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Abstract
We propose two unconditionally stable, linear ensemble algorithms with pre-computable
shared coefficient matrices across different realizations for themagnetohydrodynamics equa-
tions. The viscous terms are treated by a standard perturbative discretization. The nonlinear
terms are discretized fully explicitly within the framework of the generalized positive aux-
iliary variable approach (GPAV). Artificial viscosity stabilization that modifies the kinetic
energy is introduced to improve accuracy of the GPAV ensemble methods. Numerical results
are presented to demonstrate the accuracy and robustness of the ensemble algorithms.

Keywords MHD · SAV · Uncertainty quantification · Ensemble algorithm · Unconditional
stability

Mathematics Subject Classification 65M12 · 65M60 · 76T99

1 Introduction

Magnetohydrodynamics (MHD) flow describes electrically conducting fluid moving through
a magnetic field. It has important applications in fusion technology, submarine propulsion
system, liquid metals in magnetic pumps, and so on. The mathematical model comprises
the Navier–Stokes equations for fluid flow and Maxwell’s equations for electromagnetics.
In practical applications, the problem parameters such as viscosity and magnetic resistivity,
external body forcing and initial conditions, are invariably subject to uncertainty. To quan-
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tify the impact of uncertainty and develop high-fidelity numerical simulations, one usually
computes the flow ensembles in which the MHD equations are solved repeatedly with dif-
ferent inputs. The aim of this article is to develop efficient second-order accurate ensemble
algorithms that are unconditionally stable and suitable for long-time simulations. Therefore
we consider solving J times the following MHD equations: for j = 1, 2, . . . , J ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u j,t + u j · ∇u j − sB j · ∇B j − ν jΔu j + ∇ p j = f j in Ω × (0, T ),

∇ · u j = 0, in Ω × (0, T ),

B j,t + u j · ∇B j − B j · ∇u j − γ jΔB j + ∇λ j = ∇ × g j in Ω × (0, T ),

∇ · B j = 0, in Ω × (0, T ),

u j (x, 0) = u0j (x), in Ω, B j (x, 0) = B0
j (x), in Ω.

(1)

Here u j is the fluid velocity, p j the pressure, B j the magnetic field and λ j is a Lagrange
multiplier corresponding to the solenoidal constraint on B j [1]. The body force f j (x, t)
and ∇ × g j are given, s is the coupling number, ν j is the kinematic viscosity, and γ j is
the magnetic resistivity. Dirichlet boundary conditions will be imposed for both u j and B j ,
though the numerical methods are also applicable to other boundary conditions including
∇ × B j = 0 on ∂Ω . Note that we have adopted an equivalent formulation of the MHD
equations, cf. [1–4].

Ensemble methods have been extensively developed for solving the Navier–Stokes equa-
tions and related fluid models [5–14]. The central idea in these ensemble methods is a
perturbative time discretization that utilizes the ensemble mean corrected by explicit treat-
ment of the fluctuations in time marching of each realization. As a result, at each time step
the coefficient matrix of the resulting linear systems is identical for all realizations, saving
both storage and computational cost. Moreover, under some constraint on the time-step and
the size of fluctuations it is shown that the ensemble algorithms are long-time stable. A sim-
ilar ensemble method is developed in [15] and [16] for solving a reduced MHD system at
low magnetic Reynolds number. Based on the Elsasser formulation [17] and the perturbative
time discretization, a first-order decoupled and unconditionally stable ensemble algorithm is
proposed and analyzed in [1, 4] for solving the full MHD model. An artificial eddy viscosity
term is employed to ensure unconditional stability. Due to the usage of Elsasser variables,
the method appears to be limited to the case of Dirichlet boundary conditions.

Further computational efficiency gains can be achieved by fully explicit discretization
of the nonlinear terms so that the exact same coefficient matrix is shared across different
time steps in ensemble simulations. This approach would often incur a CFL condition that
hinders the efficiency of the algorithm for long-time simulation or for problems involving
multiple scales. One remedy is the introduction of a Lagrange multiplier for enforcement
of the underlying energy estimate (energy dissipation or conservation). This idea leads to
recent development of the so-called Invariant Energy Quadratization (IEQ) method [18–21],
and the Scalar Auxiliary Variable (SAV) approach [22, 23] for solving phase field models.
Extensions of these methods are reported in [24–27] on the design of linear, decoupled,
unconditionally stable numerical schemes for solving general nonlinear equations satisfying
an energy law. Based on the SAV approach proposed in [24], a stabilized SAV ensemble
algorithm is developed in [28] for parameterized flow problems where superior accuracy is
observed thanks to a penalization of the kinetic energy causing the high frequency mode to
quickly roll-off in the energy spectrum [29]. Stability and error analysis of a SAV method
for the MHD equations is recently conducted in [30].
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In this article we propose two linear, second-order accurate, unconditionally stable ensem-
ble methods with shared coefficient matrix across different realizations and time steps for
solving the MHD model. The parameters are treated by the usual perturbative method. We
employ the Generalized Positive Auxiliary Variable framework (GPAV) from [25] in the
discretization of the nonlinear terms. The advantages of the GPAV method include: linear-
ity of the algebra equation for the scalar variable; provable positivity of the scalar variable;
and flexibility in handling complex boundary conditions. These Lagrange multiplier type
approaches often suffer from poor accuracy especially for long time simulation of advection-
dominated flow, cf. [31] for a careful benchmark comparison study of the SAV approach.
This drop in accuracy is also discussed and demonstrated in the numerical tests from [25]. In
[32] a post-processing procedure is introduced to improve accuracy of the SAV method for
the Cahn–Hilliard equation. In our method we adopt the stabilization technique of artificial
viscosity that proves robust and efficient in past studies [28, 29]. The stabilization introduces
a penalty term in the kinetic energy which leads to a quick roll-off of the under-resolved
modes in the energy spectrum thus curtailing the inertial range and making the system more
computable, cf. [29]. This mechanism is well-known in the Navier–Stokes-α model for large
eddy simulation of turbulence [33, 34]. We perform extensive numerical tests to gauge the
accuracy, efficiency and robustness of the proposed ensemble methods. Error analysis of
the proposed numerical schemes is currently beyond scope of this article. Recent work on
error analysis of finite element methods for MHD equations can be found in [35, 36]. See
also [37, 38] for convergence analysis of numerical approximations to the Navier–Stokes
equationswith nonsmooth initial data under low-regularity conditions.

To start, we define the ensemble mean and the fluctuation of the viscosity terms νnj and
the electric potential γ n

j at timestep n respectively

ν̄n = 1

J

J∑

j=1

νnj and γ̄ n = 1

J

J∑

j=1

γ n
j , (mean)

ν′n
j = νnj − ν̄n and γ ′n

j = γ n
j − γ̄ n, ν′

max = max
j

max
x∈Ω

|ν′n
j (x)| (fluctuation)

and γ ′
max = max

j
max
x∈Ω

|γ ′n
j (x)|,

where in our considerations νnj = ν j , γ n
j = γ j are constants and tn = nΔt (n = 0, 1, 2, . . .).

Define

vn+1/2 = 1

2
(vn+1 + vn), ṽn+1/2 = 2vn−1/2 − vn−3/2, (2)

v
∗n+1/2 = 3

2
vn − 1

2
vn−1, ṽn+1 = 2vn − vn−1. (3)

We define a shifted energy of the form

E j (t) = E[u j , B j ] =
∫

Ω

1

2
|u j |2dΩ +

∫

Ω

s

2
|B j |2dΩ + C0, (4)

where E[u j , B j ] is the total kinetic energy of the system, which for physical examples is
bounded from below, and C0 is an arbitrarily small positive constant chosen in such a way
that E j (t) > 0 for 0 ≤ t ≤ T . Next, let F be any one-to-one increasing differentiable
function with F−1 = G such that

{
F (χ) > 0, χ > 0, (5)

G (χ) > 0, χ > 0. (6)
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The scalar variable R j (t) is defined by

R j (t) = G (E j ), (7)

E j (t) = F (R j ). (8)

With E j as in (4), R j (t) then satisfies

F ′(R j )
dR j

dt
=

∫

Ω

u j · ∂u j

∂t
dΩ +

∫

Ω

sB j · ∂B j

∂t
dΩ. (9)

Since
F (R j )

E j
= 1 for all j , we may write

F ′(R j )
dR j

dt
=

∫

Ω

[

u j · ∂u j

∂t
+ sB j · ∂B j

∂t

]

dΩ +
[
F (R j )

