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Abstract
The ideal gas heat capacity, Cp, of cesium atoms is calculated to high temperatures
using statistical mechanics. There are a large number of electronic states in the state
sum that determines the partition function: 174 known levels for cesium atoms below
the first ionization potential. Thus, at high temperatures, Cp becomes very large unless
the number of contributing states is constrained. Two arguments are used to do this.
First, at high temperatures, the increased size of the atoms constrains the sum (Bethe
method). Second, the existence of interacting charged species at higher temperatures,
which lowers the ionization potential, constrains the sum (ionization potential lowering
method). If atoms constitute a real gas obeying the virial equation of state, the lowest
non-ideal contribution to Cp depends on the second derivative of the second virial
coefficient, B′′(T), which depends on the interaction potential energy curves between
two atoms. When two ground-state (2S) cesium atoms interact, they follow either of
two potential energy curves. When a 2S cesium atom interacts with a cesium atom
in the first electronically excited (2P) state, they follow any of eight potential energy
curves. The values of B′′(T) for the ten states are determined, then averaged, and used
to calculate the lowest order non-ideal contribution to Cp.
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coefficients

Selected papers of the 20th symposium on thermophysical properties.

B Louis Biolsi
louis@biolsi.com

Michael Biolsi
michael@biolsi.com

1 Chemistry Department, Missouri University of Science and Technology, Rolla, MO 65401, USA

2 MEAD Technologies, Rolla, MO 65401, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10765-019-2527-z&domain=pdf
http://orcid.org/0000-0002-0869-1243


69 Page 2 of 15 International Journal of Thermophysics (2019) 40 :69

1 Introduction

The normal boiling point of cesiummetal is 963K [1], and the first ionization potential
(IP) is 3.89 391 eV [2], corresponding to thermal energy, kT, of 45 187 K where k is
Boltzmann’s constant and T is temperature. Thus, there are some cesium atoms in the
gas phase over the temperature range from about 1000 K to 50 000 K.

The heat capacity, C0
p, of cesium atoms behaving as an ideal gas is given as a

function of temperature to 6000 K in the NIST-JANAF Thermochemical Tables [3].
Onepurpose of this paper is to extend the calculations to higher temperatures.However,
as T increases andmore excited electronic states contribute to C0

p, the sum over excited

states must be constrained or the values of C0
p become much too large [4–6].

In addition, if it is assumed that cesium atoms constitute a non-ideal gas obeying
the virial equation of state, the lowest order non-ideal gas correction to C0

p is given by
a term that depends on [7] the second derivative of the second virial coefficient, B′′(T),
which is calculated here for each of the ten lowest lying electronic states of Cs2.

2 Ideal Gas Heat Capacity

The heat capacity of a mole of atoms is [5]

C0
p � 20.786 J · mol−1 · K−1 + C0

p,el (1)

where the first term is the translational contribution and C0
p,el is the electronic contri-

bution [8];

C0
p,el � RT

qel

[
T

∂2qel
∂T 2 − T

qel

(
∂qel
∂T

)2

+ 2
∂qel
∂T

]
(2)

and R is the gas constant. The electronic partition function, qel, is

qel �
∑
i

gi e
−Ei /kT (3)

where the sum over i is the sum over the electronic states, Ei, of an atom and gi is the
degeneracy of state i.

Theground state of a cesiumatom is [2] 1s22s22p63s23p64s23d104p65s24d105p66s1.
The Atomic Spectra Database (ASD) table [2] lists 173 other known electronic states
of cesium atoms with energies less than those of the first IP, each corresponding to
the excitation only of the single 6s electron. Results are given to n � 25 where n is the
value of the principal quantum number (labeling the energy level). However, this list
of states is incomplete. For cesium, the degeneracy, gn, of an energy level, En, is [4]:

gn � 2n2 (4)

