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Fig. 3. 
estimation errors for the conditions described in (29). 

Comparison of the standard and modified Kalman filter position 

not fully characterized. The algorithm includes a mismatch function 
that provides a modified value for the predicted state of the standard 
Kalman filer. 
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Order-Recursive FIR Smoothers 

Jenq-Tay Yuan and John A. Stuller 

Abstnrct-This paper introduces order-recursive FIR smoothers and 
shows that order-recumhe FIR filters are spedal forum tbat occur when 
no future data vduw are used to estimate the signd. The formulation 
leads naturally to gemeralizations of the concepts of prrdictloa-error basis 
and Cholesky factorization which are well known in FIR Blter design. 

I. INTRODUCTION 

Lattice realizations of FLR filters offer well-known advantages over 
tapped-delay-line realizations [ 11-[5]. The fundamental property of 
the lattice realization of an FIR filter is that optimum higher order 
filters can be built from lower-order ones by simply adding on more 
lattice stages, leaving the original stages unchanged. This is called 
the order-recursive property [6]. An implication of the order-recursive 
property is that an N-stage lattice filter automatically generates all 
N of the outputs that would be provided from N separate tapped- 

We distinguish between the terms smoother and filter, ([7], pp. 
156), ([8], pp. 273): An FIR filter estimates the present value of a 
signal sequence, ~ ( n ) ,  using a linear combination of only the present 
and previous values of a data sequence, g(n).  An FIR smoother 
noncausally estimates the present value of a signal sequeqce, z(n). 
using a linear combination of the present, past and future values of 
a data sequence or observations, g(n).  Our interest in smoothers is 
motivated by the fact that their performance is potentially superior 
to filters ([8], pp. 279). 

This paper introduces order-recursive FIR smoothers and shows 
that order-recursive FIR filters are special forms that occur when no 
future data values are used to estimate the signal. The formulation 
leads naturally to generalizations of the concepts of prediction-error 
basis and Cholesky factorization which are well known in FIR filter 
design. 

delay-line filters of length 1,2 ,  .... N. 

11. MMSE FIR SMOOTHERS 
We consider an Nth-order FIR smoother for which the signal is 

estimated from the current and p-past observations and f-future data 
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samples, where p > 0, f > 0 and 

N = p + f .  (1)  

We will occassionally refer to an Nth order smoother as a ( p ,  f)th- 
order smoother where (1)  is understood implicitly. The smoother 
output is the signal estimate 

f 
? P , f ( R . )  = h(P, f ) , tY( .  + i )  (2) 

1 = - p  

where h(p,fj,z, is the ith rap coeficient of order (p .  f ) .  The coeffi- 
cients h(p,f) ,z .  -p 5 i 5 f ,  are chosen to minimize the mean squared 
value of the estimation error e p , f ( n )  = z (n)  - ?,,f(n). Insight to 
this minimization problem can be obtained by embedding it in a 
Hilbert space ([9], pp. 20). Here, the data or observations, y(n) and 
the signal, z (n) ,  will be assumed to be jointly stationary, zero mean 
random sequences. The Hilbert space, H, consists of all quadratic 
mean limits of sequences of finite linear combinations of the data 
and signal sequences. The inner product (U,  U )  of any two elements, 
U, U ,  in H is given by the expectation E{uu} .  The squared norm of 
U ,  llu11*, is the mean square value of U ,  E { u 2 } .  We define Yp,p(n) 
as the Hilbert subspace of H generated by all linear combinations 
of the random variables y(n - p ) ,  y(n - p +  l ) , . . - , y ( n + f ) ,  and 
use brackets [ ] to denote this subspace: Yp,p(n) = [y(n - p ) ,  y(n - 

To find the minimum mean square error (MMSE) estimate ?,,f(n), 
we apply the Hilbert space projection theorem ([9], pp. 26), which 
states that there is an unique element ? p , f ( n )  E Yp,f(n) that 
minimizes IIz(n) - ?,,f(n)ll. The element 32p,f(n), called the or- 
thogonal projection of z (n)  into Y p , f ( n ) ,  is characterized by the 
requirement that e p , f ( n )  = z (n)  - ? p , f ( n )  is orthogonal to Yp,p(n). 
An equivalent requirement is E { ( z ( n )  - 32p,f(n))y(n + i)} = 0 for 
-p 5 i 5 f .  The substitution of (2) into this equivalent requirement 
yields all but the last row of the following augmented normal matrix 

P + 11, * .  . ?  Y(" + f11. 

