  shift register is  used to 
store  quantities x, needed to produce X*. Note  that  the  source 
does not  produce  outputs in region 8 but uses the given 
boundary values to periodically  load the first J + K register 
cells. One  can visualize the  1-D  shift register  as spiralling  down 
the  cylinder as time  proceeds,  with  the  individual register 
contents remaining  geometrically  adjacent to their field 
element values on  the  cylinder.  In  this  configuration,  the  1-D 
register has (N + J + K)Z + J storage  elements.  The  memory  of 
the  source, however. is actually NZ + J since no more  than 
NZ + J quantities  stored i‘n the register are  previously produced 
source  outputs. By  visualizing a register length  equal to  the 
larger  value (N + J + K)Z + J, we obtain  a simple way to 
visualize the  dependency of xt  upon  both  the previously  gen- 
erated  outputs  and  the given elements in X R .  

Stability  tests  for  two-dimensional  equations similar to 
(8) are  described  in [16-191. In the sequel we  assume that 
the process [x,.] becomes  asymptotically  stationary  for 
(m, 12) sufficiently  removed  from  the  raster  boundaries  for 
M -+ w, N -+ 00. In this case a  standard  calculation reveals that 
the process is characterized  by  an  effective  2-D  power  spectrum: 

Analysis of  the  statistical  structure of X L  is facilitated by 
use of  vector notation.  Let x be the MN element  column 
vector of the  X*: 

Equation (8) then assumes the  matrix  form 

where A is a lower  triangular MN X MN matrix having block 
form 

A =  

A0 

A 1  

A I  

0 

and b is a vector  of  linear  combinations  of the  elements in 
X R .  Since the  boundary  elements are given constants  and z 
is zero  mean,  b  determines  the  mean  of x, 7, according to  

where A-l  exists  since  det A = aOOMN equals unity.  The 
covariance matrix of x is 

K ,  = E{ (X -- V)(X - v ) ~ }  = U, [A TA] . (1 4) 

3. MARKOVIAN PROPERTIES OF X L  

Discrete  2-D  Markovian  fields  are  described by Woods [ 151 . 
In this  section  it is shown  that  the x,, produced  by (8) 
satisfy Woods’ conditions  for  a  2-D Markovian field. It is this 
property  that makes (8) an  intuitively  reasonable  linear  model 
for  sampled  images. where 
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Fig. 4. Conceptualizations of Equation (8): (a)  in  terms  of  the  autoregression  mask; (b) equivalent  using 1-D shift register 
of  length (N + J + K ) I  + J .  In  the  illustration, I = 3, J = 2, K = 1 .  

3.1 Preliminaries C!i)-K c l i )  + J 

Denote  the (i, j)th scalar entry of A T A  by Pi i ,  and  the 
(u, u)th scalar entry of A 'by tUu.  Some  thought will reveal 
that  element guu is the (n, q)th  entry of  the (m, p)th N X N 
submatrix of A ,  where n, 4, m and p are respectively c(u), . . . . . . . . . . . .  . . . .  
C(u), r(u) and r(u). Inspection of  (12a-b) then  indicates  that . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  2 .  

. . . . . . . . . . . . . . . .  

t =  j I --I-- - - -1 . . . . . . .  . ( . I .  . . .  . . .  
I 

r ( j  

and  therefore,  by  the rule  of matrix  multiplication 

M N  
r ( i )  + I 

P" " = . x a r ( k ) - r ( i ) , c ( k ) - c ( i ) a r ( k ) - - P ~ ) , c ( k ) - c ( j ) ~  (16) . . . . . . . . .  k = l  
I t  

As k takes values 1 ,  2, .-, MN, (r(k),  c(k)) takes values (1,  l), 
I C ( j )  

. . . . .  

(1, 2), ..., (M, N) in L according to mappings  (4b-c). Therefore 
(1 6) may be rewritten as 

Computation of p i j  is shown graphically in Figure 5 ,  where 
p i j  is seen as the two-dimensional autocorrelation of the 
autoregression mask (including aoo) .  The sum of lagged 
products in computing p i j  is taken over indices (m, n)  E L 
and  for  this reason p i j  is in general not a function  of only 
Ar E r(i) - rG) and Ac E c(i)  - CG). It  can  be seen from  the 
figure, however,  that  for (i, j )  sufficiently interior  to  the 
"borders"  of L ,  P i j  assumes the simpler form 

. .  . I .  e . .  

---i. 
. .  . I .  . . .  

. . .  . .  ' ' ( j  1 + I  
. . . . . . .  
. . . . . . .  
. . . . . . .  