For instance, for n� 25, gn � 1250. However, the ASD table [2] lists the energies of
only the 25s, 25p, 25d, 25f, and 25g states with a total degeneracy of 40. Thus, the ener-
gies of 1210 states are missing. There is a similar problem for all other energy levels.
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The missing states should be accounted for in the calculation of C0
p. This is done

by using the “FILL” procedure; i.e., the missing states are assumed to have the energy
of the highest observed state for that value of n [4], a procedure that has been used
in a number of high-temperature monatomic gas calculations, e.g., [4–6, 9–11]. For
sodium, all “inner” ground-state energy levels (except the valence level) are filled, and
for potassium, with only one “inner” energy level (e.g., the 3d) other than the valence
level unfilled, the “FILL” procedure should be quite accurate. However, for cesium,
the ground-state “inner” n � 4 and n � 5 energy levels are both unfilled (e.g., the
4f, 5d, 5f, and 5g). Thus, the “FILL” procedure for cesium may be somewhat less
accurate than for sodium and potassium.

When the “FILL” procedure is used to calculate C0
p,el as a function of temperature,

the results are unreasonably large at intermediate temperatures; e.g., C0
p,el is predicted

to be 144.744 J·mol−1·K−1 at 5000 K which is most unlikely. This large result occurs
because energy levels to n � 25 are included in the calculation. The sum over states
(or energy levels) must be constrained.

3 Constraining the SumOver Energy Levels

This very large value of C0
p,el at 5000 K is expected [4–6] as a large number of energy

states/levels are included in the summation in Eq. 3. To avoid this, the sum over states
or energy levels in qel, i.e., Eq. 3, must be constrained so that the values of C0

p,el(T)
are reduced; e.g., a “cutoff” procedure for states is required [4].

One method for doing this was suggested by Bethe [12]. As n increases, the size
of an atom increases and it can be shown, e.g., [5, 13], that the maximum value of n,
nmax, contributing to qel is

nmax � 2.4561T 1/6 (5)

at 1 bar pressure. This approach has been used in a number of calculations, e.g., [4–6,
11, 13–17]. The results for C0

p,el as a function of T obtained for cesium atoms using
the Bethe method are given in the third column of Table 1. The results in the second
column are from the NIST-JANAF Thermochemical Tables [3]. Below 1200 K, C0

p,el
is zero. The values of nmax as a function of T obtained using this method are given in
the second column of Table 2.

The second method commonly used to constrain the sum over n depends on the fact
that, as the energy associated with energy level n nears the IP, some atoms ionize and
spectroscopic studies show that this has the effect of lowering the IP of the remaining
neutral atoms [4–6, 13, 18–21] due to the stabilization of an ion that occurs because it
is surrounded by other charged particles aligning themselves so that charged particles
with the opposite sign dominate among nearest neighbors, providing a net attractive
interaction. This is discussed in some detail in Refs. [6, 21]. It can be shown that for
this method [13],

Enmax � I P − kT (6)
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Table 1 Electronic contribution
to the ideal gas heat capacity,
Co
p,el (J·mol−1·K−1), of cesium

atoms as a function of
temperature

T(K) JANAF Bethe IP − kT

1200 0.005 0.005 0.005

1500 0.055 0.055 0.055

2000 0.563 0.562 0.562

3000 5.296 5.321 5.142

4000 15.464 17.960 13.107

5000 24.962 44.416 21.912

6000 29.149 61.120 28.005

7000 56.448 25.425

8000 41.658 24.350

9000 27.223 22.041

10 000 17.863 18.602

20 000 1.091 5.809

30 000 0.271 2.731

40 000 0.107 1.429

50 000 0.052 0.876

Table 2 Maximum value of n,
nmax, contributing to qel as a
function of temperature

T(K) Bethe IP − kT

1200 8 11

1500 8 10

2000 8 8

3000 9 7

4000 9 6a

5000 10 6a

6000 10 6a

7000 10 6a

8000 11 6a

9000 11 6a

10 000 11 6a

20 000 12 6a

30 000 13 6

40 000 14 6

50 000 15 6

aAlso including contributions
from some “high lying” n � 5
states above the n � 6 energy
level