E j
− 1

]

[ ∫

Ω
u j ·

(

ν jΔu j − ∇ p j + f j

)

dΩ

+
∫

Ω
sB j ·

(

γ jΔB j − ∇λ j + ∇ × g j

)

dΩ

]

+ F (R j )

E j

[ ∫

Ω
u j · [B j · ∇B j − u j · ∇u j ]dΩ

−
∫

Ω
u j · [B j · ∇B j − u j · ∇u j ]dΩ

+
∫

Ω
sB j · [B j · ∇u j − u j · ∇B j ]dΩ

−
∫

Ω
sB j · [B j · ∇u j − u j · ∇B j ]dΩ

]

=
∫

Ω

[

u j · ∂u j

∂t
+ sB j · ∂B j

∂t

]

dΩ

−
∫

Ω
u j ·

(

ν jΔu j − ∇ p j + F (R j )

E j
[B j · ∇B j − u j · ∇u j ] + f j

)

dΩ

−
∫

Ω
sB j ·

(

γ jΔB j − ∇λ j + F (R j )

E j
[B j · ∇u j − u j · ∇B j ] + ∇ × g j

)

dΩ

+ F (R j )

E j

[ ∫

Ω
u j · [B j · ∇B j − u j · ∇u j + ν jΔu j − ∇ p j + f j ]dΩ

+
∫

Ω
sB j · [B j · ∇u j − u j · ∇B j + γ jΔB j − ∇λ j + ∇ × g j ]dΩ

]

(10)

Note that all the additional terms above amount to adding zero to (9). Using integration by
parts we get the equality

∫

Ω
u j · [B j · ∇B j − u j · ∇u j + ν jΔu j − ∇ p j + f j ]dΩ

+
∫

Ω
sB j · [B j · ∇u j − u j · ∇B j + γ jΔB j − ∇λ j + ∇ × g j ]dΩ

= −
∫

Ω
(ν j |∇u j |2 + sγ j |∇B j |2)dΩ +

∫

Ω
( f j · u j + s(∇ × g j ) · B j )dΩ +

∫

Γ
BS(u j , B j )dΓ ,

(11)

where BS(u j , B j ) represents the forcing terms on the boundary, defined as

BS(u j , B j ) =
∫

Γ

(

− 1

2
|u j |2u j − s

2
|B j |2u j + ν j∇u j · u j − p ju j
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+ s(B j · u j )B j + sγ j∇B j · B j − sλ j B j

)

· n̂ dΓ (12)

and n̂ is the unit normal vector to the boundary. We use this equality and write

F ′(R j )
dR j

dt
=

∫

Ω

[

u j · ∂u j

∂t
+ sB j · ∂B j

∂t

]

dΩ

−
∫

Ω

u j ·
(

ν jΔu j − ∇ p j + F (R j )

E j
[B j · ∇B j − u j · ∇u j ] + f j

)

dΩ

−
∫

Ω

sB j ·
(

γ jΔB j − ∇λ j + F (R j )

E j
[B j · ∇u j − u j · ∇B j ] + ∇ × g j

)

dΩ

+ F (R j )

E j

[

−
∫

Ω

(ν j |∇u j |2 + sγ j |∇B j |2)dΩ +
∫

Ω

( f j · u j + s(∇ × g j ) · B j )dΩ

+
∫

Γ

BS(u j , B j )dΓ

]

+
[

1 − F (R j )

E j

]∣
∣
∣
∣

∫

Ω

( f j · u j + s(∇ × g j ) · B j )dΩ

+
∫

Γ

BS(u j , B j )dΓ

∣
∣
∣
∣, (13)

As will be seen later, we consider this reformulation (including the addition of the terms
within absolute value brackets) as a means of constructing numerical schemes that inherit
unconditional stability with respect to the modified energyF (R j ) and guaranteed positivity
of a computed scalar variable ξ j to be defined.

With Dirichlet boundary conditions, a Crank-Nicolson scheme for 1 becomes

Algorithm 1 Given unj , B
n
j , p

n
j and λnj , find un+1

j , Bn+1
j , pn+1

j and λn+1
j satisfying

(
un+1
j − unj

Δt

)

= −ξ j

(
ũn+1/2
j · ∇

)
ũn+1/2
j

+ sξ j
(
B̃
n+1/2
j · ∇

)
B̃
n+1/2
j + ν̄nΔun+1/2

j (14)

+ ν′n
j Δũn+1/2

j − ∇ pn+1/2
j + f n+1/2

j ,

∇ · un+1
j = 0, (15)

(
Bn+1

j − Bn
j

Δt

)

= ξ j

(
B̃
n+1/2
j · ∇

)
ũn+1/2
j

− ξ j

(
ũn+1/2
j · ∇

)
B̃
n+1/2
j + γ̄ nΔBn+1/2

j (16)

+ γ ′n
j ΔB̃

n+1/2
j − ∇λ

n+1/2
j + ∇ × gn+1/2

j ,

∇ · Bn+1
j z = 0, (17)

ξ j = F (Rn+1
j )

E(ūn+1
j , B̄

n+1
j )

, (18)

E(ūn+1
j , B̄

n+1
j ) = 1

2
‖ūn+1

j ‖2 + s

2
‖B̄n+1

j ‖2 + C0, (19)
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F (Rn+1
j ) − F (Rn

j )

Δt
=

∫

Ω

un+1/2
j ·

(
un+1
j − unj

Δt

)

dΩ

+
∫

Ω

sBn+1/2
j ·

(
Bn+1

j − Bn
j

Δt

)

dΩ

−
∫

Ω

un+1/2
j ·

[

− ξ j

(
ũn+1/2
j · ∇

)
ũn+1/2
j + sξ j

(
B̃
n+1/2
j · ∇

)
B̃
n+1/2
j

+ ν̄nΔun+1/2
j + ν′n

j Δũn+1/2
j − ∇ pn+1/2

j + f n+1/2
j

]

dΩ

−
∫

Ω

sBn+1/2
j ·

[

ξ j

(
B̃
n+1/2
j · ∇

)
ũn+1/2
j − ξ j

(
ũn+1/2
j · ∇

)
B̃
n+1/2
j

+ γ̄ nΔBn+1/2
j + γ ′n

j ΔB̃
n+1/2
j − ∇λ

n+1/2
j + ∇ × gn+1/2

j

]

dΩ

+ ξ j

[

−
∫

Ω

(
ν j |∇ ūn+1/2

j |2 + sγ j |∇ B̄
n+1/2
j |2

)
dΩ

+
∫

Ω

f n+1/2
j · ūn+1/2

j dΩ

+
∫

Ω

s(∇ × gn+1/2
j ) · B̄n+1/2

j dΩ +
∫

Γ

BS(ū
n+1/2
j , B̄

n+1/2
j )dΓ

]

+ (1 − ξ j )

∣
∣
∣
∣

∫

Ω

f n+1/2
j · ūn+1/2

j dΩ

+
∫

Ω

s(∇ × gn+1/2
j ) · B̄n+1/2

j dΩ +
∫

Γ

BS(ū
n+1/2
j , B̄

n+1/2
j )dΓ

∣
∣
∣
∣.

(20)

Here ūn+1
j , ūn+1/2

j , B̄
n+1
j and B̄

n+1/2
j are second order approximations of un+1

j , un+1/2
j ,

Bn+1
j , and Bn+1/2

j that will be defined later.

