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Least Squares Order-Recursive Lattice Smoothers 
Jenq-Tay Yuan, Member, IEEE and John A. Stuller, Senior Member, IEEE 

Abstruct- Conventional least squares order-recursive lattice 
(LSORL) filters use present and past data values to estimate 
the present value of a signal. This paper introduces LSORL 
smoothers which use past, present and future data for that pur- 
pose. Except for an overall delay needed for physical realization, 
LSORL smoothers can substantially outperform LSORL filters 
while retaining all the advantages of an order-recursive structure. 

I. INTRODUCTION 
EAST squares order-recursive lattice (LSORL) filters L have several advantages over fast Kalman and fast 

transversal filters [l], [21, [4], [lo], [ll].  An N-stage LSORL 
filter automatically generates all N of the outputs that would 
be provided by N separate transversal filters of length 1, 2, 
. . .  , N .  Higher order lattice filters are obtained from lower 
order ones by simply adding more stages, leaving the original 
stages unchanged. This modular structure permits dynamic 
assignment, and rapid automatic determination of the most 
effective filter length. The order-recursive property also lends 
itself to the use of efficient VLSI hardware implementations. 
A final advantage of LSORL filters is superior numerical 
stability. 

To our knowledge, previous references to LSORL filters 
have been concerned primarily with causal filters. In causal 
LSORL filtering, the present value of a desired sequence (the 
primary sequence), z(n), is estimated through a linear com- 
bination of the present and past values of the data sequence, 
y(n), (the observations or reference sequence). For any filter 
with N stages, a suitable delay can be introduced to produce 
the smallest mean square error (MSE) [12]. The introduction 
of delay makes the filter “noncausal” in the sense that a linear 
combination of the present, past and future observations, y(n), 
can be used to estimate the present value of a desired signal 
sequence, z(n). It is well known that a noncausal filter, or 
smoother, can outperform a causal filter in terms of minimum 
mean square error (MMSE) (see p. 157 of [5] and p. 279 
of [6]). However, once delay is introduced into a LSORL 
filter, the order-recursive property no longer holds. Higher 
order “noncausal” filters cannot be built from lower-order 
ones simply by adding more lattice stages as more “future” 
observations .are used to estimate the present value of the 
desired sequence. 
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In a previous correspondence [3], we described an order- 
recursive lattice smoother design based on a minimum mean 
square error performance criterion. The analysis required prior 
knowledge of the second order statistics of the observations 
and the desired sequences. Under the least squares criterion 
used in the present paper, knowledge of these statistics is 
not needed. We demonstrate by simulation experiment that 
the resulting LSORL smoothers can substantially outperform 
conventional LSORL filters while retaining the order-recursive 
structure with all its advantages. 

11. LEAST SQUARES SMOOTHERS 

Consider the direct-form realization of an Nth-order FIR 
least-squares smoother shown in Fig. 1. The desired sequence 
s( i )  is estimated from its current, p past, and f future 
observations y(i), for i = 1, 2, . . . , n. The length of the 
observations, n, is variable. The order, N = p + f .  We will 
refer to any Nth-order smoother that uses p past and f future 
data values as a ( p ,  f)th-order smoother where N = p + f is 
assumed implicitly. The estimation error is 

T e,,f(i) = s( i )  - P , , f ( i )  = x ( i )  - h , (n - f )  P f  
. YN+1 (i + f), 1 - f I i I: 72 - f (1) 

where 

T YN+l(i+f) = [ y ( i + f ) , y ( i + f -  1) , . . . ,Y( i -P) l  (2) 

and 
T 
h,,f(n - f )  = [h(p,f),f(n - f ) , . .  . > h( , , f ) , lb  - f ) ,  

h( , , f ) ,Ob - f ) ,  h(,,j),-l(n - f ) ? .  . * > 

h(,,f),-p(n - f ) l .  (3) 

The vector hP,f(n - f )  contains the fixed coefficients of 
the ( p ,  f)th-order FIR smoother and will be chosen for least- 
squares estimation error over the time interval 1 - f  < i < 
n - f with prewindowing of data, that is 

s( i )  = y ( i )  = 0 fori 5 0. (4) 

Equation (1) can be written in matrix form as 

where 
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Fig. 1. Direct-form realization of the iVth or ( p ,  f)th-order FIR least squares smoother. 