111. ORDER-RECURSIVE FIR SMUIOOTHERS 
The first step in the development of an order-recursive realization . 

for (2) is to increase the order from N to N +  1. Clearly, this may be 
done by increasing either f or p in (2) by one. We consider first the 
problem of increasing N by using one additional future data sample, 
y(n + f + 1). By the Hilbert space projection theorem, the MMSE 
estimate of ?,,f+l(n) of ~ ( n )  is the orthogonal projection of z (n )  

The augmented normal equations are 
onto YP,f+l(ro = [ Y ( n - P ) ,  y ( n - p + l ) , . - .  , y(n+f ) ,  y (n+f+ l ) l .  

X 

where ryV(k) = E{y(n + k)y(n)} is the autocorrelation function 
of observations y(n) and ~ ~ ~ ( k )  = E { y ( n  + k ) z ( n ) }  is the cross- 
correlation function of y(n) and .(.). The tap coefficients satisfying 
the normal equations (given by the top N + 1 rows of (3a)) are the 
optimum tap coefficients sought. In the last row of (3a), Ep,fmin is 
the minimum mean square (MMS) estimation (smoothing) error and 
~ ~ ( 0 )  = E { z 2 ( n ) } .  Using the obvious definitions, we can write (3a) 
compactly as 

(4) 

where EP,f+lmin is the MMS estimation error of the (p,f + 1)st- 
order FIR smoother. It may be confirmed from (3) and (4) that the 
tap coefficients satisfy the recursion ([ll], pp. 132) 

* = p  

thevectora:+, = (l,a~+1,1,aN+1,2,...,a~+1,~+1) is thevector 
of tap coefficients in an (N + 1)st order prediction error filter ([4], pp. 
202) and PN+1 is the MMS prediction error. Superscript T denotes 
transpose of a vector or matrix. In general, for each m = 0,1,2, .  . . , 
the mth-order prediction coefficient-vector am minimizes the mean 
square value of the mth order forward prediction error 

m 

where gE(n) A - a,,,y(n - i )  and a, ,~  = 1. The Levinson 
recursion ([9], pp. 49). ([4], pp. 202) provides a means to compute 
am+l recursively from a,,,. 

We can obtain an order recursion for the delayed signal estimate 
by premultiplying both sides of (5) by the row vector (y(n), y(n - 
l ) ,  . . . , y(n - N - l ) ,  0). The result is 

?p,f+l(n - f - 1) = fP,f(n - f - 1) + S;f+le;+l(n) (8) 

where &+I = PG:l~F,f+l with 

N+1 

= aN+l.zrTyz(f + 1 - i). (9) 
Z=O 

We show in the appendix that kLf+l  = P F , ~ + ~ .  The delayed ( N  + 
1)st-order estimate, ? p , f + ~ ( n - f - l ) ,  in (8) is the projectionof r (n-  
f- 1) onto Y p , f + l ( n - f -  1) = [y(n- N - l), y(n -AV), . . . , y(n- 
l ) ,y(n)]  and the delayed Nth-order estimate, i P , f ( n  - f - l ) ,  
is the projection of z (n  - f - 1)  onto Y p , f ( n  - f - 1)  = 
[y(n - N - l ) ,  y(n - N ) , .  . , y(n - l)]. Consider now the last 
term in (8). Since yg+l(n) is the MMSE estimate of y ( n )  from 
y(n - l ) , y ( n  - 2 ) , . . . , y ( n  - N - I ) ,  then eE+,(n)  is orthogonal 
toY,,f(n-f-l).Itfollowsthat E { k , , f ( n  - f - l)eK+,(n)} = 0. 
Notice that the f + 1 units of delay in (8) make 3 iP , f+ l  (n  - f - 1) 
a causal estimate of z (n  - f - 1). 