Again for Dirichlet boundary conditions, a BDF2 scheme is

Algorithm 2 Given un−1
j , unj , B

n−1
j , Bn

j , find un+1
j , Bn+1

j , pn+1
j and λn+1

j satisfying

(
3un+1

j − 4unj + un−1
j

2Δt

)

= −ξ j

(
ũn+1
j · ∇

)
ũn+1
j

+ sξ j
(
B̃
n+1
j · ∇

)
B̃
n+1
j + ν̄nΔun+1

j + ν′n
j Δũn+1

j − ∇ pn+1
j + f n+1

j (21)

∇ · un+1
j = 0, (22)

(
3Bn+1

j − 4Bn
j + Bn−1

j

2Δt

)

= ξ j

(
B̃
n+1
j · ∇

)
ũn+1
j − ξ j

(
ũn+1
j · ∇

)
B̃
n+1
j + γ̄ nΔBn+1

j (23)

+ γ ′n
j ΔB̃

n+1
j − ∇λn+1

j + ∇ × gn+1
j ,

∇ · Bn+1
j = 0, (24)
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ξ j = F (R
∗n+3/2
j )

E(ūn+3/2
j , B̄

n+3/2
j )

, (25)

E(ūn+3/2
j , B̄

n+3/2
j ) = 1

2
‖ūn+3/2

j ‖2 + s

2
‖B̄n+3/2

j ‖2 + C0, (26)

F (R
∗n+3/2
j ) − F (R

∗n+1/2
j )

Δt
=

∫

Ω

un+1
j ·

(
3un+1

j − 4unj + un−1
j

2Δt

)

dΩ

+
∫

Ω

sBn+1
j ·

(
3Bn+1

j − 4Bn
j + Bn−1

j

2Δt

)

dΩ

−
∫

Ω

un+1
j ·

[

− ξ j

(
ũn+1
j · ∇

)
ũn+1
j + sξ j

(
B̃
n+1
j · ∇

)
B̃
n+1
j

+ ν̄nΔun+1
j + ν′n

j Δũn+1
j − ∇ pn+1

j + f n+1
j

]

dΩ

−
∫

Ω

sBn+1
j ·

[

ξ j

(
B̃
n+1
j · ∇

)
ũn+1
j − ξ j

(
ũn+1
j · ∇

)
B̃
n+1
j

+ γ̄ nΔBn+1
j + γ ′n

j ΔB̃
n+1
j − ∇λn+1

j + ∇ × gn+1
j

]

dΩ

+ ξ j

[

−
∫

Ω

(
ν j |∇ ūn+1

j |2 + sγ j |∇ B̄
n+1
j |2

)
dΩ +

∫

Ω

f n+1
j · ūn+1

j dΩ

+
∫

Ω

s(∇ × gn+1
j ) · B̄n+1

j dΩ +
∫

Γ

BS(ū
n+1
j , B̄

n+1
j )dΓ

]

+ (1 − ξ j )

∣
∣
∣
∣

∫

Ω

f n+1
j · ūn+1

j dΩ +
∫

Ω

s(∇ × gn+1
j ) · B̄n+1

j dΩ

+
∫

Γ

BS(ū
n+1
j , B̄

n+1
j )dΓ

∣
∣
∣
∣. (27)

Similarly ūn+1
j , ūn+3/2

j , B̄
n+1
j and B̄

n+3/2
j are second order approximations of un+1

j , un+3/2
j ,

Bn+1
j , and Bn+3/2

j to be defined later.

In practice, (u0j , u
1
j , B

0
j , B

1
j ) may be found from the initial conditions and using an

algorithm without SAV, such as the aforementioned ensemble scheme in [1]. In our imple-
mentations, we used a primitive (without ensemble) first order scheme to initialize as the
computational cost of solving each perturbation in these first steps is not significant.

The rest of the paper is outlined here. Section2 gives mathematical preliminaries and
defines notation. In Sect. 3, we prove the long time stability of the proposed algorithm. Sec-
tion4 presents an efficient way to implement our numerical algorithm. Section 5 numerically
tests the proposed algorithm and illustrates theoretical results. Final conclusions and future
directions are discussed in Sect. 5.

2 Notation and Preliminaries

Throughout this paper the L2(Ω) norm of scalars, vectors, and tensors will be denoted by ‖·‖
with the usual L2 inner product denoted by (·, ·). Hk(Ω) is the Sobolev space Wk

2 (Ω), with

123
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norm ‖ · ‖k . For functions v(x, t) defined on (0, T ), we define the norms, for 1 ≤ m < ∞,

‖v‖∞,k := EssSup[0,T ]‖v(·, t)‖k and ‖v‖m,k :=
( ∫ T

0
‖v(·, t)‖mk dt

)1/m
.

The function spaces we consider are:

X : = H1
0 (Ω)d =

{
v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v = 0 on ∂Ω

}
,

Q : = L2
0(Ω) =

{

q ∈ L2(Ω) :
∫

Ω

q dx = 0

}

,

V : = {v ∈ X : (∇ · v, q) = 0,∀q ∈ Q} .

A weak formulation of the full MHD equations is: Find u j : [0, T ] → X , p j : [0, T ] →
Q, B j : [0, T ] → X and λ j : [0, T ] → Q satisfying
(
u j,t , v

) + (
u j · ∇u j , v

) − s
(
B j · ∇B j , v

) + ν j
(∇u j ,∇v

) − (
p j ,∇ · v) = (

f j , v
)
, ∀v ∈ X ,

(∇ · u j , l
) = 0, ∀l ∈ Q,

(
B j,t ,χ

) + (
u j · ∇B j ,χ

) − (
B j · ∇u j ,χ

) + γ j
(∇B j ,∇χ

) − (
λ j ,∇ · χ

)

= (∇ × g j ,χ
)
, ∀χ ∈ X ,

(∇ · B j , ψ
) = 0, ∀ψ ∈ Q.

We denote conforming velocity, pressure, potential finite element spaces based on an edge
to edge triangulation (d = 2) or tetrahedralization (d = 3) of Ω with maximum element
diameter h by

Xh ⊂ X , Qh ⊂ Q.

We also assume the finite element spaces (Xh , Qh) satisfy the usual discrete inf-sup /LBBh

condition for stability of the discrete pressure, see [39] for more on this condition. Taylor–
Hood elements, e.g., [39, 40], are one such choice used in the tests in Sect. 5. We define the
trilinear form

b(u, v, w) := (u · ∇v,w)

The full discretization of the proposed partitioned ensemble algorithm with Crank–
Nicolson scheme is

Algorithm 3 Given unj,h, B
n
j,h, p

n
j,h and λnj,h, find un+1

j,h , Bn+1
j,h , pn+1

j,h and λn+1
j,h satisfying

for any vh,χh ∈ Xh and lh, ψh ∈ Qh,
(
un+1
j,h − unj,h

Δt
, vh

)

= −ξ j b(ũ
n+1/2
j,h , ũn+1/2

j,h , vh) + sξ j b(B̃
n+1/2
j,h , B̃

n+1/2
j,h , vh)

− ν̄n
(
∇un+1/2

j,h ,∇vh

)
− ν′n

j

(
∇ ũn+1/2

j,h ,∇vh

)
+

(
pn+1/2
j,h ,∇ · vh

)

− αh
(
∇(un+1

j,h − unj,h),∇vh

)
+

(
f n+1/2
j,h , vh

)
, (28)

(
∇ · un+1

j,h , lh
)

= 0, (29)
(
Bn+1

j,h − Bn
j,h

Δt
,χh

)

= ξ j b(B̃
n+1/2
j,h , ũn+1/2

j,h ,χh) − ξ j b(ũ
n+1/2
j,h , B̃

n+1/2
j,h ,χh)

− γ̄ n
(
∇Bn+1/2

j,h ,∇χh

)
− γ ′n

j

(
∇ B̃

n+1/2
j,h ,∇χh

)
+

(
λ
n+1/2
j,h ,∇ · χh

)
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− αMh
(
∇(Bn+1

j,h − Bn
j,h),∇χh

)
+

(
∇ × gn+1/2

j,h ,χh

)
, (30)

(
∇ · Bn+1

j,h , ψh

)
= 0, (31)

ξ j = F (Rn+1
j,h )

E(ūn+1
j,h , B̄

n+1
j,h )

, (32)

E(ūn+1
j,h , B̄

n+1
j,h ) = 1

2
‖ūn+1

j,h ‖2 + s

2
‖B̄n+1

j,h ‖2 + C0, (33)

F (Rn+1
j,h ) − F (Rn

j,h)

Δt
=

(
un+1
j,h − unj,h

Δt
, un+1/2

j,h

)

+ s

(
Bn+1

j,h − Bn
j,h

Δt
, Bn+1/2

j,h

)

+ ξ j b(ũ
n+1/2
j,h , ũn+1/2

j,h , un+1/2
j,h ) − sξ j b(B̃

n+1/2
j,h , B̃

n+1/2
j,h , un+1/2

j,h )

+ ν̄n‖∇un+1/2
j,h ‖2

+ ν′n
j

(
∇ ũn+1/2

j,h ,∇un+1/2
j,h

)
−

(
pn+1/2
j,h ,∇ · un+1/2

j,h

)

+ αh
(
∇(un+1

j,h − unj,h),∇un+1/2
j,h

)
−

(
f n+1/2
j,h , un+1/2

j,h

)