. . . . .  
I 

c r j  I +  J 

C ( j l -  K 

Fig. 5. Graphical  Interpretation  of  Equation (17)  for  the (i, j ) t h  ele- 
ment p i j  in ATA. The sum of lagged products is taken over  all (m, n )  
in 1. 

0). It will also be convenient  to let the least  integer upper 
bound of 'the set { d p q T :  (p, q )  E C }  be denoted  by P. 

3.2 Two Sided  Representation of X I 
Define  an MN X MN matrix H by 

H = I -  2K -1 
u.  x 

=I-(:) 2 A T A  

I J  

Y i j  = auuau+Ar, v + A c  = $'(Ar, Ac).  n (1 8) where , 
u=O u=-K 

UU2 . 
The  function @(p, q )  equals  zero for (jJ, q )  outside  the 

region { I  p I < I, I q I < J + K }  and  can also equal  zero  for 
other (jJ, 4) depending  upon  the values of the autoregression Define an MN component  random vector U according to  
constants.'In  subsequent  work  it will be  convenient to  denote 
the  set of 0 7 ,  q )  for which @ is non-zero as C E { (p, q )  : @(p, 4) f X = HX + U. (21) 
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It follows from  definitions (19)-(21) that tional) probability density functions of x and y and p ( x , y )  = 
p(x)q@ I x )  denote their joint  density  function. We define the 

K x u = K x [ I - H ] T = ~ u 2 1  (22)  rate distortion  function of (8) by 

and R,(D) = lim RMN(D) ( 2 6 4  

K, = o U 2 [ Z - H ]  = uU4K,-l 
M - f m  
N - m  (23) 

where K , ,  and K, are, respectively, cross and autocovariance where 
matrices of u.  

except for a  width P border  interior  to  the line  scan  region, MN 4 E Q D  

field elements x ,  , are given by 

1 
Direct  evaluation of the  matrix  product in (21) reveals that, R M N ( D )  = - inf I(q)  

where 

(26c) 
with @@, q )  and uu2 as in (18) and (20). The u,, appearing 
in  (24a) are the  elements in u of (21) corresponding to mapping 
(4b-c). Equation  (24a) expresses x , ,  in  terms  of a linear Z(q) = dyp(x I X ~ ) q ( ’ y  I x ,  X R )  log2 
combination of  its immediate  surrounds  to  a  depth P plus the d Y  I X 8 )  
non-white “noise” u,,,,. This is Woods’ “two-sided”  repre- ( 2 6 4  

4(Y I x, 

sentation  of  a discrete- 2-D Markov? process, and we have 
consequently  shown  that  the process generated  by (8) is 2-D 
(wide-sense) Markov-P, [ 15, 201 . The  “one-sided” representa- 
tion of the process is, of course,  that of equation (8j. 

It has been noted [20 ]  that an arbitrary Markov-P 2-D 

. .  

Paralleling Berger [12,  p. 2251 , the initial step in obtaining an 
explicit form  for R,(D) is to  show  that RMN(D) does not 
depend  upon  the  border  valuesXB. This is done  by  introducing 
a new MN vector w ,  given (in analogy to (1 1)) by 

discrete field requires a one-sided representation in which 
element x,, depends upon every x i j  in previously generated 
lines to  a  depth P lines above x , , .  It  has  been  shown  in [20] 
that Markov processes having separable K, require autore- 
gression constants aij  that are non-zero only  in Sw - (0, 0). 
By including S, in our definition (8), we have provided a 
mechanism by which arbitrary Markov processes can be  ap- 
proximated by a one-sided representation in which the  depend- 
ency of x , ,  on past x i j  does not  extend  to  the raster borders. 

4. THE RATE DISTORTION FUNCTION 

This section derives the  rate  distortion  function R,(D) of 
source (8) for Gaussian z , ,  under a squared error fidelity 
criterion. As  is well known, R,(D) is the least number of  bits 

A y = w + b .  (2 7) 

In (27), the statistics of y are governed by 4@ I X g ) ,  and b is 
the vector of linear combinations  of  elements in X B .  SinceA is 
invertible, it follows that  for given X R ,  the  mutual  information 
between x and y equals that  between z (in (1 1)) and w. By 
steps identical  to  those in [12,  p. 2661 one can now  write 
equivalent  expressions for Q D  and 1(qj in  which X8 does not 
appear,  thereby arriving at  the desired conclusion that RMN(D) 
does not  depend  upon X g .  

