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Abstract The ideal gas heat capacity, Cp, of potassium atoms is calculated to high
temperatures using statistical mechanics. Since there are a large number of electronic
energy levels in the partition function (Boltzmann sum) below the first ionization
potential, the partition function and Cp will become very large as the temperature
increases unless the number of energy levels contributing to the partition function is
constrained. Two primary categories of arguments are used to do this. First, at high
temperatures, the increased size of the atoms constrains the sum (Bethe method).
Second, an argument based on the existence of interacting charged species at higher
temperatures is used to constrain the sum (ionization potential lowering method).
When potassium atoms are assumed to constitute a real gas that obeys the virial
equation of state, the lowest non-ideal contribution to Cp depends on the second
derivative of the second virial coefficient, B(T ), which depends on the interaction
potential energy curves between two potassium atoms. When two ground-state (2S)
atoms interact, they can follow either of the two potential energy curves. When a
2S atom interacts with an atom in the first electronically excited (2P) state, they
can follow any of the eight potential energy curves. The values of B(T ) for the ten
states are determined, then averaged, and used to calculate the nonideal contribution
to Cp.

Keywords Potassium atoms · Heat capacity · Second virial coefficient

Selected Papers of the 19th Symposium on Thermophysical Properties.

B Louis Biolsi
louis@biolsi.com

1 Chemistry Department, Missouri University of Science and Technology, Rolla, MO 65401, USA

2 Mead Technologies, Rolla, MO 65401, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10765-016-2047-z&domain=pdf


42 Page 2 of 13 Int J Thermophys (2016) 37:42

1 Introduction

The normal boiling point of potassium metal is 1047 K [1] and its vapor pressure is
0.704 bar at 1000 K [1]. The first ionization potential, IP, of potassium vapor is 4.3407
eV [2], corresponding to thermal energy, kT, of 50 371 K. Most atoms are not ionized
even at high temperatures. There are a substantial number of potassium atoms in the
gas phase over the range of temperatures from 1000 K to 50 000 K.

The heat capacity, C0
p, of potassium atoms behaving as an ideal gas is given as a

function of temperature to 6000 K in the NIST-JANAF Thermochemical Tables [3].
One of the purposes of this paper is to extend the calculations to higher temperatures.
However, as T increases and more excited electronic states contribute to the heat
capacity and other thermodynamic properties, the sum over excited states needs to be
constrained or the values of C0

p become much too large.
In addition, assuming that potassium atoms obey the virial equation of state, the

nonideal gas correction to C0
p is found through the term depending on the second virial

coefficient, B(T ).

2 Ideal Gas Heat Capacity

The heat capacity of a mole of atoms is given by [4]

C0
p = 20.786 J·mol−1·K−1 + C0

p,el (1)

where C0
p,el is the electronic contribution to the heat capacity, given by

C0
p,el = RT

qel

[
T 2 ∂2qel

∂T 2 − T

qel

(
∂qel

∂T

)2

+ 2
∂qel

∂T

]
(2)

and the electronic partition function, qel, is given by

qel =
∑

i
gie

−Ei /kT (3)

where the sum over i is the sum over the electronic states of a potassium atom.
The ground state of a potassium atom is 1s22s22p63s23p64s1. The Atomic Spectra

Database (ASD) tables [2] list 187 other known electronic states of potassium atoms
with energies less than that of the first IP, corresponding to the excitation of the 4s
electron only. Results are given to n = 46, where n is the value of the principle
quantum number (labeling the energy level). However, this list of states is incomplete.
For potassium, the degeneracy, gn , of an energy level is [5] given by

gn = 2n2 (4)

