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An Image Model Based on Occluding
Object Images and Maximum Entropy

John A. Stuller and Rahul Shah

Abstract—This paper introduces a statistical image model
based on occlusion and maximum entropy. The statistical model
combines a fundamental property of image formation, occlusion,
with both object-image shape and nonuniform object-image in-
tensity. The model is a composition of individual object-images
that have random positions, shapes, and intensities, and that
occlude both background and one another. We derive the au-
tocorrelation and second-order probability density functions of
this model and give several examples.

Index Terms—Image autocorrelation, image model, occlusion.

I. INTRODUCTION

T HIS paper introduces a statistical image model that relates
second-order image statistics to the shapes, textures, and

occlusion of the object images comprising the image. Em-
phasis is placed on the two-dimensional (2-D) autocorrelation
function (or equivalently, the autocovariance function), of the
image, since, as is well known, this function plays a central
role in a large number of image processing and coding appli-
cations. It is widely accepted that the autocorrelation function
of many images can be approximated by a double-sided
exponential. The image model introduced here contributes
theoretical understanding to the conditions under which the
approximately exponential shape does or does not arise.

We can group statistical image models into two classes: 1)
image models that are primarily extensions of classical one-
dimensional (1-D) time-series models [7], [19], and 2) image
models that account for special properties of images or of
image formation. The model introduced in this paper lies in
class 2. Like other models of class 2, it relates image features
to image statistics. One of the earliest examples of a class-2
image model was proposed by Franks [4]. Franks modeled the
intensity edges along an image line by the discontinuities in a
piecewise-uniform 1-D process. He derived the autocorrelation
function of his model and used it to describe the power
spectrum of the video line-scan process. A significant exten-
sion of Franks’ model to two dimensions was proposed by
Modestinoet al. [11] who modeled intensity edges in an image
by the discontinuities in a piecewise-uniform, 2-D random
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process. They derived the associated autocorrelation function
and applied it to image coding, edge detection, enhancement,
and texture discrimination. Sera [14] described Boolean image
models using a key formula of Matheron [9], [10]. The
Boolean image models provided a statistical description of the
union of occluding, randomly placed, object-image domains,
among other properties. The image model of the present paper
extends these previous models by allowing for nonstationary
background and nonuniform object-image intensity (“texture”)
as well as random object shape and occlusion of one object
by another.

This paper is organized as follows. Section II contains nec-
essary mathematical preliminaries: we define a “preliminary
image model” consisting of background andoccluding ob-
ject images placed randomly on the finite plane, and
we derive the (ensemble average) mean and autocovariance
functions of this preliminary image model. In Section III, we
define the “final image model” as the limit of the
preliminary model, where . Thus, the final image
model is defined on the real plane, , and has a density,

, of object images per unit area. More precisely,is the
expected number of object image center points per unit area.
A comparison between the theoretical predictions and experi-
mental mean and autocovariance functions is also presented in
Section III. Section IV concludes the development with related
results for image line scans. Certain analytical derivations
are relegated to Appendixes A and B. A development of the
bivariate probability density function (pdf) associated with the
model is given in Appendix C.

II. THE PRELIMINARY MODEL: OBJECTIMAGES ON

The preliminary model consists of object images placed
at random on the finite plane . Specifically, the
preliminary image model, , is
defined as a 2-D stochastic process composed of a nonsta-
tionary stochasticbackground image, , and randomly
placed stochasticobject images, .

is the random position vector for theth object
image. The object images are assumed to have the form

(1)

where “intensity,” , is a sample function of a wide-sense
stationary process, and

for
otherwise

(2)

1057–7149/98$10.00 1998 IEEE

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:42:57 UTC from IEEE Xplore.  Restrictions apply. 



STULLER AND SHAH: OCCLUDING OBJECT IMAGES 1301

Fig. 1. A possibleDO(v) and bounding rectangle. The interior of the four
shaded disks isDO(v): v = (r; d);W (v) = H(v) = 2r + d.

indicates the region of support, , of . The re-
gion of support is defined by a randomshape vector,

, and is centered so that the bounding rec-
tangle touches the boundary
of on all four sides as illustrated in Fig. 1. As
illustrated in the figure, need not be connected.
Clearly, the dimensions of the bounding rectangle depend on

and .
The principle ofmaximum entropy[6] enables us to obtain

the autocovariance function and bivariate pdf of this pre-
liminary image model while being maximally noncommittal
with respect to assumptions of intensity and positions. For
maximum entropy, object image intensities, shape vectors,
and positions will bemutually independent. Also, will be
uniformly distributedover a domain just large enough so that
at least a part of appears in . Thus, the
conditional pdf of given is

for
otherwise

(3)

where
. We assume that the shape vectors

are identically distributed and have pdf in the limit
. For arbitrary , we define the pdf of as