Since X8 has no influence on RMN(D), subsequent analyses 
can assume b = 0 for which (1 1) becomes 

A x  = z .  (28) 

per  source letter necessary and sufficient to  reproduce XL 
with  an average MSE D. For discussions of  fidelity  criteria and 
the Gaussian assumption in application to  picture  coding, see 

RMN(D) for a Gaussian source  of the  form (28) under  a 
MSE fidelity criterion is  well known  [12,  p.  2771 : 

[ l ,  21-23]. 
Let y denote an MN element  random vector of reproduced 

picture elements  corresponding to y,,, (m, n )  E L. The 
arithmetic average squared error resulting  when random x 
of (1 1) is reproduced a sy  is R M N ( D ~ ) = -  IMN maX [ 0,-1Og2 (:)I (29b) 

MN t = l  (25) where the hk are the eigenvalues of K,. To  obtain R,(D) of 

1 M N  
MN k = l  

pM&‘(x* = - ( X t  - y t l 2 .  

(26a) we must  take  the limit (M, N) + (m, -). The reciprocals 
Let p(x I (.)) and 4b I (.)) denote respectively the  (condi- of the hk are  by  (14) the eigenvalues of uZp2ATA.  Paralleling 
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[12,  pp. 277-2311 the solution is to find a (here block) 
Toeplitz  matrix r llaving eigenvalues asymptotically equally 
distributed  to those  of A T A .  As will be shown,  the required 
matrix is given by 

r = [rij3, MN x MN, (3 0 )  

where the Yij are given by (1 8) for all I < i <MN, 1 < j <MN. 
By (4), Ar = r(i) - r(i> is constant  for given i - j and qN + 
1 < i < qN + N, q'N + 1 < j  < q'N + N ;  and Ac = c(i) - cci> 
is constant  for given i - j .  Since yij is a  function of  only 
(Ar, Ac), it follows that r is indeed  block Toeplitz in M2 

blocks  of size N X N. 
We obtain  the eigenvalues, say an,  of F by  considering the 

ith  row  of  the eigenvector equation a[ = Q: 

(3 1 a) 

from which 

and 

By defining gij 0 for (i, j )  e L this becomes 

The  2-D version [24] of the  Toeplitz  distribution  theorem 
[ 12,  p. 1121  can now be invoked to  reveal that  the eigenvalues ' 

of r are distributed  asymptotically as 

for wl, w2 in the square [-n, n] ,. The right hand side of 
(33) follows from (9b).  It  follows from  Appendix 1 that  the 
eigenvalues of A T A  are also distributed  asymptotically as in 
(33). This, (sa) and  (29) in turn imply that  rate  distortion 
function  (26a) has the  parametric  form 

De=( iJ / lmin  [ 0 ,  S,(wl, 02)] dw, dw, 
-71 

Gray [ 141 has shown  that  for  1-D autoregressive source (l) ,  
R,(D) = R,(D) for 0 < D <Do 5 inf S,(w), and Rx(D)  > 
R,(D) for D > Do.  We prove in Appendix 2  that  a similar 
result applies to  2-D autoregressive source (8), namely 

1 0 2  

2 D 
R,(D) = - log, -; 0 < D <Do inf S,(ol, 02) 

(35a) 
and 

5 .  IDEAL  TREE ENCODING 

A  random ensemble of tree codes y that achieves R(D)  for 
the  1-D source  (1) for D < Do was found by Berger [12] . In 
this section we outline  a nearly parallel analysis for  the  2-D 
field. The analysis for  the 2-D case encounters  two difficulties 
that  do  not arise for  1-D fields, and these are emphasized  in 
the sequel. 

5. I The Ideal  Codeword Ensemble 
A calculation identical to  that in [12,  p. 2371 reveals that 

codewords y = A - l w  + A - l b  (27), having statistics solving 
the variational equation  for RMN(D0) (29), 6 < min 
result for 

K ,  = a z 2 1  - DAAT.  (3 6) 

Since the eigenvalues of K ,  are uZ2(1 - D/hk)  it follows that 
K ,  is positive definite  for D < min hk. This, in turn implies 
[25] that  a ur.ique invertible  lower  triangular matrix B exists 
such that 

for  arbitrary uu > 0. Therefore  the process w can be obtained 
by a linear causal transformation  on  a  white Gaussian vector 
u, with var { u t }  = uu2,  t = 1 , 2 ,  - . ,MN: 

w = Bv. (3 8) 