The subscript N+1 in the symbol for the data matrix 
 AN+^(^) signifies the number of columns. The optimum 
coefficients in (3) can be chosen by using the Hilbert space 
projection theorem (see p. 20 of [13]). The Hilbert space 
H in this case consists of all finite- energy-norm limits of 
sequences of linear combinations of the data and desired 
sequences. The inner product (u,v) of any two vectors, U , V ,  

in H is given by (u,v) = Cy==, uivi. If (U ,  U )  = 0, we say 
that U and v are least squares orthogonal. The squared norm 
of a vector U is (u,u) = (uI2, where U and v are both real- 
valued vector time series defined by uT = [ul,  U , , .  . . , U,] 

and vT = [q, w2, . . . , U,], respectively. We define Y(n)  
as the Hilbert subspace of H spanned by the rows of 
matrix AN+1 (n) (i.e., of all available observations: y( l), 
y(2), . . . , y(n) ) ,  and use bold brackets [ ] to represent each 
column of elements of matrix AN+l (n)  as the Hilbert 
subspace of Y(n) .  For example, the right-most column 
of elements of matrix A S + l ( n )  constitutes the subspace 

According to the Hilbert space projection theorem (see p. 26 
of [13]), there is a unique vector k P , f ( n  - f) in the subspace 
Y(n)  that minimizes the norm of the error vector 

T 

T 

YP,f(", f) = [y(n - N I ,  Y(" - N -  11, . . . , y(n-  11, y(n>l. 

AT 
The vector Zp, f (n  - f) = [%kf(l-f),%f(2 
- f ) ,  . 3 . , PP,f(n - f ) ]  is the orthogonal projection of 
vector s ( n  - f) onto the subspace Y ( n ) .  It is characterized 

by the following least squares orthogonality principle: 

where  ON+^ is a zero column vector of length N+1. The 
following augmented normal equation of order (p, f) can be 
obtained by substituting (5) and (10) into the matrix operations 
of Iep,f(n - f)?: 

where EP,fmin (n  - f )  is the minimum value of le,,j(n - f ) I 2 .  

111. O R D E R - R E C U R S I V E  LEAST SQUARES LATTICE SMOOTHERS 

To develop an order-update recursion for the coefficients of 
vector hp , f (n  - f ) ,  we write the augmented normal equation 
for the least-squares smoother of one higher order N --+ N +  
1. This may be done by increasing either f or p. We consider 
first the problem of increasing N by using one additionalfuture 
observation: f + f+ l .  The augmented normal equation of 
order (p, f+ l )  can be deduced from (1 l), 

where 

T 2 ( n - f - 1 )  = [ 2 ( - f ) , 2 ( l - f ) , . . . , z ( n - f - l ) ]  

(13) 
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TABLE I 
LSORL SMOOTHING ALGORITHM 

: [4, pp.6191: . .  (n F 
For n=1,2,3, ... compute the various order updates: m=1,2, ..., N, where N is the final 

order of the least squares lattice predictor: 

(IO Smoothing: 
For n=1,2,3, ... Stan from f=O and p=-l. Additional p "past" and f "future" stages can be 

increased by computing any of C,& combinations of (T-7) and (T-8). 

(T-7b) 

(T-8b) 

Initializatim: delta is a small positive constant 

A,.i(O) = 0 (T-9) 

P;.,(O) =delta (T-10) 

PE. 1 ( ~ )  = delta cr-11) 

Qn-1) = &n) = y(n), re1 v-12) 

(T-13) pp(n) = @(n) = g(n-1) + yZ(n), n21 

W(n-1) = 1, nP1 

e.]&) = x(n), n21 

pF,di) = 0, p a ,  i ~ ,  O2i2-f 

P;.o(o) = 0. P a  

The forgetting factor 14, pp.4781, 1. is set to unity throughout this paper. Our 

simulations, like those reported in [ I ]  and [41, did not encounter stability problems for A 

= 1. 

and Ep,f+lmln (n-f- 1) is the minimum value of lep,f+l(n- 
f- 1)12. Appendix A shows that the ( p ,  f +  1)st order optimum 
coefficient vector hP,f+, (n - f- 1) is given recursively from 
the (p, f)th-order optimum vector hp, f (n  - f- 1) by 

hp , f+An-  f - 1) 
F 0 

+ P p , f + &  - f - 1) 
= [hp,f(n - f - 1) 1 . p:+l(n) 