(4)

where . It follows from
(4) that

(5)

Since images are created by a perspective transformation
of the three-dimensional (3-D) world onto the image plane,
images of objects in the foreground occlude images of objects
in the background. To account for occlusion, we generate
the image recursively. At theth step of the recursion,

if
otherwise

(6)

where and . Thus, at recursion step
, object image , is superimposed on the in

such a way such that it occludes for .
Equation (6) can be written as

(7)

where

(8)

Define and .
The following recursion for the conditional mean of ,
given and , can be obtained directly from
(7):

(9)

where ,
and . The conditions in (9) are removed by
multiplying both sides by

(10)

and integrating over all . This yields (see Appendix A)

(11)

for , where is
constant, and is defined by A1. The solution to (11) is

(12)

The derivation of image autocovariance can be substantially
shortened if we temporarily assume that .
We use a prime on of (7) to emphasize this assumption.
The following recursion for the conditional autocovariance (or
autocorrelation) function of is obtained directly from (7):

(13)

with
, and

(14)

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:42:57 UTC from IEEE Xplore.  Restrictions apply. 



1302 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 9, SEPTEMBER 1998

Fig. 2. Image of Example 1.

where . We remove the conditions from (13) in
a manner similar to (9). The result is

(15)

for and where and
are defined by (B1) and (B2). The solution to (15) is

(16)

III. T HE FINAL IMAGE MODEL:
OBJECT IMAGES PER UNIT AREA ON

As stated in the Introduction, we define the “final image
model” as the limit of the preliminary model, where

. Expressions for the mean, (12), and autocovariance
functions (16), become analytically simpler in this limit. The
work required to obtain the limit is relegated to the appendices.
The limiting form of the mean, , (12), is (see Appendix
A)

(17)

for where is the mean object-image area:

(18)

and is the object domain area when

(19)

Similarly, the limiting form of the autocovariance, (16), is
(see Appendix B)

(20)

for , where is the normalized expected value
of the object-domain spatial correlation function

(21)

That is, with

(22)

we have

(23)

We can use (17) to find where
background appears (is not occluded) at ,

and where
an object-image appears at . By comparing (17) with

(24)

we obtain

(25)

(26)

Similarly, we can use (20) to find
and where

is the event background appears at both
and and is the event

parts of thesameobject are visible at and .

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:42:57 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Autocovariance functions of Example 1.

(We use product notation for set intersection, i.e., for any
two sets, and .) By comparing (20)
with the identity

(27)

we obtain

(28)

(29)

Notice that decreases exponentially with while
increases with . This behavior reflects the increasing

object-image density for increasing. Additional probabilities
of interest are readily obtained. For example, the probability
that background appears at a point given that
background appears at a point is

(30)

Similarly

(31)

(32)

(33)

(34)

(35)

Equation (34) gives the probability of the event
an object is visible at AND an object is

visible at while (29) gives the probability of the event
parts of thesameobject are visible at

and .

Fig. 4. Image of Example 2.

Fig. 5. Autocovariance functions of Example 2.

We can extend the autocovariance result (20) to nonzero
and , by writing each sample function of

the process as a sum
where if an object-image exists at and

otherwise. This sum leads directly to the
following expression for the autocorrelation function of

(36)

We also have

(37)

where is given by (24). When we substitute (34), (35),
and of (28) into (36) and equate

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:42:57 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6. Image of Example 3.

the result to (37) we obtain

(38)

We illustrate the preceding result with five examples in
which the experimental images are 512512 pixels with
8 b/pixel. (Size 390 512 submatrices of the 512 512
image arrays are shown in Figs. 2, 6, 8, and 11.) We define
the spacing between pixels to be unity, so . In
the examples we compare the experimental (spatial average)
and theoretical (ensemble average) autocovariance functions.
“Best-fit exponential” approximations [15] to the experimental
autocovariance functions are also presented for comparison.
The autocovariance functions have been normalized in the
plots. All 1-D autocovariance function plots are for

. In examples 1, 2, 3, and 5, the object-image density
is high, i.e., , for which (38) is well
approximated by

(39)

Example 1: Each object image is a disk having known
radius . Thus, . The intensity, , is
a constant, , that varies at random in the range from
disk to disk. There are disks per unit area, so

. A sample image is shown in Fig. 2.
Since is a random constant, then where

is the variance of . To obtain , we set to the
scalar , so and

for
otherwise

Fig. 7. Autocovariance functions of Example 3.

with . Straightforward evaluation of
(21)–(23) yields

(40)

The autocovariance function is given by (39). The expression
for of (29) is related to a formula of Matheron [9],
[10] for Boolean-image disks as described in [14]. The ex-
perimental, theoretical and best-fit exponential autocovariance
functions are shown in Fig. 3. The discrepancy between the
theoretical prediction and the experimental result for

is due to the finite size of the sample image. As
expected, measurements on sample images larger than that of
Fig. 2 yield closer agreement between theory and experiment
[17].