For instance, for n = 46, gn = 4232. However, the ASD table [2] lists the energies of
only the 46s and 46d states with a total degeneracy of 12. Thus, the energies of 4220
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Table 1 Electronic contribution
to the heat capacity,
Co
p,el(J·mol−1·K−1), of

potassium atoms as a function of
temperature

C0
p,el = 0 for T ≤ 1000 K

T (K ) JANAF “FILL” Bethe IP-kT

1500 0.015 0.015 0.015 0.015

2000 0.189 0.192 0.189 0.189

3000 2.150 6.315 2.182 2.149

4000 7.559 125.059 8.890 7.481

5000 15.533 195.469 28.941 14.749

6000 24.192 59.460 55.906 22.985

7000 16.419 67.878 19.787

8000 5.636 60.838 20.711

9000 2.367 42.116 19.933

10 000 1.162 27.735 18.199

20 000 0.037 1.291 4.598

30 000 0.009 0.276 1.708

40 000 0.004 0.100 0.857

50 000 0.002 0.055 0.509

states are missing. There is a similar problem for almost all of the other energy levels.
In fact, energy listings are complete only for the n = 4 and n = 5 energy levels [2].

The missing states should be accounted for in the calculation of C0
p. This is done

by using the “FILL” procedure, i.e., the missing states are assumed to have the energy
of the highest observed state for that value of n [5]. This procedure has been used in
a number of high-temperature monatomic gas calculations; see, e.g., [4–8].

It seems as if this procedure is subject to considerable error. For n = 46, it requires
estimating the energy of 4220 of the 4232 states. However, the 46s state has an energy
of 4.333 577 12 eV and the 46d state has an energy of 4.334 154 94 eV, showing a
very small difference [2]. Other states in the n = 46 energy level should have nearly
the same energies, reducing the error made by approximating the energies. At lower
values of n, the differences in the energies of the states, and thus the error introduced
by using the “FILL” procedure, will be greater.

When the “FILL” procedure is used to calculate qel and C0
p,el as a function of

T , the results shown in the third column of Table 1 are obtained. These appear to
be unreasonable at intermediate temperatures, i.e., it is very unlikely that C0

p,el is

195 J·mol−1·K−1 at 5000 K. The results in the second column are from the NIST-
JANAF Thermochemical Tables [3].

3 Constraining the Sum over Energy Levels

It is to be expected that when the number of energy levels contributing to qel becomes
large, then C0

p,el will become large. In fact, in principle, as for the hydrogen atom,
there are an infinite number of bound state electronic energy levels below the ionization
limit [5].
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The sum over n needs to be constrained so that C0
p,el is constrained. One method

for doing this was originally suggested by Bethe [9]. As n increases, the size of the
atom increases, and it can be shown, e.g., [4], that the maximum value of n, called
nmax, that contributes to qel, is given by

nmax = 2.4561T 1/6 (5)

at 1 bar pressure. This approach has been used in a number of calculations; see, e.g.,
[4,5,8,10–14]. The values of nmax as a function of T are given in the second column
of Table 2, and the results for C0

p,el are given in the fourth column of Table 1.
The second method commonly used for constraining the sum over n is to use the fact

that, as the energy associated with energy level n becomes close to the IP, some atoms
will be ionized, and spectroscopic studies show that this has the effect of lowering the
IP of the remaining neutral atoms [5,10,15–17]. This is due to the stabilization of an
ion that occurs since it is surrounded by other charged particles that align themselves
so that charged particles with the opposite sign dominate among nearest neighbors,
providing a net attractive interaction. This is the basis of the Debye–Huckel theory.

Perhaps the easiest way to illustrate this is to use the arguments of Myers, et.al.
[18]. For the equilibrium between atom A and its singly charged ion, i.e.,

A = A+ + e

where the symbol e represents an electron, they show that the equilibrium constant,
Kp, is given by [18]

Kp =

(
Q+
γ

3/2
+

) (
Qe

γ
3/2
e

)
QA

e−I P/RT (6)

where the Debye–Huckel theory has been used for the charged species, the Q’s are
the molecular partition functions, and the γ ’s are the activity coefficients. Since

0 ≤ γ ≤ 1

the value of Kp is larger than it would be if there was no ionization, i.e., the ionization
in effect lowers IP.