This is called the “IP–kT” method and has been used in a number of calculations,
e.g., [4–6, 9–11, 21–23]. The results for C0

p,el as a function of T for cesium obtained
using this method are given in the fourth column of Table 1, and the values of nmax as
a function of T obtained using this method are given in the third column of Table 2.
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4 Cesium Atoms as a Real Gas

Assume that cesium atoms obey the virial equation of state, i.e., [24]

PV

RT
� 1 +

B(T )

RT
P +

C(T ) − B(T )2

(RT )2
P2 + · · · (7)

where P is pressure, V is volume, B(T) is the second virial coefficient, and C(T) is
the third virial coefficient. The virial equation has been written as a power series in
pressure since this form is convenient for calculating Cp. For a gas obeying the virial
equation of state, Cp is given by [7, 25]

Cp � C0
p(IG) − T P

d2B(T )

dT 2 − D(T )P2 + · · · (8)

where C0
p(IG) is the ideal gas result and D(T) is a lengthy expression involving B(T)

and C(T) [6, 7, 25]. Now B(T) depends on two-body interactions between atoms but
C(T) depends on the interactions among three atoms [7]. There are rigorous results
for many two-body interactions between cesium atoms in various electronic states but
not for three-body interactions. Thus, this work considers only the contribution from
the second term on the right in Eq. 8.

Classically, Bcl(T) is given by [24]

Bcl(T ) � 2π
∞∫
0

(
1 − e−V (R)/kT

)
R2dR (9)

where R is the distance between two interacting atoms and V(R) is the electronic inter-
action potential energy. Semiclassical corrections to Bcl(T) are obtained by expanding
in powers of Planck’s constant [24]. The resulting expressions are lengthy and given
elsewhere [24, 26]. The classical and first three semiclassical corrections to B(T) and
its derivatives are included in these calculations.

5 Electronic States of Cs2 and B(T)

The potential energy, V(R), of interaction between two cesium atoms depends on the
electronic state associated with the atom–atom interaction, i.e., on the electronic state
of Cs2. When two ground-state (2S) cesium atoms interact, they can interact along two
potential energy curves: the ground X1�+

g(1) and the excited a
3�+

u(1) states. When a

ground-state atom interacts with an atom in the first excited (2P) electronic state, they
can interact along eight potential energy curves: the 1�+

g,u,
3�+

g,u,
1�g,u, and 3�g,u

gerade/ungerade pairs of states [27]. Nine of the ten electronic states are bound. Only
the 3�+

u(2) state is repulsive [28]. The symbols (1) and (2) following term symbols
are used to distinguish between states with the same term symbol.

Oneway to represent the bound states is with the Hulburt–Hirschfelder (HH) poten-
tial,VHH [29, 30],which is a simple accurate general-purposepotential for representing
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atom–atom and atom–ion bound-state interactions. More accurate potentials are avail-
able for specific interactions but they often require either significant curve fitting or
the use of empirical parameters, or both. However, the HH potential is easy to use
when the experimental spectroscopic constants for a given electronic state are known
and do not require any curve fitting; see Eq. 10. It is probably the simplest potential
available for accurately representing bound-state interactions between two atoms and
between an atom and a +1 ion.

The HH potential often gives excellent agreement with “experimental” Ryd-
berg–Klein–Rees (RKR) [31–33] potentials for many atom–atom and atom–ion
interactions [34–38]. Other methods used to obtain “experimental” potential energy
curves for diatomic species include the inverse perturbation analysis (IPA) method,
e.g., [39–41], and the direct potential fitting (DPF) method, e.g., [42–45]. The HH
potential often represents the “experimental” potentials as accurately, or nearly as
accurately, as more complicated potentials.