Efforts to  obtain an exact  implementation of B for  the  2-D 
case at  hand  encounter  certain difficulties that  do  not arise for 
1 -D fields. The  problem can be seen  by  rewriting  (36) in terms 
of  2-D indices t + (r(t), c(t)). A calculation similar to  that of 
(31) gives the following  expression for  the covariance p(w,,,, 
wi j )  of w,, and wij,  (m, n)  E L ,  (i, j )  E L :  

p(wmn,  wij) = 0, 6mi6n j  
2 

The last term  of (39)  has a graphical interpretation similar to  
that  for p i j  (1 7) of  Figure 5.  Except  for  certain (m, n )  and (i, j )  
in a  width P border  interior to  the line scan region,  (39) 
assumes the simpler form 
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FILTER COEFFICIENTS ~ ( w , , ,  wi j )  = uz26mi6nj  - D@(m - i, n - j ) .  (40) 

The  2-D  Fourier  Transform of  (40) gives the effective  power 
spectrum of the w, , : 

S,(w,, w2) = 0Z2(1 -Dg(w,, w2)) (41) 

where g(wl, w,) is given by  (9b)  and w1 and o2 are in [-n, 
n] . One  can interpret  the problem of finding a practical filter to  
implement  (38) as that of obtaining  a  2-D filter B(wl ,  0,) 

which when driven with white noise yields the process described 
by  (41),  i.e., 

A problem in deriving “one-sided” B(wl ,  w 2 )  from  (42) is 
that  there is no factorization  theorem  for 2-D  polynominals 
[16]. However, .it  appears possible to  obtain simple causal 
implementations  that closely approximate I B(wl,  w,) 1, 
of  (42). An example  of  this is  given by the  popular scene 
covariance model 

p(x,,, xij> = ~ , 2 p l ~ - i l + l n - j l  (43) 

for which  [20] SO = ( ( 0 ,  l), (1, 01, (1, 1)), (101 = a10 = 
-p,  al l  = p 2 ,  and 

ux2 = (1 - p2)-2uz2. (44) 

The  parameter Do of (3Sa) resulting from  (43) is 

Four  and five tap 2-D transversal filter approximations  to 
B(wl ,  w,) for p = .95 are shown  in  Figure 6. Here the  tap 
gains bij were calculated to  minimize the sum squared error 
e2 between  the  stationary 2-D  covariance  terms  of  (40) and 
that of the process provided by the filter approximation. 
For  sophisticated design techniques  for 2-D  filters, see [18, 

It is interesting to  compare  the rate R,(D) rR , (D)  for  the 
2-D process characterized  by  (43) with  that (say Rl (D) )  of  an 
encoder  that  operates  independently on successive line scans. 
An irzdividual line  scan of  the 2-D process is characterized 
by the  equation 

261. 

x, = PX,-1 + ZT, 7 = 1 , 2 ,  ... (46) 

in which ( k }  is a sequence of independent N(0, uz2) r.v.’s 
with 

uz2 = (1 - p2)ux2. (4 7 )  

Process x, of (46) has MSE rate distortion  [12,  p. 2331 

where 

bll  = - 0 , 0 6 1 1  b10 = 0.1263 

bO1 = 0 .1263  boo = 0 . 8 6 1 1  

CORRELATION  REQUIRED 

-0.0564 
0 .1131  

0 .1131   -0 .0564  
0 .7734  

-0 ,0564  
0.1131 

0 .1131  -0 .0564 

CORRELATION  OBTAINED 

-0.0526 0.1010 0 .0159  
0 .1010  
0 .0159  

0 .7772  0 .1010  
0 .1010  -0 ,0526  

TOTAL SQUARED ERROR e2 = 0 .01114  

(a) 
FILTER  COEFFICIENTS 

b = -0 ,0651  b10 = 0 . 1 4 4 1  bl,-l - -0.0892 

bO1 = 0 , 1 5 7 0  boo = 0 .8466  

11 

CORRELATION REQUIRED 

-0.0564 
0 .1131  

0.1131 -0.0564 
0 .7734  

-0 ,0564  
0 .1131  

0 .1131   -0 .0564  

CORRELATION  OBTAINED 

0.0 - 0 , 0 5 5 1  
0 .0058   0 .1107  

0.1118 -0 ,0529  -0 .0140 
0 .7745  

-0.0140  -0 .0529 
0 .1107  

0.1118 . -0 .0551  
0 .0058  
0.0 

TOTAL  SQUARED  ERROR E2 = 0.00051 

(b) 
Fig. 6 .  Four and  Five  Tap 2-D Transversal  Filter  Approximations to 

B(w1, w2):  (a) Four tap, (b) Five  tap. The quantity e2 is the  total 
squared error in  the  corresponding  covariance  approximation.  In 
each  case, D = 0.95, uz = u,, = 1, and D = 0.0626. 