− sξ j b(B̃
n+1/2
j,h , ũn+1/2

j,h , Bn+1/2
j,h ) + sξ j b(ũ

n+1/2
j,h , B̃

n+1/2
j,h , Bn+1/2

j,h )

+ sγ̄ n‖∇Bn+1/2
j,h ‖2

+ sγ ′n
j

(
∇Bn+1/2

j,h ,∇Bn+1/2
j,h

)
− s

(
λ
n+1/2
j,h ,∇ · Bn+1/2

j,h

)

+ sαMh
(
∇(Bn+1

j,h − Bn
j,h),∇Bn+1/2

j,h

)

− s
(
∇ × gn+1/2

j,h , Bn+1/2
j,h

)
+ ξ j

[

−
∫

Ω

(
ν j |∇ ūn+1/2

j,h |2

+sγ j |∇ B̄
n+1/2
j,h |2

)
dΩ

+
∫

Ω

f n+1/2
j,h · ūn+1/2

j,h dΩ +
∫

Ω

s(∇ × gn+1/2
j,h ) · B̄n+1/2

j,h dΩ

+
∫

Γ

BS(ū
n+1/2
j,h , B̄

n+1/2
j,h )dΓ

]

+ (1 − ξ j )

∣
∣
∣
∣

∫

Ω

f n+1/2
j,h · ūn+1/2

j,h dΩ +
∫

Ω

s(∇ × gn+1/2
j,h ) · B̄n+1/2

j,h dΩ

+
∫

Γ

BS(ū
n+1/2
j,h , B̄

n+1/2
j,h )dΓ

∣
∣
∣
∣. (34)

The full discretization of the proposed partitioned ensemble algorithm with BDF2 scheme
is

Algorithm 4 Given un−1
j,h , unj,h, B

n−1
j,h , Bn

j,h, find un+1
j,h , Bn+1

j,h , pn+1
j,h and λn+1

j,h satisfying for
any vh,χh ∈ Xh and lh, ψh ∈ Qh,

(
3un+1

j,h − 4unj,h + un−1
j,h

2Δt
, vh

)

= −ξ j b(ũ
n+1
j,h , ũn+1

j,h , vh) + sξ j b(B̃
n+1
j,h , B̃

n+1
j,h , vh)

− ν̄n
(
∇un+1

j,h ,∇vh

)
− ν′n

j

(
∇ ũn+1

j,h ,∇vh

)
+

(
pn+1
j,h ,∇ · vh

)
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− αh
(
∇(3un+1

j,h − 4unj,h + un−1
j,h ),∇vh

)
+

(
f n+1
j,h , vh

)
, (35)

(
∇ · un+1

j,h , lh
)

= 0, (36)
(
3Bn+1

j,h − 4Bn
j,h + Bn−1

j,h

2Δt
,χh

)

= ξ j b(B̃
n+1
j,h , ũn+1

j,h ,χh) − ξ j b(ũ
n+1
j,h , B̃

n+1
j,h ,χh)

− γ̄ n
(
∇Bn+1

j,h ,∇χh

)
− γ ′n

j

(
∇ B̃

n+1
j,h ,∇χh

)
+

(
λn+1
j,h ,∇ · χh

)

− αMh
(
∇(3Bn+1

j,h − 4Bn
j,h + Bn−1

j,h ),∇χh

)
+

(
∇ × gn+1

j,h ,χh

)
, (37)

(
∇ · Bn+1

j,h , ψh

)
= 0, (38)

ξ j = F (R
∗n+3/2
j,h )

E(ūn+3/2
j,h , B̄

n+3/2
j,h )

, (39)

E(ūn+3/2
j,h , B̄

n+3/2
j,h ) = 1

2
‖ūn+3/2

j,h ‖2 + s

2
‖B̄n+3/2

j,h ‖2 + C0,

F (R
∗n+3/2
j,h ) − F (R

∗n+1/2
j,h )

Δt
=

(
3un+1

j,h − 4unj,h + un−1
j,h

2Δt
, un+1

j,h

)

(40)

+ s

(
3Bn+1

j,h − 4Bn
j,h + Bn−1

j,h

2Δt
, Bn+1

j,h

)

+ ξ j b(ũ
n+1
j,h , ũn+1

j,h , un+1
j,h )

− sξ j b(B̃
n+1
j,h , B̃

n+1
j,h , un+1

j,h ) + ν̄n‖∇un+1
j,h ‖2 + ν′n

j

(
∇ ũn+1

j,h ,∇un+1
j,h

)

−
(
pn+1
j,h ,∇ · un+1

j,h

)
+ αh

(
∇(3un+1

j,h − 4unj,h + un−1
j,h ),∇un+1

j,h

)
−

(
f n+1
j,h , un+1

j,h

)

− sξ j b(B̃
n+1
j,h , ũn+1

j,h , Bn+1
j,h ) + sξ j b(ũ

n+1
j,h , B̃

n+1
j,h , Bn+1

j,h )

+ sγ̄ n‖∇Bn+1
j,h ‖2 + sγ ′n

j

(
∇ B̃

n+1
j,h ,∇Bn+1

j,h

)

− s
(
λn+1
j,h ,∇ · Bn+1

j,h

)
+ sαMh

(
∇(3Bn+1

j,h − 4Bn
j,h + Bn−1

j,h ),∇Bn+1
j,h

)

− s
(
∇ × gn+1

j,h , Bn+1
j,h

)

+ ξ j

[

−
∫

Ω

(
ν j |∇ ūn+1

j,h |2 + sγ j |∇ B̄
n+1
j,h |2

)
dΩ +

∫

Ω

f n+1
j,h · ūn+1

j,h dΩ

+
∫

Ω

s(∇ × gn+1
j,h ) · B̄n+1

j,h dΩ +
∫

Γ

BS(ū
n+1
j,h , B̄

n+1
j,h )dΓ

]

+ (1 − ξ j )

∣
∣
∣
∣

∫

Ω

f n+1
j,h · ūn+1

j,h dΩ+
∫

Ω

s(∇ × gn+1
j,h ) · B̄n+1

j,h dΩ+
∫

Γ

BS(ū
n+1
j,h , B̄

n+1
j,h )dΓ

∣
∣
∣
∣.

(41)

There’s also the addition of two regularization terms in Algorithms (3) and (4),

{
αhΔ(un+1

j,h − unj,h),

αMhΔ(Bn+1
j,h − Bn

j,h),
for CN,

{
αhΔ(3un+1

j,h − 4unj,h + un−1
j,h ),

αMhΔ(3Bn+1
j,h − 4Bn

j,h + Bn−1
j,h ),

for BDF2.
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These terms are highly effective at reducing the considerable error that eventually appears
when the timestep is not sufficiently refined. Significant improvement in accuracy will be
seen later in the numerical tests. It’s noted in [29] that this improvement cannot be explained
by the stability or error analysis alone. Instead, an explanation is offered through analysis of
a modified form of the equations under consideration. In the modified equations, the addition
of the term −αhkΔut (in the case of velocity) and −αhkΔBt (in the case of magnetic field)
are added to the left-hand sides,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
u j,t − αhkΔu j,t

] + u j · ∇u j − sB j · ∇B j − ν jΔu j + ∇ p j = f j in Ω × (0, T ),

∇ · u j = 0, in Ω × (0, T ),
[
B j,t − sαMhkΔB j,t

] + u j · ∇B j − B j · ∇u j − γ jΔB j + ∇λ j = ∇ × g j in Ω × (0, T ),

∇ · B j = 0, in Ω × (0, T ),

u j (x, 0) = u0j (x), in Ω, B j (x, 0) = B0
j (x), in Ω.

(42)
This results in a modified kinetic energy corresponding to the equation. In our case, the
resulting modified kinetic energy would be

‖u(t)‖2 + αhk‖∇u(t)‖2 + s‖B(t)‖2 + sαMhk‖∇B(t)‖2.

Following Kraichnan’s theory [41], it is argued in [29] that the penalty term in the kinetic
energy induces an enhanced energy decay rate for numerically under-resolved modes while
preserving the correct energy cascade above the cut-off length scale. The quick roll-off in
the energy spectrum is also exploited in the Navier–Stokes-α model (NS-α)—a nonlinearly
dispersive modification of the Navier–Stokes equations for large eddy simulation of turbu-
lence [33, 34]. This roll-off mechanism shortens the inertial range and makes the system
more computable.