' a N + 1  (n) (16) 

aN+l(n) = [I, ("1,1(72.) ,  

where 

T . , 
U N + l , N + I  (n)l, (17) 

"(i)eFN+tl(i + f + 1) 
n - f - 1  

P;f+l(n - f - 1) = 
i=- f 

n - f - 1  

= Y(i+f+lkP,f(4 (18) 
i=- f 

and P,"+,(n) is the minimum value of the sum of the (N+ 
1)st order forward prediction-error squares (see p. 575 of [4]). 
Note that a ~ + ~ , i ( n ) , i  = 1, 2, ..., N+1 and e;+,(n) are 
( N +  1)st-order forward prediction coefficients and (N+ 1)st- 
order forward prediction error respectively. It follows from 
(A10)-(A9) in Appendix A that the minimum value of the 
sum of the estimation-error squares update is 

We obtain the final result by premultiplying both sides of (16) 
by row vector [y(n), y(n- l), . . ' ,  y(n - N- l)]. This step 
yields the following order-recursion for the estimate 

L I 

(20) 
The order-recursion for the estimation error can be found by 
subtracting the above equation from x(n - f -  1). This yields 

J 

(21) 
The following order-update recursion between hp+l,f(n - f) 
and hP,f (n  - f )  can be obtained similarly by using one 
additional past observation p -+. p + 1 ' 

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:51:28 UTC from IEEE Xplore.  Restrictions apply. 
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where 

T CN+l(n) = [ C N + l , N + 1 ( 4 , .  . . , m+1,1(n), 11 (23) 
n-f 

B 
P,+l,f ( n  - f )  = Y ( i  - P - 1 ) e p A i )  

i=l- f 

n-f 
= z(i)e%+,(i+ f )  (24) 

i=l- f 

and P,”+,(n) is the minimum value of the sum of the 
( N +  1)st order backward prediction-error squares. Note that 
c ~ + l , i ( n ) , i  = 1, 2, . . . , N +  1 and eg+,(n) are ( N +  1)st- 
order backward prediction coefficients and (N+ 1)st-order 
backward prediction error, respectively. By premultiplying 
both sides of (22) by vector [y(n), y(n- I), . . . , g ( n  - N -  
l)], we obtain 

(25) 

Finally, we find by derivations similar to that of (21) and (19), 

and 

It follows from (18) and (21) that ~ : ~ + ~ ( n  - f -  1) needs 
to be computed before computing the estimation error. Haykin 
[4] developed an efficient time-update recursion for computing 
p ~ ( n )  for the causal case only. A generalized result for the 
two-sided noncausal case can be obtained by using a derivation 
similar to that in pp. 625-627 of [4] by starting with ( 1  8) and 
(24). This yields 

and 

where the likelihood variable a ~ + l ( n )  is a measure of the 
likelihood of deviation of successive data samples from a 
Gaussian distribution [7]. By combining (21), (26), (28), 

and (29) with the well-known recursive least squares lattice 
algorithm for linear prediction (see p. 619 of [4]), we can 
obtain a time as well as order update recursion, referred to 
as the LSORL smoothing algorithm summarized in Table I, 
for the estimation error for the LSORL smoother. The order- 
update recursion of the likelihood variable given in Table I is 
based on p. 615 [4]. Due to the efficient order-update recursion 
for P C ’ + ~ ( ~  - f -  1) and P F + ~ , ~ ( ~  - f )  in (28) and (29) 
respectively, the number of computations required for (p, f )th- 
order LSORL smoothing is O ( N )  per time iteration, the same 
as that needed for Nth-order LSORL filtering. The LSORL 
smoothing algorithm is described in more detail in Section V. 

To construct a LSORL smoother of order (p, f),  equation 
pairs (29), (26), and (28), (21) must be applied p and f times, 
respectively. However, any sequencing between these two 
equations is permissible. Consequently, there are C& = Cif = 
N ! / p ! f !  permissible lattice realizations for a LSORL smoother 
of order (p, f). Two of six possible lattice realizations of 
an order (2 ,2) smoother are shown in Figs. 2 and 3. These 
realizations are identified by the sequences FFBB and BFBF of 
forward (F) and backward (B) prediction errors used. Figs. 2 
and 3 may be related to Fig. 1 by setting p = f = 2 and 
i = n - f in Fig. 1. 