We can obtain an order resursion for the MMS smoothing error 
EP, f+ lmin ,  by subtracting z (n  - f - 1) from both sides of (8) and 
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Fig. 1. BFF realization of an order (1, 2) smoother. 

taking the mean square. This yields 

To conclude the development of the order-recursive lattice realiza- 
tion of a smoother, we consider the problem of increasing the order 
of (2) by using one additional past sample, y(n - p  - 1). This yields, 
in a manner similar to the preceding development 

1 B 

[ 1 ] = [ - h 4  - "+li[ RO ] (12) -h,+1 ,f PN+l BN+l 

and 

j'p+l.f(n - f) = - f) +spB+1,&+1(n) (13) 

where gf+l,f = PG:lpf+l,f with 

PpB+l,f = E{+ - f)&+&)} 
N + 1  

(14) = aN+l ,N+l -*Tyz( f  - i )  
1=0 

and = ( a ~ ~ + l , l ~ ~ + l , u ~ ~ ~ + l , N r ~ ~ ~ ~ ~ + l , l , l )  . The quantity 
( n )  appearing in (13) is the (N+l ) s t  order backwardprediction 

error. The mth-order backward prediction error is given by 

e E ( n )  = y(n  - N - 1) - i f ( n  - N - 1) 
m 

= C a m , , y ( n  - m - 1 + i )  (15) 

fo rm = 0 , 1 , 2 , . . . , . w h e r e i ~ ( n - m )  = -C,"=lu,,,y(n-m+i). 
The terms in (13) satisfy E { f , , f ( n  - f)e$+l(n)} = 0. The MMSE 
smoothing error is found by subtracting x(n - f )  from both sides of 
( 1  3) and taking the mean square. This yields 

Z=O 

(16) 

We are now prepared to construct order-recursive realizations for 
a MMSE FIR smoother. The forward and backward prediction errors 
eF and e B  appearing in the recursions of (8) and (13) are all directly 
accessible from a prediction error lattice [12], [13]. To obtain a 
MMSE smoother of order ( p .  f), (8) and (13) must be applied p 

Fig. 2. FBF realization of an order (1, 2) smoother. 

and f times respectively, but any sequencing between these two 
equations is permissible. Consequently, the number of permissible 
lattice realizations of an order (p, f) smoother is equal to the number 
of length N = p + f sequences of p letters B and f letters F, 
namely; c," = ~ ! / p ! f ! .  

We show two of the three possible lattice realizations of an order 
(1, 2) smoother in Figs. 1 and 2. The sequences of B's and F's in 
the figure titles denote the sequencing of (8) and (13) corresponding 
to each realization. Clearly, the smoother lattice structures have 
the order-recursive property: To increase the order of the smoother 
N + N + 1 by using one more future data value, one adds a new 
stage to the prediction error lattice and applies (8). To increase the 
order of the smoother using one more past data value, one adds 
a new stage to the prediction error lattice and applies (13). Either 
way, the original Nth order smoother stages remain as is. Notice that 
each lattice realization automatically generates all the lower order 
smoothed estimates associated with its particular sequence of B's 
and F's. 

In the preceeding development, we assummed that p > 0 and 
f > 0 to conform to the definition of a smoother. The same 
development however, also applies to the filtering problem with f = 
0. If we set f = 0, we obtain the well-known lattice realization 
of an FIR Wiener filter (see p. 251 of [4]). This realization is 
unique because there is only C," = 1 sequence of N = p B's 
and f = 0 F's. We find, therefore, that the solution of any MMS 
smoothing or filtering problem can be embedded in the solution for 
the linear prediction error lattice and realized as an order-recursive 
lattice structure. 

IV. ORTHOGONAL BASES FOR 
Nth-ORDER SMOOTHING AND FILTERING 

In this section we describe the orthogonal basis sets that are 
directly accessible from an N-stage prediction-error lattice for use 
in order-recursive FIR smoothers and filters. 

To develop insight, consider Table I which depicts the evolution of 
the Hilbert subspaces in the lattice for the (1, 2) smoother of Fig. 1. 
The top row in the table denotes the order of the estimate as the data 
progresses deeper into the lattice. The second row gives the sequence 
of B's and F's associated with the developing smoother. The third 
row gives the values ( p ,  f) associated with the sequence of B's and 
F's. In the fourth row, the smoothed estimates having order 0, 1, 2, 3 
are evaluated by means of (8) and (13). In the bottom row, the Hilbert 
subspaces are described both in terms of the data basis and in terms 
of a forward and backward prediction-error basis. It is easily verified 
that each prediction-error basis set shown is orthogonal. Notice that 
a total of C," = 3 tables like that of Table I can be constructed 
for a (1, 2) order-recursive smoother because there are exactly three 
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TABLE I 
EVOLUTION OF HILBERT SUBSPACES 

Order N 0 1 2 3 

Sequence B F F 

TABLE II 
BASIS SETS FOR Yz.z(n - 2) 

sequences of 1 B and 2 F’s. Therefore, there are exactly three sets 
of orthogonal bases directly available from the lattice which can be 
used to construct a (1, 2) order-recursive smoother. 