3 Stability of theMethod

3.1 Crank–Nicolson

Theorem 5 With homogeneous boundary conditions and forcing terms equal to zero, Algo-
rithm (3) is unconditionally stable with respect to the modified energy F (R j ).

Proof Stability follows directly from [25]. Set vh to un+1/2
j,h in (28), χh to sBn+1/2

j,h in (31),
add each of these to (34) and note (29) and (32). Then one gets

F (Rn+1
j,h ) − F (Rn

j,h) = −Δt
F (Rn+1

j,h )

E
(
ūn+1
j,h , B̄

n+1
j,h

)

∫

Ω

(
ν j |∇ ūn+1/2

j,h |2 + sγ j |∇ B̄
n+1/2
j,h |2

)
dΩ

+
⎡

⎣1 − F (Rn+1
j,h )

E
(
ūn+1
j,h , B̄

n+1
j,h

)

⎤

⎦ |S0|Δt + F (Rn+1
j,h )

E
(
ūn+1
j,h , B̄

n+1
j,h

) S0Δt . (43)
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Where S0 = ∫

Ω
f n+1/2
j,h · ūn+1/2

j,h dΩ +∫

Ω
s(∇ × gn+1/2

j,h ) · B̄n+1/2
j,h dΩ . Solving forF (Rn+1

j,h )

gives

F (Rn+1
j,h ) = F (Rn

j,h) + |S0|Δt

1 + Δt

E
(
ūn+1
j,h ,B̄

n+1
j,h

)

[∫

Ω

(
ν j |∇ ūn+1/2

j,h |2 + sγ j |∇ B̄
n+1/2
j,h |2

)
dΩ + (|S0| − S0)

] .

(44)

If f j = 0 and ∇ × g j = 0, then S0 = 0 and

F (Rn+1
j,h ) = F (Rn

j,h)

1 + Δt

E
(
ūn+1
j,h ,B̄

n+1
j,h

)
∫

Ω

(
ν j |∇ ūn+1/2

j,h |2 + sγ j |∇ B̄
n+1/2
j,h |2

)
dΩ

. (45)

Note the denominator in (45) is greater than or equal to 1. By definition (5), if R0
j,h > 0, then

F (R0
j,h) > 0. In fact R0

j,h would be initialized as G
(
E[u0j (x), B0

j (x)]
)
, which by definition

(6) is guaranteed positive. Then by induction for any timestep n, F (Rn+1
j,h ) > 0, giving us

0 < F (Rn+1
j,h ) ≤ F (Rn

j,h), n ≥ 0. (46)

This completes the proof. �

3.2 BDF2

Theorem 6 With homogeneous boundary conditions and forcing terms equal to zero, Algo-
rithm (4) is unconditionally stable with respect to the modified energyF (R j ) as long as the
approximations of R j (t) at timestep

1
2 are positive.

Proof If one sets vh to un+1
j,h in (35) and χh to sBn+1

j,h in (37), subtracts each of these from
(41) and notes (36) and (38), the proof follows identically to [25]. We have

F (R
∗n+3/2
j,h ) − F (R

∗n+1/2
j,h ) = −Δt

F (R
∗n+3/2
j,h )

E(ūn+3/2
j,h , B̄

n+3/2
j,h )

∫

Ω

(
ν j |∇ ūn+1

j,h |2 + sγ j |∇ B̄
n+1
j,h |2

)
dΩ

+
⎡

⎣1 − F (R
∗n+3/2
j,h )

E(ūn+3/2
j,h , B̄

n+3/2
j,h )

⎤

⎦ |S0|Δt + F (R
∗n+3/2
j,h )

E(ūn+3/2
j,h , B̄

n+3/2
j,h )

S0Δt . (47)

Where S0 = ∫

Ω
f n+1
j,h · ūn+1

j,h dΩ +∫

Ω
s(∇ × gn+1

j,h ) · B̄n+1
j,h dΩ . Solving forF (R

∗n+3/2
j,h ) gives

F (R
∗n+3/2
j,h ) = F (R

∗n+1/2
j,h ) + |S0|Δt

1 + Δt

E(ūn+3/2
j,h ,B̄

n+3/2
j,h )

[∫
Ω

(
ν j |∇ ūn+1

j,h |2 + sγ j |∇ B̄
n+1
j,h |2

)
dΩ + (|S0| − S0)]

.

(48)

If f j = 0 and ∇ × g j = 0, then S0 = 0 and

F (R
∗n+3/2
j,h ) = F (R

∗n+1/2
j,h )

1 + Δt

E(ūn+3/2
j,h ,B̄

n+3/2
j,h )

∫

Ω

(
ν j |∇ ūn+1

j,h |2 + sγ j |∇ B̄
n+1
j,h |2

)
dΩ

. (49)
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The denominator above is greater than or equal to 1. Now by definition (5), if it’s ensured

the approximation of R j (t) at timestep 1/2 is positive, i.e. R
∗1/2
j,h > 0, then F

(
R
∗1/2
j,h

)
> 0.

Then by induction for any timestep n, F
(
R
∗n+3/2
j,h

)
> 0 and

0 < F
(
R
∗n+3/2
j,h

)
≤ F

(
R
∗n+1/2
j,h

)
, n ≥ 0. (50)

This completes the proof. �
Note that for the choice ofF (χ) = χ2 ≥ 0 for all χ ∈ (−∞,∞), (50) and unconditional

stability will hold regardless of whether R
∗1/2
j,h > 0.

4 Implementation

Since the schemes are linear and the auxiliary variables are scalar functions of time variable,
the resulting systems can be solved conveniently by superposition of a series of Stokes-type
equations. We illustrate the idea by presenting the algorithms in strong form.

4.1 Crank–Nicolson

To efficiently implement Algorithm (1), we proceed in the following manner. Assume

un+1
j = ûn+1

j + ξ j ŭ
n+1
j , pn+1

j = p̂n+1
j + ξ j p̆

n+1
j ,

Bn+1
j = B̂

n+1
j + ξ j B̆

n+1
j , λn+1

j = λ̂n+1
j + ξ j λ̆

n+1
j .

Then solving Algorithm (1) is equivalent to solving the following subproblems,

Algorithm 7 Given un−2
j , un−1

j , unj , B
n−2
j , Bn−1

j , Bn
j , p

n
j and λnj ,

Sub-problem 1: find ûn+1
j , B̂

n+1
j , p̂n+1

j and λ̂n+1
j satisfying

1

Δt
ûn+1
j − ν̄n

2
Δûn+1

j + 1

2
∇ p̂n+1

j = f n+1/2
j + 1

Δt
unj + ν′n

j Δũn+1/2
j

+ ν̄n

2
Δunj − 1

2
∇ pnj , (51a)

∇ · ûn+1
j = 0, (51b)

1

Δt
B̂
n+1
j − γ̄ n

2
ΔB̂

n+1
j + 1

2
∇λ̂n+1

j = ∇ × gn+1/2
j + 1

Δt
Bn

j + γ̄ n

2
ΔBn

j (51c)

+ γ ′n
j ΔB̃

n+1/2
j − 1

2
∇λnj ,

∇ · B̂n+1
j = 0, (51d)

Sub-problem 2: find ŭn+1
j , B̆

n+1
j , p̆n+1

j and λ̆n+1
j satisfying

1

Δt
ŭn+1
j − ν̄n

2
Δŭn+1

j + 1

2
∇ p̆n+1

j = s
(
B̃
n+1/2
j · ∇

)
B̃
n+1/2
j −

(
ũn+1/2
j · ∇

)
ũn+1/2
j ,

(52a)

∇ · ŭn+1
j = 0, (52b)
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1

Δt
B̆
n+1
j + 1

2
∇λ̆n+1

j − γ̄ n

2
ΔB̆

n+1
j =

(
B̃
n+1/2
j · ∇

)
ũn+1/2
j −

(
ũn+1/2
j · ∇

)
B̃
n+1/2
j ,

(52c)

∇ · B̆n+1
j = 0. (52d)

Remark 1 For inhomogeneous Dirichlet boundary conditions, let

ûn+1
j = g(x, tn+1), ŭn+1

j = 0, B̂
n+1
j = h(x, tn+1), B̆

n+1
j = 0 on ∂Ω.