If the Landau length, i.e., the distance of the closest approach during an electron–
electron collision [10], is taken to be the appropriate distance between a charged
particle and its surrounding ionic atmosphere [19], then it can be shown that nmax can
be obtained from [10]

Enmax = IP − kT (7)

This approach, called the “IP – kT” method here, has been used in a number of
calculations; see, e.g., [4–8,18,20,21]. The values of nmax as a function of T for
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Table 2 Maximum value of n,
nmax, contributing to qel as a
function of temperature

T (K ) Bethe IP-kT

1500 8 10

2000 8 8

3000 9 7

5000 10 5

10 000 11 4

15 000 12 4

20 000 12 4

30 000 13 4

50 000 14 4

potassium atoms are given in the third column of Table 2, and the results for C0
p,el are

given in the fifth column of Table 1.

4 Potassium Atoms as a Real Gas

Assume that potassium atoms obey the virial equation of state, i.e., [22]

PV

RT
= 1 + B (T )

RT
P + C (T ) − B(T )2

(RT )2 P2 + · · · (8)

where B(T ) is the second virial coefficient, and C(T ) is the third virial coefficient.
The virial equation has been written as a power series in pressure, since this form is
convenient for calculating Cp. For a gas obeying the virial equation of state, Cp is
given by [22,23]

Cp = C0
p (IG) − T

d2B (T )

dT 2 P − D (T ) P2 + · · · (9)

where C0
p(IG) is the ideal gas result, and

D (T ) = 1

RT 2

(
C − B2

)
+ 1

2R

d2C

dT 2 − 1

R

(
dB

dT

)2

− B

R

d2B

dT 2 − 1

RT

dC

dT
+ 2B

RT

dB

dT
.

The third term on the right side in Eq. 9 involves C(T ). Now B(T ) depends on two-
body interactions between potassium atoms, but C(T ) depends on the interactions
among three potassium atoms. There are rigorous results for many two-body interac-
tions between potassium atoms but not for three-body interactions. Thus, this work
considers only the contribution from the second term on the right side in Eq. 9.

Classically, Bcl(T ) is given by [24]

Bcl (T ) = 2� ∫∞
0

(
1 − e−V (R)/kT

)
R2dR (10)
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where “cl” denotes the classical contribution to B(T ), R is the distance between two
interacting potassium atoms, and V (R) is the interaction potential energy. Semiclas-
sical corrections to Bcl(T ) are obtained by expanding in powers of Planck’s constant
[24]. The resulting expressions are lengthy and given elsewhere [24,25].

5 Electronic States and B(T)

The potential V (R) depends on the electronic state associated with the atom–atom
interaction, i.e., on the electronic state of K2. When two ground-state (2S) atoms
interact, they can interact along two potential energy curves, the ground X1�+

g (1)

and the excited 3�+
u (1) states. When a ground-state atom interacts with an atom in

the first excited (2P) electronic state, they can interact along eight potential energy
curves: the 1�+

g,u, 3�+
g,u, 1�g,u, and 3�g,u gerade/ungerade pairs of states [26]. The

percentages of potassium atoms in the lowest 2P excited state are 8×10−9 % at 1000 K,
2.3 % at 5000 K, and 13.7 % at 10 000 K. Thus, interactions between two 2P atoms
play a small role at 5000 K and have become somewhat important above 10 000 K.
Such interactions have not been included in these calculations, since accurate potential
energy curves for these interactions are not available. As will be seen, noinideal effects
essentially vanish above 10 000 K.

Nine of the ten electronic states are bound. Only the 3�+
u (2) state is repulsive [27].

The symbols (1) and (2) are used to distinguish between states with the same term
symbol.