Lower order signal estimates corresponding to the sequenc- 
ing of (20) and (25) are directly accessible from LSORL 
smoothers. For example, the estimates fo,l(n - l), &,2(n- 

2) and f 1 , 2 ( n -  2) are accessible from the FFBB realization 
of Fig. 2 and the estimates Pl,o(n),Pl,l(n- 1) and Pn,l(n- 
1) are accessible from the BFBF realization of Fig. 3. We have 
not determined the theoretically optimum sequencing of (20) 
and (25) for channel equalization or other applications. We 
conjecture that an alternating sequence BFBF . . is typically 
most appropriate because signal autocorrelation functions are 
typically monotonically decreasing. This conjecture is sup- 
ported by the simulation experiments described in Section V. 
The computer simulation results comparing the BFBFBFBFBF 
to the BBBBBFFFFF realization indeed showed that the 
former is faster in convergence than the latter. As with LSOFU 
filters, the order of a LSORL smoother can be determined 
by adding stages until a sufficiently small estimation error is 
obtained. 

IV. LS ORTHOGONAL BASIS SET 
Conventional LSORL filters produce a sequence of 

least squares (LS) uncorrelated backward prediction errors 
ef(n), e f ( n ) ,  s . .  , e;(n) at all instants of time (see p. 469 of 
[4]). Haykin refers to this property as the exact decoupling 
property of the LSORL algorithm. The decoupling property, 
however, is confined to causal data. To process the future 
observations adaptively, we will need a broader decoupling 
property. In this section, we show that when a sequence of 
p past and f future observations is considered, appropriate 
combinations of f delayed forward prediction errors and p 
backward prediction errors form Cif sets of LS orthogonal 
bases. We will refer to the LS orthogonality among all the 
elements within each of these orthogonal bases as the LS 
orthogonal basis theorem. The LS orthogonal basis theorem is 

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:51:28 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2 .  (2, 2)th-order LSORL smoother using sequence FFBB. 

Fig. 3. (2, 2)th-order LSORL smoother using sequence BFBF. 

more general than the exact decoupling property of [4]. It can 
be viewed as the deterministic counterpart of the orthogonal 
basis theorem introduced in [3]. 

The LS ortho onal basis theorem can be stated as follows: 

bases directly accessible from an Nth-order prediction error 
lattice that can be embedded into a LSORL smoother of order 
(p, f ) .  The following conditions must be satisfied for a set of 
f + pS1 prediction errors to form a LS orthogonal basis: 

a) There are f forward and p backward prediction errors 

There are C, B possible sets of (p + f+l)  LS orthogonal 

in the set. 

b) The order of the forward and backward prediction errors 
corresponds to the total number of future and past 
observations used so far. 

c) Whenever a forward prediction error is used, all previous 
prediction errors are delayed by one time unit. A proof of 
the LS orthogonal basis theorem is given in Appendix 11. 

Understanding of the LS orthogonal basis theorem is fa- 
cilitated by referring to Table 11. This table depicts the de- 
velopment of the Hilbert subspaces for the (2, 2)th-order LS 
smoother of Fig. 3. The top row in the table denotes the order 
of the estimate as the data progresses deeper into the lattice. 

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:51:28 UTC from IEEE Xplore.  Restrictions apply. 
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IOrderN 

Sequence 

0 1 2 3 4 

B F B F 

The second row gives the sequence of Bs and Fs associated 
with the developing smoother. The third row gives the values 
(p, f )  associated with the sequence of Bs and Fs. In the fourth 
row, the smoothed estimates having order 0, 1, 2, 3, 4 are 
evaluated by means of (20) and (25). In the bottom row, 
the Hilbert subspaces which contain y(n) as the most recent 
observation (i.e., the right-most column in matrix AN+1 (n)) 
are described both in terms of the data basis and in terms of a 
forward and backward prediction error basis. The latter basis 
can be easily verified to be orthogonal. 

There are Cz = 6 possible sets of LS orthogonal bases that 
can be similarly used in a LSORL smoother of order (2, 2). 
Each of the six orthogonal basis set provides an orthogonal 
basis for the Hilbert subspace Y2,2(n- 2) = [y(n- 4), y(n- 
3), y(n- 2), y(n- l), y(n)]. The basis sets are 

T 

[ ~ ( n  - 21, 
[Y(n - 2),e% - l),e2F(n),e~(.,,e~(n)I 

[!An - 21, ef(n - 11, e,"(. - 11, e:(.), .,"(.,I 
[Y(n - 2),ei"(n - 2), eF(n - 11, e,"(. - 11, e 3 4 1  

[ d n  - 21, e[(. - I), e f (n  - I), e,"(. - 11, ef(n)I 

[!An - a), 4% - 2), e a .  - 11, e m ,  .,"(.,I. 