We use the following approximations,
⎧
⎨

⎩

v̄n+1
j = v̂

n+1
j + v̆n+1

j , (53)

v̄
n+1/2
j = 1

2 (v̄
n+1
j + vn). (54)

This is a reasonable approximation to use since ξ j is a second order approximation to 1 and
is necessary for our equations to result in a linear update of ξ j . We then update ξ j as

ξ j = F (Rn
j ) + |S0|Δt

E(ūn+1
j , B̄

n+1
j ) + Δt

∫

Ω

(
ν|∇ ūn+1/2

j |2 + sγ |∇ B̄
n+1/2
j |2

)
dΩ + Δt(|S0| − S0)

,

(55)

where

S0 =
∫

Ω

f n+1/2
j · ūn+1/2

j dΩ +
∫

Ω

s(∇ × gn+1/2
j ) · B̄n+1/2

j dΩ +
∫

Γ

BS

(
ūn+1/2
j , B̄

n+1/2
j

)
dΓ .

(56)

Notice ξ j is updated via a linear equation and is very direct. Once we have ξ j we update

Rn+1
j = G

(
ξ j E(ūn+1

j , B̄
n+1
j )

)
(57)

and proceed to the next timestep iteration. Since ξ j is a ratio of the SAV to itself, we should
expect the result to be close to one.With our ensemble approach in (51)–(52), all J realizations
have the same coefficient matrix in each timestep so should be computationally efficient.

Theorem 8 The scalar ξ j in (55) and Rn+1
j in (57) are guaranteed to be positive at all

timesteps.

Proof By definition (5),F (R0
j ) > 0 so long as R0

j > 0. It’s explained in (3.1) that R0
j will be

positive. The energy function E(u, B) is always positive and
∫

Ω

(
ν|∇u|2 + sγ |∇B|2) dΩ ≥

0. Since |S0| − S0 ≥ 0, the initially computed ξ j is ensured positive. Then by induction, ξ j
at any timestep is guaranteed positive.

Once it’s ensured ξ j > 0, from the definition (6) we can guarantee Rn+1
j in (57) is positive.

This completes the proof. �

4.2 BDF2

For Algorithm (2), we develop an efficient implementation with the same approach. Note
solving Algorithm (2) is equivalent to the following,
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Algorithm 9 Given un−1
j , unj , B

n−1
j and Bn

j ,

Sub-problem 1: find ûn+1
j , B̂

n+1
j , p̂n+1

j and λ̂n+1
j satisfying

3

2Δt
ûn+1
j − ν̄nΔûn+1

j + ∇ p̂n+1
j = f n+1

j + 2

Δt
unj − 1

2Δt
un−1
j + ν′n

j Δũn+1
j , (58a)

∇ · ûn+1
j = 0, (58b)

3

2Δt
B̂
n+1
j − γ̄ nΔB̂

n+1
j + ∇λ̂n+1

j = ∇ × gn+1
j + 2

Δt
Bn

j − 1

2Δt
Bn−1

j + γ ′n
j ΔB̃

n+1
j ,

(58c)

∇ · B̂n+1
j = 0, (58d)

Sub-problem 2: find ŭn+1
j , B̆

n+1
j , p̆n+1

j and λ̆n+1
j satisfying

3

2Δt
ŭn+1
j − ν̄nΔŭn+1

j + ∇ p̆n+1
j = s

(
B̃
n+1
j · ∇

)
B̃
n+1
j −

(
ũn+1
j · ∇

)
ũn+1
j , (59a)

∇ · ûn+1
j = 0, (59b)

3

2Δt
B̆
n+1
j − γ̄ nΔB̆

n+1
j + ∇λ̆n+1

j =
(
B̃
n+1
j · ∇

)
ũn+1
j −

(
ũn+1
j · ∇

)
B̃
n+1
j , (59c)

∇ · B̂n+1
j = 0. (59d)

We use the following approximations,
⎧
⎨

⎩

v̄n+1
j = v̂

n+1
j + v̆n+1

j , (60)

v̄
n+3/2
j = 3

2 v̄
n+1
j − 1

2v
n , (61)

again noting ξ j is a second order approximation to 1. We update ξ j as

ξ j = F (R
∗n+1/2
j ) + |S0|Δt

E(ūn+3/2
j , B̄

n+3/2
j ) + Δt

∫

Ω

(
ν|∇ ūn+1

j |2 + sγ |∇ B̄
n+1
j |2

)
dΩ + Δt(|S0| − S0)

,

(62)

where

S0 =
∫

Ω

f n+1
j · ūn+1

j dΩ +
∫

Ω

s
(
∇ × gn+1

j

)
· B̄n+1

j dΩ +
∫

Γ

BS

(
ūn+1
j , B̄

n+1
j

)
dΓ .

Once we have ξ j we update Rn+1
j as follows:

⎧
⎨

⎩

R
∗n+3/2
j = G

(
ξ j E

(
ūn+3/2
j , B̄

n+3/2
j

))
, (63)

Rn+1
j = 2

3 R
∗n+3/2
j + 1

3 R
n
j . (64)

and proceed to the next timestep iteration.

Theorem 10 The scalar ξ j in (62) and Rn+1
j in (64) are guaranteed to be positive at all

timesteps if the approximation R
∗1/2
j > 0.
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Proof Again by definition (5), F (R
∗1/2
j ) > 0 so long as approximation R

∗1/2
j > 0. The

argument for positivity of ξ j proceeds identically to that made in the proof of Theorem (8).

Once it’s ensured ξ j > 0, again from definition (6) we can guarantee R
∗n+3/2
j in (63) is

positive. It’s also guaranteed R0
j is positive from the previously stated point that it would be

initialized as G (E(u0j (x), B
0
j (x))). Thus we conclude Rn+1

j in (64) remains positive. This
completes the proof. �

5 Numerical Tests

This section will present numerical results for Algorithms (3) and (4) to demonstrate the
expected convergence rates and the stability proven previously. We set F (χ) = χ2 and the
corresponding G (χ) = √

χ in every experiment. Throughout these tests we’ll use the finite
element triplet (P2 − P1 − P2), and the finite element software package FEniCS [42].

5.1 Convergence Test

To verify the expected convergence rates, we will use a variation of the test problem in [43].
Take the time interval 0 ≤ t ≤ 1 and domain Ω = [0, 1]2. Define the true solution (u, p, B)

as

⎧
⎪⎨

⎪⎩

uε = (
y5 + t2, x5 + t2

)
(1 + ε),

pε = 10(2x − 1)(2y − 1)(1 + t2)(1 + ε),

Bε = (
sin (π y) + t2, sin (πx) + t2

)
(1 + ε),

where ε is a given perturbation. For this problem we will consider two perturbations ε1 =
10−1 and ε2 = −10−1. The kinematic viscosity and magnetic resistivity are defined as
νε = 0.5 · (1+ ε) and γε = 0.5 · (1+ ε). The source terms and initial conditions correspond
with the exact solution for the given perturbation. For each algorithm we initialize u j , Bj ,
p j or λ j using the exact solution. The results are displayed in Tables1, 2, 3, 4, 5, 6, 7 and
8 both with regularization and without (α = αM = 0). Under this test, we indeed observe
second order convergence with and without regularization. In this particular test on a short
time interval, we also observe the algorithm with regularization achieves relatively similar
accuracy to the algorithm without.

5.2 Efficiency Test

In this experimentwe repeat the numericalmethods used abovewith the sameproblem, except
we set νε = 1.0·(1+ε), γε = 0.2·(1+ε) and analyze 11 perturbations εi = 10−1−0.009∗i ,
i = 0, . . . , 10. We compare the performance speed and accuracy of Algorithms (3) and (4)
with the corresponding nonensemble GPAV methods, where no ensemble mean is used and
the linear systems for each perturbation are solved in serial. To do this, we list the CPU
runtime in seconds and error norm of the average of all 11 velocities and magnetic fields,
labeled as ūn and B̄n , for each computation. As can be seen in the Tables9, 10, 11 and 12
below, the second order ensemble methods obtain the same accuracy as the nonensemble
trials, while requiring significantly less runtime (Tables13 and 14).
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Table 1 Crank–Nicolson error and convergence rates for the first ensemble member in uh and ∇uh