By generalizing the construction illustrated in Table I, one can 
show that there are C,” orthogonal basis sets for Y,,f(n - f )  = 
[y(n - N), y(n - N + l),. e ,  y(n)] that are directly accessible from 
a prediction error lattice of length N for a ( p ,  f) order-recursive 
smoother. Each set of bases errors has the form 

{eo(n - io),ef’(n - il),-..,eN...l X N - l  ( n  - iN-l),e:N(n)} 

(17) 

where XI,  XZ, . . . , XN is one of the C,” possible sequences of p 
B’s and f F’s. In (17), the indices i , ,  equal the number of F’s in 
the sequence X3+1,X,+2,.-.,X,v for j = 0 , 1 , . . . , N  - 1. If we 
denote the number of F’s and B’s in a sequence v as NF(v) or 
N B ( v ) ,  respectively, we have i, = NF(X,+1,X3+2,.-.,XN) for 
0 5 j 5 N - 1. We will refer to this result somewhat grandly as 
the orthogonal basis theorem. 

To illustrate (17), we note that there are Ci = 6 orthogonal basis 
sets directly accessible from a prediction error lattice of length 4 for 
use in a (2, 2) order-recursive smoother. The basis sets are listed in 
Table 11. 

A second illustration of (17) is provided by the set of backward 
prediction errors {eo (n) , e? (n) , . . . , e: (n) } . This orthogonal basis 
for YN,o(~) is unique for use in an order-recursive FIR filter 
(C,” = 1). 

V. GENERALIZED GRAM-SCHMIDT ORTHOGONALIZATION 
Each orthogonal basis set of the form in (17) can be obtained from 

the data y(n), y (n -  l),... , y(n-N) by a Gram-Schmidt procedure. 

Consider the basis for Yl,l(n - 1) which appears in the N = 2 
column of Table I: Y ~ , l ( n  - 1) = [eo(n - l),e?(n - l),e[(n)]. 
If we arrange the basis elements in a vector and apply (7) and (15), 
we obtain 

eo(n - 1) 0 0 y(n - 1) 

[e?;;(;;)] = E;;; a;,z :] [y(c,r;)] 
(18) 

which, with the obvious definitions, can be written as eBF(n - 
1) = LBFYBF(~).  Since LBF is lower triangular, the elements in 
eBF(n - 1) are indeed obtainable using a Gram-Schmidt procedure 
provided that the data is selected in the order of the vector Y B F ( ~ )  
(from top to bottom). 

In general, we can write 

ezi,zz,...,zN(n - f) = La1 ,zz,...,zN~ri,zz,...,zN(n) (19) 

where the elements in ezl,rz,. . . ,zN(n - f )  are obtained from the 
orthogonal basis theorem and LZ1,zZ,...,IN is lower triangular. The 
data vector in (19) is given by 

Yzl  ,Z2, ’ ’ ‘ I  2 N (.) 
= (y(n-f) ,  y(n-f+i1), y(n-f+iz),... ,y(n-f+irj)) 

with i ,  = Np(X1, X2,..-,X3) if X, = F and i, = - N B ( X ~ ,  
Xz,- . . ,X,)  if Xj = B, where 15 j 5 N. 

VI. GENERALIZED CHOLESKY-FACTORIZATION 
A generalization of Cholesky-factorization can also be accom- 

plished using any basis set having the form in (17) if we rearrange 
the Gram-Schmidt equations (19) so the data vector appears in the 
conventional form y z ( n )  = (y(n),y(n - l ) , . . . ,y (n  - N))*. For 
example, the Gram-Schmidt equations (18) rearrange to 

or e(2,0,1)(n - 1) = C(2,0,1)y3(n). Notice that the matrix C(z,O,l) 
appearing in (20) is not triangular, and the elements in the vector 
e(2,0,~)  (n - 1) develop bidirectionally upwards and downwards as 
the dimensionality increases. This development can be understood by 
noting that n - 1 is the “time of the smoothed estimate,” f1,l ( n  - 1) 

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:55:26 UTC from IEEE Xplore.  Restrictions apply. 