The experimental [28] electronic dissociation energy, De; the experimental [29]
spectroscopic constants ωe; the fundamental vibrational frequency, ωeχe; the anhar-
monicity constant, Be; the rotational constant and αe; the vibration–rotation coupling
constant; and the experimental [30] value of Re; the equilibrium internuclear separa-
tion are known for the X1�+

g (1) state. These same six constants are also known for

the 3�+
u (1) state [31]; the 1�u state [30]; the 1�g state [32]; the 1�+

u state [33]; and
the 3�u state [33] of K2. These constants can be used to completely determine the
Hulburt–Hirschfelder (HH) potential [34,35], which may be the most accurate gen-
eral purpose potential for representing bound state atom–atom interactions. It usually
finds excellent agreement with “experimental” Rydberg–Klein–Rees (RKR) potential
energy curves [36–38] for many atom–atom and atom–ion interactions; see, e.g., [39–
43]. Certainly, it is the easiest potential to use to accurately represent such interactions.

The HH potential, V ∗
HH, has the reduced form: [34,35]

V ∗
HH

(
R∗) = e−2Ax − 2e−Ax + Bx3 (1 + Gx) e−2Ax (11)

where

x = R∗

d
− 1 V ∗

HH = V

De
R∗ = R

σ
d = Re

σ

c = 1 + a1

√
De

a0
b = 2 −

7
12 − Dea2/a0

c
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a0 = ω2
e

4Be
a1 = −1 − αeωe

6B2
e

a2 = 5

4
a2

1 − 2ωeχe

3Be

A = ωe

2
√
BeDe

B = cA3 G = bA

and σ is the effective rigid sphere diameter, i.e., the value of R at which V goes to
zero. The HH potential has been used for the six states mentioned above.

For the 1�+
g (2), 3�+

g , and 3�g states, experimental values of the spectroscopic
constants are not available. However, theoretical values for De, Re, and ωe are available
[44]. These values are used to determine the constants A and d in the HH potential. The
values of the constants B and G are taken to be zero, in which case the HH potential
becomes the Morse potential which is not nearly as accurate as the HH potential.

The theoretical potential energy curve for the repulsive 3�+
u (2) state [27] has been

fit with the exponential repulsive potential, VER(R), with the form

VER (R) = Ae−BR (12)

where the constants A and B are not the same as for the HH potential.
Calculations of B(T ), B ′(T ), and B ′′(T ) have been carried out for each of the

ten states discussed above; the classical and first three semiclassical contributions
have been included. The results must be degeneracy averaged [45]. The degeneracy
averaged second derivative of the second virial coefficient is given by

(
d2B(T )

dT 2

)
DA

=
∑

j

(
d2

Bj (T )

dT 2

)
g j (K2) e−E j (K2)/kT

(∑
i gi (K )e−Ei (K )/kT

)2 (13)

where j labels the electronic states of K2. This result is used to calculate the noinideal
contribution to Cp, called Cp,NI [23]:

Cp,NI = −T P

(
d2B (T )

dT 2

)
DA

(14)

Results for Cp,NI are given in Table 3.

6 Discussion

Again, it is necessary to constrain the sum over states in the partition function so that
the electronic contribution to the ideal gas heat capacity does not become unacceptably
large as shown in the third column of Table 1. Both the Bethe and the IP–kT methods
constrain the sum over states and reduce C0

p,el. The IP–kT method reduces the value

of C0
p,el more than the Bethe method. The same result was found for sodium atoms

[4]. This is to be expected since, as shown in Table 2, the number of energy levels, n,
contributing to the sum in the electronic partition function becomes less for the IP–kT
method as T increases while n becomes larger for the Bethe method as T increases.
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Table 3 Non-ideal contribution
to the heat capacity of potassium
atoms, Cp,NI (J·mol−1·K−1)

T (K ) Cp,NI T (K ) Cp,NI

1000 43.552 8000 −0.280

1500 2.101 9000 −0.219

2000 0.394 10 000 −0.165

2500 0.115 15 000 −0.042

3000 0.004 20 000 −0.016

3500 −0.081 25 000 −0.009

4000 −0.160 30 000 −0.007

4500 −0.231 35 000 −0.006

5000 −0.288 40 000 −0.006

6000 −0.345 45 000 −0.007

7000 −0.332 50 000 −0.007

Intuitively, it is reasonable to expect that n would increase as T increases but, as
shown in the fourth column of Table 1, the values of C0

p,el are still quite large, perhaps
unreasonably so, when the Bethe method is used but much smaller when the IP–kT
method is used. The same trend was found for sodium [4] and unpublished work for
oxygen atoms by these authors shows much higher results for C0

p,el using the Bethe
method than using the IP–kT method.