h Δt ‖u1 − u1,h‖∞,0rel Rate ‖∇u1 − ∇u1,h‖2,0rel Rate

1/10 1/8 9.191 e–4 – 4.985 e–3 –

1/20 1/16 2.088 e–4 2.138 1.399 e–3 1.834

1/40 1/32 4.810 e–5 2.118 3.679 e–4 1.927

1/80 1/64 1.154 e–5 2.060 9.422 e–5 1.965

1/160 1/128 2.889 e–6 1.998 2.384 e–5 1.983

Reg with α = αM = 0.5

1/10 1/8 3.912 e–4 – 4.741 e–3 –

1/20 1/16 6.032 e–5 2.697 1.355 e–3 1.807

1/40 1/32 9.532 e–6 2.662 3.579 e–4 1.920

1/80 1/64 2.208 e–6 2.110 9.179 e–5 1.963

Table 2 Crank–Nicolson error and convergence rates for the first ensemble member in Bh and ∇Bh

h Δt ‖B1 − B1,h‖∞,0rel Rate ‖∇B1 − ∇B1,h‖2,0rel Rate

1/10 1/8 2.566 e–4 – 3.013 e-3 –

1/20 1/16 5.0568 e–5 2.343 8.451 e–4 1.834

1/40 1/32 1.150 e–5 2.136 2.223 e–4 1.927

1/80 1/64 2.746 e–6 2.067 5.694 e–5 1.965

1/160 1/128 6.869 e–7 1.999 1.440 e–5 1.983

Reg with α = αM = 0.5

1/10 1/8 1.512 e–4 – 2.909 e–3 –

1/20 1/16 2.138 e–5 2.822 8.298 e–4 1.810

1/40 1/32 3.082 e–6 2.795 2.191 e–4 1.921

1/80 1/64 6.830 e–7 2.174 5.619 e–5 1.964

Table 3 Crank–Nicolson error and convergence rates for the second ensemble member in uh and ∇uh

h Δt ‖u2 − u2,h‖∞,0rel Rate ‖∇u2 − ∇u2,h‖2,0rel Rate

1/10 1/8 2.020 e–3 – 5.498 e–3 –

1/20 1/16 4.897 e–4 2.045 1.433 e–3 1.940

1/40 1/32 9.342 e–5 2.390 3.701 e–4 1.953

1/80 1/64 1.560 e–5 2.582 9.440 e–5 1.971

1/160 1/128 2.923 e–6 2.416 2.385 e–5 1.985

Reg with α = αM = 0.5

1/10 1/8 4.070 e–4 – 4.753 e–3 –

1/20 1/16 6.277 e–5 2.697 1.357 e–3 1.809

1/40 1/32 1.134 e–5 2.469 3.584 e–4 1.921

1/80 1/64 2.649 e–6 2.097 9.190 e–5 1.964
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Table 4 Crank–Nicolson error and convergence rates for the second ensemble member in Bh and ∇Bh

h Δt ‖B2 − B2,h‖∞,0rel Rate ‖∇B2 − ∇B2,h‖2,0rel Rate

1/10 1/8 7.455 e–4 – 3.376 e–3 –

1/20 1/16 1.666 e–4 2.162 8.700 e–4 1.956

1/40 1/32 3.097 e–5 2.427 2.239 e–4 1.958

1/80 1/64 5.113 e–6 2.598 5.706 e–5 1.973

1/160 1/128 7.772 e–7 2.718 1.442 e–5 1.985

Reg with α = αM = 0.5

1/10 1/8 1.567 e–4 – 2.915 e–3 –

1/20 1/16 2.222 e–5 2.818 8.308 e–4 1.811

1/40 1/32 3.664 e–6 2.600 2.193 e–4 1.922

1/80 1/64 8.188 e–7 2.162 5.622 e–5 1.964

Table 5 BDF2 error and convergence rates for the first ensemble member in uh and ∇uh

h Δt ‖u1 − u1,h‖∞,0rel Rate ‖∇u1 − ∇u1,h‖2,0rel Rate

1/10 1/8 7.413 e–4 – 5.804 e–3 –

1/20 1/16 1.891 e–4 1.971 1.495 e–3 1.957

1/40 1/32 4.790 e–5 1.981 3.793 e–4 1.978

1/80 1/64 1.183 e–5 2.018 9.557 e–5 1.989

1/160 1/128 2.944 e–6 2.006 2.399 e–5 1.994

Reg with α = αM = 0.5

1/10 1/8 4.528 e–4 – 5.601 e–3 –

1/20 1/16 6.215 e–5 2.865 1.453 e–3 1.947

1/40 1/32 7.946 e–6 2.968 3.694 e–4 1.976

1/80 1/64 1.339 e–6 2.570 9.310 e–5 1.988

Table 6 BDF2 error and convergence rates for the first ensemble member in Bh and ∇Bh

h Δt ‖B1 − B1,h‖∞,0rel Rate ‖∇B1 − ∇B1,h‖2,0rel Rate

1/10 1/8 1.868 e–4 – 3.502 e–3 –

1/20 1/16 3.792 e–5 2.301 9.005 e–4 1.960

1/40 1/32 9.133 e–6 2.054 2.285 e–4 1.979

1/80 1/64 2.300 e–6 1.990 5.756 e–5 1.989

1/160 1/128 5.816 e–7 1.983 1.445 e–5 1.994

Reg with α = αM = 0.5

1/10 1/8 1.649 e–4 – 3.438 e–3 –

1/20 1/16 2.185 e–5 2.916 8.904 e–4 1.949

1/40 1/32 2.772 e–6 2.978 2.263 e–4 1.976

1/80 1/64 4.182 e–7 2.729 5.705 e–5 1.988
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Table 7 BDF2 error and convergence rates for the second ensemble member in uh and ∇uh

h Δt ‖u2 − u2,h‖∞,0rel Rate ‖∇u2 − ∇u2,h‖2,0rel Rate

1/10 1/8 7.762 e–4 – 5.806 e–3 –

1/20 1/16 1.880 e–4 2.045 1.495 e–3 1.957

1/40 1/32 4.699 e–5 2.001 3.795 e–4 1.978

1/80 1/64 1.186 e–5 1.987 9.561 e–5 1.989

1/160 1/128 2.964 e–6 2.001 2.400 e–5 1.994

Reg with α = αM = 0.5

1/10 1/8 4.531 e–4 – 5.603 e–3 –

1/20 1/16 6.218 e–5 2.865 1.453 e–3 1.947

1/40 1/32 7.964 e–6 2.965 3.695 e–4 1.976

1/80 1/64 1.547 e–6 2.364 9.314 e–5 1.988

Table 8 BDF2 error and convergence rates for the second ensemble member in Bh and ∇Bh

h Δt ‖B2 − B2,h‖∞,0rel Rate ‖∇B2 − ∇B2,h‖2,0rel Rate

1/10 1/8 1.918 e–4 – 3.505 e–3 –

1/20 1/16 3.930 e–5 2.287 9.013 e–4 1.960

1/40 1/32 9.605 e–6 2.033 2.287 e–4 1.979

1/80 1/64 2.425 e–6 1.986 5.761 e–5 1.989

1/160 1/128 6.129 e–7 1.984 1.446 e–5 1.994

Reg with α = αM = 0.5

1/10 1/8 1.649 e–3 – 3.439 e–3 –

1/20 1/16 2.185 e–4 2.916 8.906 e–4 1.949

1/40 1/32 2.772 e–4 2.978 2.264 e–4 1.976

1/80 1/64 4.880 e–5 2.506 5.706 e–5 1.988

Table 9 Error and CPU time for computing ūh and B̄h with Algorithm 3

h Δt ‖ū − ūen,h‖∞,0rel ‖B̄ − B̄en,h‖∞,0rel CPU time (s)

1/5 1/40 3.099 e–3 1.220 e–3 2.117 e+0

1/10 1/80 4.782 e–4 1.716 e–4 7.622 e+0

1/20 1/160 6.294 e–5 2.218 e–5 3.911 e+1

1/40 1/320 7.968 e–6 2.802 e–6 2.905 e+2

1/80 1/640 1.005 e–6 4.450 e–7 2.181 e+3
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Table 10 Error and CPU time for computing ūh and B̄h with nonensemble CN algorithm

h Δt ‖ū − ūen,h‖∞,0rel ‖B̄ − B̄en,h‖∞,0rel CPU time (s)

1/10 1/80 4.783 e–4 1.718 e–4 1.694 e+1

1/20 1/160 6.294 e–5 2.219 e–5 1.144 e+2

1/40 1/320 7.968 e–6 2.802 e–6 8.362 e+2

1/80 1/640 1.004 e–6 7.730 e–7 6.895 e+3

Table 11 Error and CPU time for computing ūh and B̄h with Algorithm 4

h Δt ‖ū − ūen,h‖∞,0rel ‖B̄ − B̄en,h‖∞,0rel CPU time (s)