Therefore  from (35),  (44),  (47) and  (48)  the increase in 
minimum transmission  rate  for independent coding  of  line 
scans with  distortion D < min (Do, Dl) is R1(D) -R,(D) = 
1/2 log, (1 - p2) - l .  For  .90 < p < .99 this is an increase of 
1.2 to  2.7  bits per pel. This result should be compared to 
Davisson’s in [ 1 ] . 

An ideal tree-code ensemble for source (8) with (M, N) + 

(00, m) and D < D o  can be obtained  by  a  procedure identical 
to  that  for  1-D source  (1) [ 12,  p. 2391 . One  first  chooses 
integers a and  for rate 0-l log, a = R,(D) for some D <DO. 
A  tree having a branches per node and pletters per branchis  then 
populated  with  independent N(0, uu2)  r.v.’s. Each word  of 
the resulting white code tree is then  transformed by (38) 
to  produce  a corresponding non-white vector w. This  in 
turn is transformed  by A - l  (as in (27)) to  produce  a  cor- 
responding codeword y .  This  final operation can be imple- 
mented in two dimensions by using the w,, as inputs to  
the same recursion  relation (8) used to generate the x,,. The 
set  of codewords (y} so obtained  then  constitutes  a typical tree 
code in the ensemble for which (35) applies.  (Figure 7 illus- 
trates  the  codeword  generation  procedure  for a = 2, p = 1.) 
The  rate required to  transmit  a word from any tree in  this 
ensemble is clearly 0-l log, a = R,. The  proof  that  at least 
one  code  tree b} in  this  ensemble  exists  for  which p(x, y )  
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Fig. 7. Optimum  Codeword  Generation. (I = 1, J = 1, K = 0.) Since B is lower  triangular,  the  system  it  represents is 
causal.  Variates u,, and w,, are  not  defined  in B. 

Fig. 8. Suboptimum  Codeword  Generation. ( I  = 1, J = 1, K = 0.) The  transformation B is approximated  by  a  space- 
' invariant 2-D transversal  filter.  Quantities u,,, (m, n)&, are  taken  as  zero. 

converges in probability to  D = R,-l  as (M, N) + (w, -) 
results from  considerations similar to  those  for 1-D source (1) 
[12,  p.  240  and 27,281. 

Code  trees G} having statistics  nearly equal to  those of 
b} can be generated  by using the  approximation  to B described 
previously.  Figure 8 illustrates the  generation of a single word 
3 of such  a  tree  by filtering white  array [IJ,,] with  2-D 
transversal filter bij  to  produce [*,,I . The statistics  of 
[&,,I will nearly equal  those of [w,,] . except  for (m. n )  
within a  width P border  interior  to L. This  implies that  the 
increased distortion resulting from { j }  will appear primarily 

near the raster boundaries.  Therefore  for large M and N the 
average distortion p ( x , j )  will approachD  of (35 ) .  The effective 
power spectrum  of  the  codeword process can be deduced  from 
Figure 8 as 

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 14:19:56 UTC from IEEE Xplore.  Restrictions apply. 



STULLER  AND  KURZ:  INTRAFRAME  SEQUENTIAL CODING 493 

Fig. 9. Perspective  Plots of S, and S, - I B l 2  corresponding to Equation (50), for P = 0.95, D =  0 . 0 6 2 6 ~ ~ ~ .  S,is 
given by S, = S, - D. 

This result parallels that  for  the  1-D case [ 12, p. 2381 . From 
(51) follows that in its asymptotically  stationary region, 
process x,, can be expressed as the sum of optimum y ,  
plus an independent white process having power D. Figure 9 
illustrates typical S,, S, and S, for  the source  characterized 
by (43). Note  that filter bij has the  effect of suppressing the 
higher frequency  components  that would otherwise be present 
in the  code  tree. Conventional tree encoders such as  DM and 
DPCM are well known  to cause “granularity”  noise  in their 
scene estimates.  This noise may  be viewed as a  “jitter”  at f , /2 
in their  codeword  options.  Filter b, may  be viewed heuristically 

as optimally smoothing (in two dimensions) a similar jitter 
that would  otherwise also be present  in b, ,] . 

5.2 Instrumentation Considerations 
Anderson and Bodie [9] consider the problem of instru- 

mentable encoding of a 1-D autoregressive source. Their  means 
to  an  instrumentable  encoder include: (a) quantization  of 
N(O, uu2) variate ut into a! possible levels 41, q 2 ,  ..., qa 
(one method  of choosing these is given by Max [29]);  and (b) 
replacement of exhaustive tree search  with a  suboptimum  but 
effective method of exploring the  tree.  The q i  resulting from 
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