It also seems reasonable to assume that the Bethe method is superior for calculating
C0

p,el for neutral atoms at high temperatures than the IP–kT method since the latter
method depends on arguments involving ionization. In fact, in his monograph in 1978
[5], Downey claimed that the Bethe procedure would be used for neutral atoms in
future updates of the JANAF Thermochemical Tables; this claim is underlined in his
monograph. However, as is clear from Table 1 here and Table 3 in Ref. [4], the IP–kT
procedure was used in the 1998 edition of the JANAF Thermochemical Tables [3].
These authors assume that NIST researchers found that the results for C0

p,el for many
atoms were larger than acceptable when the Bethe method was used, and we suggest
that the results in the fifth column of Table 1 are the most satisfactory results for C0

p,el
for potassium atoms at high temperatures.

One might be concerned about the “bump” in the IP–kT values in Table 1 at 7000 K,
8000 K, and 9000 K. This is a consequence of the fact that nmax is discrete; for example,
if nmax is found to be 6.94, then the “rule” is [5] to round it off to 6. Downey [5] warns
about this effect and suggests that some smoothing procedure is required before the
results are used.

No matter which procedure is used to calculate C0
p,el for potassium atoms, the ASD

values [2] for the electronic energy states, combined with the “FILL” procedure, are
sufficient for calculations to 50 000 K since the value of nmax is never larger than the
value of n for which ASD information is available [2]. This may not be true for all
atoms. In such cases, an approximation for the energy of the required unknown states
can be obtained by assuming that the states are hydrogen-like and including them in
the summation or by using the Rydberg or Rydberg–Ritz formulas [46].
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Table 4 Comparison of the HH
and RKR [30] potentials for the
ground X1�+

g state of K2 for
R < Re

Re = 3.92433 Å [30]
De = 4450.674 cm−1[28]
a The symbol v represents the
vibrational quantum number
b The symbol H/R represents
the ratio of the HH potential
energy to the RKR potential
energy

va R(Å) H/Rb va R(Å) H/Rb

60 2.902 1.04 12 3.3429 1.01

55 2.925 1.03 11 3.3631 1.01

50 2.950 1.03 10 3.3845 1.01

45 2.978 1.03 9 3.4072 1.01

40 3.012 1.03 8 3.4316 1.01

35 3.051 1.02 7 3.4578 1.00

30 3.096 1.02 6 3.4864 1.00

25 3.149 1.02 5 3.5178 1.00

20 3.212 1.01 4 3.5529 1.00

17 3.2560 1.01 3 3.5930 1.00

16 3.2718 1.01 2 3.6406 1.00

15 3.2884 1.01 1 3.7009 1.00

14 3.3057 1.01 0 3.7922 1.00

13 3.3238 1.01

Consider the noinideal contribution,Cp,NI, to the heat capacity for potassium atoms.
The results at 1000 K (Table 3) are clearly much too large to be correct, and the results
at 1500 K may also be too large. A similarly inappropriately large value for Cp,NI at
1000 K was found for sodium atoms [4]. It is likely that the primary reason for this
is that the semiclassical expansion fails at lower temperatures, and therefore, a full
quantum mechanical calculation of B(T ), involving the evaluation of phase shifts for
the various potentials [24], is required.