- 2), ef(n - 21, e3F(n - 11, ef(n)I 

Conventional LSORL filters have ( p , f )  = (N, 0) and 
employ the set of backward prediction errors {y(n - 
N), e? (n) ,  e? (n) , . . . , e: (n)} as the orthogonal basis for 
Y N , ~ ( ~ )  = [y(n - N),y(n - N +  l), . . . , y (  n)]. Because 
C& = 1, this set is unique for use in an order recursive filter. 

v. COMPUTER SIMULATIONS ON ADAPTIVE EQUALIZATION 

We present results of computer simulations of adaptive 
equalization of a linear channel having unknown distortion. 
The simulation closely follow that of [l] and p. 634 of [4]. A 
polar form pseudo-random signal ~ ( n )  is applied to a channel 
having unit pulse response: 

, n = l , 2 , 3  (30) 
otherwise. 

The observation y(n) is the sum of the channel output and an 
independent white Gaussian noise with variance 0.001. The 
adaptive equalizer attempts to correct the distortion produced 
by the channel and the additive noise. We compared the 
performances of three equalizers, each having order N = 10 
(1 1 taps). Equalizer #1 was a tenth-order LSORL filter of the 
type described in [7]. Equalizer #2 was a tenth-order LSL filter 
with five units time delay (i.e., five "future" samples were 
used) of the type described in [l]. Equalizer #2 would have 
possessed the order-recursive property were it not for the 5 
units of delay. As noted earlier, once delay is introduced into a 
LSORL filter, the order-recursive property is lost. Equalizer #3 
was a (5, 5)th-order LSOFU smoother of the type described in 
this paper. Of the Cfo = 252 possible realizations of a (5,5)th- 
order LSORL smoother, we used the form BFBFBFBFBF. The 
LSORL smoothing algorithm of Table I involves division by 
updated parameters at some steps. To obviate computational 
errors, we applied Friedlander's suggestion [lo] to set terms 
involving divisors less than a preassigned threshold, t, equal 
to zero (see p. 618 of [4]). The parameter W in (30) was set 
equal to 2.9 and 3.5 to provide for eigenvalue spreads S = 
6.078 and 46.82, respectively. 

The learning curves for the three equalizers are shown in 
Figs. 4 and 5. The initial values Pz-l(0) and PzP1(O) in 
(T-10) and (T-11) in Table I were set equal to 0.001 in both 
figures. It can be seen from the plots that the steady-state mean 
squared error of noncausal filters including the smoother and 
the filter with delay is about 15 dB less than that of a causal fil- 
ter. The transient performance of the (5,S)th-order smoother is 
seen to be much less sensitive to the varying value of the preas- 
signed threshold t than that of the tenth-order filter with delay. 
It can also be seen that the rate of convergence of the (5, 9th-  
order smoother is as fast or faster than that of the tenth-order 
filter with delay, depending on the value of threshold, t .  Ad- 
ditional realizations including the sequencing BBBBBFFFFF 
and the sequencing FFFFFBBBBB were tried. The simulation 
results revealed that the sequencing BFBFBFBFBF displayed 
the fastest initial transient performance compared to other 
realizations of the (5, 5)th-order smoother although their dif- 
ferences were small. In addition, the initial values of Pz-l(0) 
and P2-l(0) do not have a significant effect on the initial 
transient performance of the adaptive equalizer. 
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VI. CONCLUSIONS 
The stage-to-stage modularity of adaptive LS lattice filters 

provides a capability for rapid expansion or contraction of 
filter length to adapt to unknown and nonstationary data 
signals [ l l ] .  This capability also leads to efficient hardware 
implementation. This paper has shown that modularity can be 
extended from LS filters to LS smoothen which have superior 
performance and identical computational cost. Our simulations 
have involved equalizer learning curves. The LSORL smoother 
developed in this paper may also find application in blind 
equalization where a linear adaptive smoothing algorithm is 
used to obtain equalized output with a finite delay [8]. 