1246 

Fig. 3. BFB realization of an order (2, 1) smoother. 

shown in Fig. 1 and Table I: Each observation future to time n - 1 
causes an upward expansion from eo(n - 1) and each observation 
previous to this time causes a downward expansion from eo(n - 1). 
If a new future observation is used, the vector e(2,0,1)(n - 1) in (20) 
expands upwards wirh one unit time delay to become 

’ or e(3,2,0,l)(n - 2) = C(3,2,0,1)y4(n). The elements in vector 
e(3,2,0,1)(n - 2) provide the orthogonal basis for the estimate 
f l , 2 ( n  - 2) in Fig. 1 and Table I. Thus we have in Fig. 1 

F F  
f l , z ( n  - 2) = g&e3F(n) + g1,1e2 (n  - 1)  

+ g f o e ? ( n  - 2) + go,oeo(n - 1). (22) 

Similarly, if a new past observation is used, the vector e(2,0,1) (n - 1) 
of (20) expands downwards without delay to become 

e F ( n  - 1) 

or e(z,o,l ,3)(n - 1) = C(2,0,1,3)y4(n). The elements in the vector 
e(2,0,1,3)(n - 1) provide the orthogonal basis for the estimate 
h ~ , ~ ( n  - 2) appearing in Fig. 3. 

By taking the expected value of product e(3,2,0,1)(n - 
2)e(3,2,0,1)(n - 2 ) T ,  we obtain from (21) 

c~3,2,0,1)%cT3,2,0,1)  = p(3 ,2 ,0 ,1 )  (24) 

where % = E ( Y ~ ( ~ ) Y Z ( ~ ) }  and p(3 ,2 ,0 ,1 )  = 
diag(P3, P2, PO, P I } .  Since C(3,2,0,1) is nonsingular, we 
can solve for E14: R4 = C ~ ~ , , o , l ~ P ( 3 , ~ , 0 , 1 ) C ~ ~ , o , l ~  to obtain 
one of the C,” = 6 possible generalized Cholesky factorizations of 
the correlation matrix E14 with respect to a (2,2) order-recursive 
smoother. 

Similarly, there are C,” generalized Cholesky factorizations of an 
Nth order correlation matrix RN with respect to a (p,f) order- 
recursive smoother. Conventional LU and UL Cholesky factorizations 
are special cases that occur when f = 0 and p = 0 respectively. 

VII: CONCLUSION 

We have shown that the lattice realizations of order-recursive 
filters can be generalized to order-recursive smoothen. Whereas an 
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order-recursive filter uses uniquely the backward prediction errors of 
a prediction-error lattice, a (p,f) order-recursive smoother uses a 
combination of p backward and f forward prediction errors from the 
lattice and C,” realizations exist. The analysis led to generalizations 
of the concepts of orthogonal bases and Cholesky factorization used 
in MMSE filter design. Extension of these results to the data only 
case, in which the normal equations are determined by a least squares 
approach, may be found in [ll]. 

APPENDIX 
We show here that kLf+l  of (6) and pF,f+l of (9) are equal. It can 

(25) 

Equation (25) has a form comparable to (9). The delayed smoother 
estimate 2, , f (n - f - 1)  and nondelayed prediction &+l(n)  
are elements of the same Hilbert subspace Y,,f(n - f - 1)  = 
[y(n - l ) , y ( n  - 2 ) , . - . , y ( n  - N - l)] and e, , f (n  - f - 1) and 
eE+,(n) are orthogonal to Yp,r(n - f - 1). Therefore, we can 
replace y(n) of (25) with eK+l(n) and x(n - f - 1) of (9) with 
e, , f(n - f - 1) without effecting either equality. This yields the 

be shown by direct substitution of e, , f(n) A z (n )  - f,,f(n) that 

k L + l  = E{y(n)e,An - f - 1)). 

result gf+l = &+l = E{eFN+1(4epAn - f - 1)). 
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