Example 2: Each object image is a disk having known
radius as in Example 1. However, the intensity is

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:42:57 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 8. Image of Example 4.

selected at random from one of the following two ensembles:
1) where is a random variable as in Example 1,
or 2) where and

are known constants and is a point selected
at random on . Disks having intensities selected from
ensemble 1 will be similar to those of Example 1. Disks having
intensities selected from ensemble 2 will have 2-D sinusoidal
intensities with phases differing at random from disk to disk.
A sample image is shown in Fig. 4 for
and (four intensity cycles across a disk). A standard
analysis reveals that

is identical to that of Example 1. Again, the auto-
covariance function is given by (39). The experimental and
theoretical autocovariance functions are shown in Fig. 5.

Example 3: The image ensemble is composed of object
images that are disks of random radii and
having probabilities and , and densities

and , respectively. Object-image
intensity, , is as in Example 1. Fig. 6 shows a sample
from this image ensemble.

The mean object area is
and the density is . Thus,

. The normalized mean object-indicator function is

where is defined in Example 1. Fig. 7 shows the the-
oretical, the least-squares exponential approximation to the
theoretical, and the measured autocovariances of this image.

Fig. 9. Autocovariance functions of Example 4.

Fig. 10. Two-dimensional autocovariance functions of Example 5.

Notice that the measured autocovariance curve appears to have
a discontinuous slope at shift in agreement
with the theoretical prediction.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:42:57 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 11. Image of Example 5.

Example 4: This image ensemble is composed of visible
background, as well as object images. The background
consists of occluding disks identical to Example 1 but having
radius . The density of the background disks, ,
satisfies where . The object images
occluding the background are disks of radius . The
density of the object-images disks, was chosen to be

so and .
A sample image is shown in Fig. 8.

Since , we can use (39) to find the covariance
of the background

where , and and
is given by (29) with given by (40). Since

, (38) yields

where . The theoretical and experimen-
tal autocovariance functions are shown in Fig. 9 along with
the exponential approximation.

Example 5: Object images are four disks, each having
radius , centered at the corners of a square as in Fig. 1.
The distance between the centers of the nearest neighbors is

and the intensities of the four disks are the same
random constant, , uniformly random in the range .
Thus, each set of four disks has the same intensity,, where

varies from set to set. As in Example 1, .
The expression for , which is not isotropic, is given in
[15]. A plot of the 2-D theoretical autocovariance is shown
in Fig. 10. A sample image from this ensemble is shown in
Fig. 11. The experimental, theoretical and best-fit exponential
autocovariance functions are shown in Fig. 12.

Fig. 12. Autocovariance functions of Example 5.

IV. 1-D (LINE-SCAN) IMAGE MODEL

By using analytical steps similar to those in preceding
sections, one can obtain the mean and autocovariance functions
of a 1-D image model composed of 1-D object-image segments
that have random positions andlengths, (before occlusion).
Here, 2-D vectors are replaced with scalars: .

becomes the expected number of object-image center points
per unit length instead of unit area, and is replaced
with

. The mean object-image area,, is replaced
by the mean object-image length,.

The mean image intensity has the form (24) where

(41)

and . Similarly, the 1-D image
autocovariance function has the form (38). Here, however, the
analysis can go one step further because the object indicator

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:42:57 UTC from IEEE Xplore.  Restrictions apply. 
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spatial correlation function,
, of (21) becomes
which is a triangle function with height and base

centered at the origin. This triangle function is analogous to
the triangle discussed by Schreiber [13]. (In the present paper,
however, represents object-image length before occlusion
may occur.) Since an explicit form for is available,
we can also evaluate of (22) explicitly to obtain

(42)

(43)

where

(44)

In (44), is the cumulative distribution function of
. is an even-symmetric

function of , monotonically increasing in with
and . Therefore, and are even
symmetric functions of , which decrease monotonically with

to and .
Representative plots of are given in Fig. 13.