1/5 1/40 3.609 e–3 1.331 e–3 2.768 e+0

1/10 1/80 4.961 e–4 1.750 e–4 8.432 e+0

1/20 1/160 6.348 e–5 2.219 e–5 3.844 e+1

1/40 1/320 7.982 e–6 2.785 e–6 2.760 e+2

1/80 1/640 1.006 e–6 3.546 e–7 2.267 e+3

Table 12 Error and CPU time for computing ūh and B̄h with nonensemble BDF2 algorith

h Δt ‖ū − ūen,h‖∞,0rel ‖B̄ − B̄en,h‖∞,0rel CPU time (s)

1/10 1/80 4.962 e–4 1.750 e–4 1.674 e+1

1/20 1/160 6.348 e–5 2.219 e–5 1.152 e+2

1/40 1/320 7.982 e–6 2.785 e–6 8.233 e+2

1/80 1/640 1.006 e–6 3.549 e–7 6.720 e+3

5.3 Stability

Here we analyze the stability of the second order ensemble methods. For the test problem,
we will exclude external energy and body forces so that in observation if the method is stable,
the system energy should decay to zero as time passes. We also use the initial conditions,

⎧
⎪⎨

⎪⎩

u0ε = (x2(x − 1)2y(y − 1)(2y − 1),−y2(y − 1)2x(x − 1)(2x − 1))(1 + ε),

p0ε = 0,

B0
ε = (sin (πx) cos (π y),− sin (π y) cos (πx))(1 + ε).

We’ll consider an ensemble of two perturbations, ε = 10−1 and ε = −10−1. We fix the
coupling term s = 1 and choose two different sets of viscosity and magnetic viscosity to test,
ν = γ = 0.1 and ν = γ = 0.02. The mesh discretization is fixed at h = 1/50 and several
time steps are employed, with final time T = 5.
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(a) Decay of total system energy to T = 5 for Algorithm
(3) with ν = γ = 0.1.

(b) Decay of total system energy to T = 5 for Algorithm
(3) with ν = γ = 0.02.

(c) Decay of total system energy to T = 5 for Algorithm
(4) with ν = γ = 0.1.

(d) Decay of total system energy to T = 5 for Algorithm
(4) with ν = γ = 0.02.

5.4 Chamber Flow

In this numerical test, we consider a channel flow in a rectangular domain of length 2.2 units
and height 0.41, with a cylinder of radius 0.05 centered at (0.2, 0.2), in the presence of a
magnetic field. On the walls and around the cylinder, a no-slip boundary condition is applied
for velocity while magnetic field is kept constant as B =< 0, 0.1 >T . We set the inflow
and outflow conditions equal, choosing u =< 6y(0.41 − y)/0.412 sin (π t/16.0), 0 >T and
B =< 0, 0.1 >T . The coupling term is set to s = 0.01 and for all realizations we fix γ = 0.1
then consider two cases, ν = 1/50 and ν = 1/1000.

We’ll use an ensemble of two different solutions with the initial and boundary conditions
perturbed by multiplicative factors of (1± ε). We simulate the flow with Algorithms (3) and
(4) till final time T = 8.8 with a mesh discretization fixed at h = 1/100.We set α = αM = 0
such that these tests are performed without the regularization terms involved. In order to
maintain accurate results up unto T = 8.8, we find it necessary to choose a time step of
roughly Δt = 1/1000 when ν = 1/50 and Δt = 1/2000 when ν = 1/1000. The solutions
under each perturbation for velocity are shown in Figs. 1, 2, 3 and 4 and for magnetic field
in Figs. 7, 8, 9 and 10. We also provide results for no perturbation, that is, ε = 0. This is for
comparison as we expect the ensemble solutions to converge to the unperturbed results as
ε → 0 (Figs. 5 and 6).

123



41 Page 22 of 29 Journal of Scientific Computing (2023) 94 :41

Fig. 1 Ensemble solutions for velocity at time T = 8.8 for Algorithm (3) with ν = 0.02, γ = 0.1 and
Δt = 0.001

Fig. 2 Ensemble solutions for velocity at time T = 8.8 for Algorithm (3) with ν = 0.001, γ = 0.1 and
Δt = 0.0005

Fig. 3 Ensemble solutions for velocity at time T = 8.8 for Algorithm (4) with ν = 0.02, γ = 0.1 and
Δt = 0.001
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Fig. 4 Ensemble solutions for velocity at time T = 8.8 for Algorithm (4) with ν = 0.001, γ = 0.1 and
Δt = 0.0005

Fig. 5 Algorithm (3) solution when ε = 0 for velocity at time T = 8.8 with ν = 0.001, γ = 0.1 and
Δt = 0.001

Fig. 6 Algorithm (4) solution when ε = 0 for velocity at time T = 8.8 with ν = 0.001, γ = 0.1 and
Δt = 0.001

Fig. 7 Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (3) with ν = 0.02, γ = 0.1 and
Δt = 0.001
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Fig. 8 Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (3) with ν = 0.001, γ = 0.1 and
Δt = 0.0005

Fig. 9 Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (4) with ν = 0.02, γ = 0.1 and
Δt = 0.001

5.5 Chamber Flowwith Regularization

Here we present the same chamber flow problem implementing Algorithms (3) and (4) with
nonzero regularization coefficients. We choose α = ν and αM = γ in each test. We’re able
to achieve similar accuracy to the previous section with coarser time step. The following
numerical results are achieved (Figs. 11, 12, 13, 14 15, and 16):

5.6 Accuracy Comparison

In this sectionwe present a comparison test between the errors of the schemewith andwithout
the regularization terms introduced in Sect. 5.5. We use the same test as in Sect. 5.1, except
this time we set ν = 1.0 and γ = 0.2. We choose two perturbations of ε = 0.1 and ε = 0.2,
with final time T = 2.5. This time we use only the L2 error norm of the result at final time T .
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Fig. 10 Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (4) with ν = 0.001, γ = 0.1
and Δt = 0.0005

Fig. 11 Algorithm (3) solution when ε = 0 for magnetic field at time T = 8.8 with ν = 0.001, γ = 0.1 and
Δt = 0.001

Fig. 12 Algorithm (4) solution when ε = 0 for magnetic field at time T = 8.8 with ν = 0.001, γ = 0.1 and
Δt = 0.001

Fig. 13 Ensemble solutions for velocity at time T = 8.8 for Algorithm (3) with regularization and ν = 0.001,
γ = 0.1 and Δt = 0.001

123



41 Page 26 of 29 Journal of Scientific Computing (2023) 94 :41

Fig. 14 Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (3) with regularization and
ν = 0.001, γ = 0.1 and Δt = 0.001

Fig. 15 Ensemble solutions for velocity at time T = 8.8 for Algorithm (4) with regularization and ν = 0.001,
γ = 0.1 and Δt = 0.001

Fig. 16 Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (4) with regularization and
ν = 0.001, γ = 0.1 and Δt = 0.001
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Table 13 Error for the first ensemble member in uh

h Δt SAV-CN SAV-BDF2 Stab-SAV-CN Stab-SAV-BDF2

1/100 1/8 1.398 e–2 3.789 e–2 6.485 e–6 1.823 e–5

1/100 1/16 8.242 e–2 6.229 e–2 3.467 e–6 4.143 e–6

1/100 1/32 3.369 e–2 3.664 e–2 1.907 e–6 9.296 e–7

1/100 1/64 2.230 e–2 9.960 e–3 7.120 e–7 1.902 e–7

1/100 1/128 4.517 e–2 2.383 e–3 1.093 e–6 5.102 e–8

Table 14 Error for the first ensemble member in Bh

h Δt SAV-CN SAV-BDF2 Stab-SAV-CN Stab-SAV-BDF2

1/100 1/8 5.219 e–2 1.312 e–1 3.074 e–5 6.940 e–5

1/100 1/16 2.644 e–1 1.962 e–1 1.647 e–5 1.592 e–5

1/100 1/32 7.231 e–2 7.033 e–2 9.188 e–6 3.429 e–6

1/100 1/64 6.947 e–2 2.400 e–2 3.318 e–6 6.148 e–7

1/100 1/128 1.061 e–1 8.650 e–3 5.619 e–6 1.390 e–7

For the stabilization coefficients α and αM , we set them equal to the viscosity and magnetic
resistivity correspondingly.
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