At 1000 K, the ground X1�+
g (1) of K2 contributes 99.92 % to B′′

DA(T ), i.e., it almost
completely determinesCp,NI. A comparison of the HH and RKR [30] potential energy
curves is shown in Table 4 and 5. Agreement is very good with an average error of 0.93
%. References [29,31] give RKR results at higher values of the vibrational quantum
number, v, than are given in Ref. [30]. Agreement between the HH and RKR results
in these cases is as good, or better, than the agreement shown in Tables 4 and 5.
The very good agreement indicates that Cp,NI has been calculated quite accurately at
this temperature, using the semiclassical approach, giving credence to the assumption
that the unacceptably large result for Cp,NI is due to the failure of the semiclassical
approach.

At 1000 K and temperatures up to 3000 K, Table 3 shows that Cp,NI is positive, but
it is negative at 3500 K and higher temperatures. At 1000 K, B ′′(T ) is negative for
all states except the repulsive 3�+

u (2) states which has negligible effect on B ′′
DA(T ).

Thus, B ′′
DA(T ) is negative, and Cp,NI is positive.

However, at higher temperatures, excited states no longer have a negligible
effect on B ′′

DA(T ) and B ′′(T ) becomes positive for several states. For instance,
at 5000 K, the ground X1�+

g (1) state contributes only 32.93 % to B ′′
DA(T )

while the 3�u contributes 28.79 %, and the repulsive 3�+
u (2) state contributes

22.06 %. Four other states contribute more than 1 %. The effect of this is to
make B ′′

DA(T ) positive and Cp,NI negative. RKR results are available [33] for
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Table 5 Comparison of the HH
and RKR [30] potentials for the
ground X1�+

g state of K2 for
R > Re

Re = 3.92433 Å [30]
De = 4450.674 cm−1[28]
a The symbol v represent the
vibrational quantum number
b The symbol H/R represents
the ratio of the HH potential
energy to the RKR potential
energy

va R(Å) H/Rb va R(Å) H/Rb

0 4.0662 1.00 14 4.8500 0.99

1 4.1771 1.00 15 4.8908 0.99

2 4.2572 1.00 16 4.9312 0.99

3 4.3248 1.00 17 4.9712 0.99

4 4.3852 1.00 20 5.090 0.99

5 4.4408 1.00 25 5.287 0.99

6 4.4930 1.00 30 5.488 0.99

7 4.5426 1.00 35 5.699 0.99

8 4.5901 1.00 40 5.924 0.98

9 4.6360 1.00 45 6.173 0.99

10 4.6807 1.00 50 6.455 0.99

11 4.7242 0.99 55 6.787 0.99

12 4.7668 0.99 60 7.197 0.99

13 4.8087 0.99

Table 6 Comparison of the HH
and RKR [33] potentials for the
3�u state of K2 for R < Re

Re = 3.875 Å [33]
De = 7524.4 cm−1[33]
a The symbol v represents the
vibrational quantum number
b The symbol H/R represents
the ratio of the HH potential
energy to the RKR potential
energy

va R(Å) H/Rb va R(Å) H/Rb

24 3.0944 1.02 11 3.3052 1.01

23 3.1074 1.02 10 3.3271 1.01

22 3.1208 1.02 9 3.3504 1.01

21 3.1346 1.01 8 3.3753 1.00

20 3.1488 1.01 7 3.4021 1.00

19 3.1635 1.01 6 3.4313 1.00

18 3.1788 1.01 5 3.4633 1.00

17 3.1946 1.01 4 3.4990 1.00

16 3.2111 1.01 3 3.5398 1.00

15 3.2282 1.01 2 3.5881 1.00

14 3.2461 1.01 1 3.6492 1.00

13 3.2649 1.01 0 3.7416 1.00

12 3.2845 1.01

the 3�u state, and comparisons with the HH results are shown in Tables 6
and 7. The agreement is excellent. Thus, two states that contribute 61.72 %
to B ′′

DA(T ) at 5000 K are represented very accurately with an average error of
0.80 %.