Fig. 13(a) assumes that all object-images have before-
occlusion length, , i.e. . Notice
in Fig. 13(a) that is approximately triangular when

is small. As increases, the probability that the same
object image is visible for large (i.e. near )
decreases relative to that for smaller due to occlusion.
Thus, of Fig. 13(a) departs from the triangular shape
for large . Fig. 13(b) assumes that is exponential:

where is the unit
step function. Fig. 13(c) assumes that is lognormal, i.e.

is normal with and .
A lognormal distribution is of interest because it is claimed to
describe the size distributions of various classes of physical
objects [1], [3]. Notice from Fig. 13(c) that can have
“tails“ that extend over large for lognormal . These
tails are related to significant correlation over large distances,

, in the autocovariance. The plots in Fig. 13 suggest that
has an approximately exponential appearance for a

large variety of and . However, we can also see
from Fig. 13 that is not always well approximated by
an exponential.

V. CONCLUSION

We have introduced an image model that relates second-
order intensity statistics to object-image shape, texture, and
occlusion and we have presented experiments that support the
theoretical predictions of the model. Although the model may
prove helpful in predicting the second-order statistics of certain
classes of real-life images, we believe that the primary value
of this paper may lie in the new insight it provides into the
formation of image second-order statistics and in the novel
analytical approach for obtaining the model’s second-order
statistics.

(a)

(b)

(c)

Fig. 13. Po(�) versus � with parameter� for various pw(W ). (a)
pw(W ) = �(W �Wo), (b) pw(W ) = (1= �w) expf�W= �wgu(W ), (c) w
is lognormal:ln(w) is normal withEfln(w)g = 0 andVARfln(w)g = 1.
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APPENDIX A

We show here the steps leading to (11) and (17). As a
preliminary development, we evaluate

(A1)

for . From (3) we find that

for and where is defined by
(19). Removal of the condition yields

which, by algebraic manipulations, becomes

(A2)

where

We now describe the steps leading to (11). When we remove
the conditions from the LHS of (9) we obtain the LHS of (11)
by definition. Consider the first term on the RHS side of (9):

Removal of the conditions yields

which is the first term on the RHS of (11). Removal of the
conditions for the second term on the RHS
of (9) yields

which is the second term on the RHS of (11).
To derive (17), note that zero is a lower bound for the

integral on the RHS of (A2). An upper bound for the same
integral is obtained by dropping the and the
in the denominator and applying the inequality

. This yields the upper bound

where

(A3)

(A4)

and

(A5)

It follows from (A2) that

and are all nonnegative. They
are also all bounded functions ofbecause we have assumed
that can be drawn physically. If we operate on the
above inequality with and use the inequality

(A6)

for , we obtain, for sufficiently large

It follows that as where

Therefore, (12) becomes (17) in the limit with
.

APPENDIX B

We show here the steps leading to (20). As a preliminary
step, we evaluate

(B1)

and

(B2)

for . We substitute (8) into (B1) and expand
the result into four terms each of which is an expectation
with respect to . Evaluation of these
expectations for yields

where and are given by (19) and (21), respec-
tively, for . Algebraic manipulations yield

(B3)

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:42:57 UTC from IEEE Xplore.  Restrictions apply. 
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where

and

where

Similarly, the expectation in (B2) is with respect to

. Evaluation of this expectation yields

which, by algebra, becomes

(B4)

where

We now describe the steps leading to (20). We have

so

Therefore

The RHS of the above can be upper bounded by dropping
the and from the denominator. Application of
(A3)–(A5) then yields

We use the above to bound of (B3). If we operate on
the resulting bound by and apply (A6), we obtain
for sufficiently large

It follows that

which is used in (16) to obtain (20), where

The substitution of (B3) and (B4) into the fraction in (16)
yields

We bound by techniques similar to those we used to
bound . The result is

from which

which appears in (20).

APPENDIX C

The first-order pdf, , of image intensity , and
the second-order pdf of , can
be easily found in terms of the first and second-order pdf’s of
background intensity, , and object-image intensity, .
We assume that is second-order stationary in the strict
sense.

For the first-order pdf of , we have

(C1)

where and follow from (28)–(29). It follows from
(C1) that is a mixture density. The derivation of the
second-order pdf is longer, but nearly as simple:

(C2)

To evaluate the first term on the RHS of (C2), we form the
partition

(C3)

where we define the event parts of different
objects are visible at and . By using (C3), we can write
the first term of (C2) as

(C4)

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 30,2023 at 13:42:57 UTC from IEEE Xplore.  Restrictions apply. 
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where .
The substitution of (C4) into (C2) and straightforward evalu-
ation of the remaining terms of (C2) yields

(C5)

which, like (C1), is a mixture pdf. The probabilities
appearing in (C5) are easily found using the expressions
developed in this paper.

As an example, consider the occluding disks of Section III,
Example 1. Here, the last three terms on the RHS of (C5)
vanish because . Since is a random constant, the
first two terms on the RHS of (C5) simplify, and (C5) becomes

(C6)
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