APPENDIX A 
To verify (16), we rewrite it as 

[ -hp,f+A; - f - 111 

we also rewrite (12) as 

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 5, MAY 1995 

and vector aN+l(n)  and scalar P i + l ( n )  were both defined 
in Section III. Matrix Rn+2(n) in (A4) is the (q+ 2)-by-(g+ 
2) deterministic correlation matrix defined as 

(A6) T R N + 2 ( 4  = AN+2(n)AN+2(4. 

Equation (Al) can then be verified by substituting it into (12) 
and using (A3) and (A4). This yields 

[-$,f+"; - f - "1 
Note'that the matrix Rb,f+l (n)  can be written as in (A3), 
which appears at the bottom of the page, and as 

R;,f+l(n)  = 

1 T 
RN+2 (n) AN+2(n)z(n - f - 1) 

[ zT(n  - f - l ) A ~ + ~ ( n )  zT(n - f - l)z(n - f - 1) 
(A41 

where 

where 

F 
P,,j+l(n - f - 1 )  

n - f - 1  

= z ( i ) y ( i + f +  1) 

r n 

1 i=- j 

L i=-f 

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:51:28 UTC from IEEE Xplore.  Restrictions apply. 



YUAN AND STULLER: LEAST SQUARES ORDER-RECURSIVE LATTICE SMOOTHERS 1065 

0 

6 
3 

-10 

E 2 -20 

B 
F 3 -30 

9 
-40 

f 3 -50 
0 :: 

-60 

Adaptive Equalization (eigenvalue spread = 6 07) 
threshold=.l, delta= 001 

Equalizer #3 

0 20 40 60 80 100 120 140 160 

time iterations (n) 

(a) 

Adaptive Equalization (eigenvalue spread = 6.07) 
threshold = 0.5, delta = .001 

0, 
h 

9 -5 

E -10 
f 

g -20 

$ 
I 
s 

2 -15 
-a 

= -25 

-30 

Equalizer #I 

-35 1 1 
0 20 40 60 80 100 120 140 160 

time iterations (n) 

(C) 

Fig. 4. Learning curves for the three equalizers (eigenvalue spread 6.07). 

and 
F T 

P,,f+l(" - f - 1) =4n - f - 1) AN+&+N+l(n) 
n-f-1 

i=- f 

= X(i)[Y(i  + f + 1) + aN+l,l(n) 

. Y ( i  + f )  + . .. + aN+l,N+l(n) 

. Y ( i  - P)l 
n-f-1 

= x( i )eg+l( i+ f +  1). (A9) 
a=- f 

Equation (A7) can be simplified to be 

Adaptive Equalization (eigenvalue spread = 6.07) 
threshold = 0.3, delta = ,001 
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Note that in (16), a unit time delay is needed when'one more 
future observation is taken into account to estimate the desired 
sequence. The order-update recursion between hPt',f(n - f) 
and h,,f(n - f )  shown in (22) can be obtained similarly. 

APPENDIX B 

The LS orthogonal basis theorem can be proven once we 
can show that P,,f(n - f -  1) is orthogonal to e$+,(n) 
and Pp,f(n - f )  is orthogonal to e:+,(n) in (20) and (25) 
respectively in a time-averaged sense. We prove the latter case 
here. The former case can be proven similarly. 

The least squares coefficient vector of (1 1 )  is given by: 

By substituting (Bl) into (5 ) ,  we obtain 
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Fig. 5 .  Learning curves for the three equalizers (eigenvalue spread 46.82). 

where 

P N + ~  is a projection operator [9]. The LS estimate kP,f(n - 
f )  is the orthogonal projection of s(n - f )  onto the subspace 
Y(n)  

It follows from the Hilbert space orthogonal projection theo- 
rem that 

where 

Equation (B5) states that vector e$+l(n) is orthogonal to the 
subspace Y(n) ,  which, by (B4), contains the vector kp,f(n - 
f). Consequently, vectors eE+, (n)  and k P , f ( n  - f) are 
orthogonal to each other. This in turn implies that f , , f (n  - 
f )  is indeed LS orthogonal to e;+,(n). The orthogonality 
between P,,f(n - f- 1) and eg+,(n) can be similarly 
obtained. With these features in mind, as we proceed to 
lower orders, we must be able to express 3,,f(n - f )  by a 
combination of N mutually orthogonal forward and backward 
prediction errors with appropriate .delay. Since any sequencin 
between the use of (20) and (25) is permissible, there are C, 
possible sets of (p + f +  1) LS orthogonal basis vectors at all 
instants of time. This proves the LS orthogonal basis theorem. 

B 
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