The situation is quite different, however, for the repulsive 3�+
u (2) state. The theo-

retical calculations in Ref. [27] have been fit with the exponential repulsive potential,
but the fit has much less of an exponential curve than the author has usually found
for repulsive states. The curve is not linear, but it does not deviate a great deal from
linearity. In addition, the four values of V (R) at the lowest values of R were not used
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Table 7 Comparison of the HH
and RKR [33] potentials for the
3�u state of K2 for R > Re

Re = 3.875 Å [33]
De = 7524.4 cm−1[33]
a The symbol v represents the
vibrational quantum number
bThe symbol H/R represents
the ratio of the HH potential
energy to the RKR potential
energy

va R(Å) H/Rb va R(Å) H/Rb

0 4.0168 1.00 13 4.7283 0.99

1 4.1268 1.00 14 4.7655 0.99

2 4.2057 1.00 15 4.8020 0.99

3 4.2718 1.00 16 4.8378 0.99

4 4.3304 1.00 17 4.8730 0.99

5 4.3841 1.00 18 4.9077 0.99

6 4.4341 1.00 19 4.9418 0.99

7 4.4813 1.00 20 4.9755 0.98

8 4.5262 1.00 21 5.0088 0.98

9 4.5693 0.99 22 5.0417 0.98

10 4.6108 0.99 23 5.0742 0.98

11 4.6511 0.99 24 5.1065 0.98

12 4.6902 0.99

in the exponential fit. They are not consistent with the other data, and Valance and
Tuan [27] suggest that this may be due to a pseudo-crossing with another 3�u state.
Of course, it is not surprising that an exponential function becomes much less curved
if the first four values, where the curve is most pronounced, are not included in the
calculation.

It would be unreasonable not to expect that there is considerable error in the potential
energy curve [27] for the 3�+

u (2) state. There is a rough rule of thumb that an error
of a factor of two in the potential leads to an error of 20 % to 40 % in the calculation
of transport collision integrals [47]. One would expect that a similar argument would
hold for the calculation of virial coefficients. However, at temperatures at which the
contribution of the repulsive 3�+

u (2) state to Cp,NI becomes important, the value of
Cp,NI is quite small. Thus, it is realistic to be suspicious of the results in Table 3 for
which Cp,NI is negative.

It is possible that the change in sign of Cp,NI is mirrored in the change in pressure
from that of an ideal gas due to potassium atom interactions. The virial equation can be
rewritten in its usual form as an expansion in inverse powers of the molar volume [22]:

P = RT

V
+ B (T ) RT

V 2 + . . . (15)

The second term on the right in Eq. 15 is the lowest order noinideal contribution
to P. At 2000 K, where BDA(T ) is less than zero, the contribution of this term is
−1.643 × 10−7b and, at 2500 K, where BDA(T ) is greater than zero, the contribution
of this term is +9.848 × 10−8b. The effect of noinideality on P does mirror the effect
on Cp,NI. Notice that the lowest order noinideal effect is much less for the pressure
than for the heat capacity.
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7 Conclusions

Despite the fact that, conceptually, the Bethe method appears to be superior to the
IP–kT method for constraining the sum over energy levels that contribute to C0

p,el
at high temperatures, from a practical point of view the IP–kT method appears to
more reliably assure that the values of C0

p,el are reasonable at high temperatures. It is

probably the “method of choice” for high temperature calculations of C0
p,el for atoms.

For potassium atoms, the IP–kT method and the “FILL” procedure, combined with
information in the ASD tables [2], are sufficient to calculate C0

p,el to 50 000 K.
The HH and RKR potential energy curves for the bound states of K2 are in very

good agreement but errors in representing the repulsive 3 ∑+
u (2) state mean that there

may be considerable error in the calculation of Cp,NI at temperatures where this state
makes a significant contribution to Cp,NI.

Semiclassical calculations, even when the first three semiclassical terms are
included in the calculation, do not appear to be adequate to calculate Cp,NI below
approximately 2000 K for either K2 or Na2. A full quantum mechanical approach
appears to be required.
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