The HH potential has the reduced form [29, 30]

V ∗
HH

(
R∗) � e−2Ax − 2e−Ax + Bx3(1 + Gx)e−2Ax (10)

where

V ∗
HH � VHH

De
x � R∗

d
− 1 R∗ � R

σ
d � Re

σ

c � 1 + a1

√
De

a0
b � 2 −

7
12 − Dea2/a0

c

a0 � ω2
e

4Be
a1 � −1 − αeωe

6B2
e

a2 � 5

4
a21 − 2ωeχe

3Be

A � ωe

2
√
BeDe

B � cA3 G � bA

andσ is the effective rigid sphere diameter, i.e., the smallest value ofR atwhichVHH(R)
goes to zero. Also, De is the electronic dissociation energy, ωe is the fundamental
vibrational frequency,ωeχe is the anharmonicity constant, Be is the rotational constant,
αe is the vibration–rotation coupling constant, and Re is the equilibrium internuclear
separation. These constants are known experimentally for the ground and excited
electronic states of many diatomic species. For such states, a (usually) quite accurate
potential is obtained by simply plugging these constants into the formula for VHH.

For cesium, these six constants are known for seven states: the X1Σ+
g (1) [46] with

De from Refs. [42, 47], a3Σ+
u (1) [48], b

3Πu [49], A1Σ+
u [50], 3Σ+

g [51], 1Σ+
g (2) [52],

and B1Πu [53] with De fromRef. [54] states. The values of A, B, G, Re, and σ obtained
from these spectroscopic constants and used in Eq. 10 are given in Table 3.

The bound-state potential energy curves for the 1Πg and 3Πg states are represented
by the Morse potential:

VM (R) � De

[
1 − e−A′(R−Re)

]2
(11)
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Table 3 Parameters for the HH potential, Eq. 10, obtained from spectroscopic constants

Par. X1Σ+
g (1) a3Σ+

u (1) b3Πu A1Σ+
u

3Σ+
g

1Σ+
g (2) B1Πu

A 3.2094 4.3086 2.2587 2.6291 2.8246 2.5952 3.4241

B 11.0863 − 29.0159 2.4433 21.4158 1.3017 10.8315 18.9615

G 1.7833 0.043 613 2.4599 12.9657 2.0729 3.8974 2.0582

Re(Å) 4.64 793 6.2354 4.46 711 5.292 5.5425 5.8318 4.86

σ(Å) 3.50 281 5.3479 3.13 012 4.287 4.1632 4.2884 3.66

A, B, and G are unitless

where

A′ �
√
2m

De
πcωe

and m is the mass of the molecule and c is the speed of light. For the 1Πg state, the
values De � 0.18 206 eV, A′ � 2.7216 Å−1, and Re � 5.6973 Å are from spectro-
scopic information in Ref. [52], and for the 3Πg state, the values De � 0.03 eV, A′ �
7.56 394 Å−1, and Re � 5.435 Å are obtained from Ref. [28].

The 3Σ+
u (2) state is purely repulsive and is represented by the exponential repulsive

potential:

VER(R) � A′′e−B′R (12)

The constants A′′ and B′ are obtained by making a fit to the theoretical potential
energy curve for this state in Table I.(E) of Ref. [28]. The results areA′′ � 0.945 681 eV
and B′ � 0.253 278 Å−1.

Calculations of B′′(T) have been carried out for each of the ten states. Again, the
classical value and the first three semiclassical corrections have been determined. The
results must be degeneracy averaged [55]:

(
d2B(T )

dT 2

)
DA

�
∑

j
d2Bj (T )

dT 2 g j (Cs2)e−E j (Cs2)/kT(∑
i gi (Cs)e−Ei (Cs)/kT

)2 (13)

where j labels the electronic states of Cs2. The final result for the lowest order non-ideal
contribution to the heat capacity of a virial gas is [7]:

Cp(N I ) � −T P

(
d2B(T )

dT 2

)
DA

(14)

Results for Cp(NI) at 1 bar are given in Table 4.
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Table 4 Non-ideal contribution
to the heat capacity of cesium
atoms, Cp,NI(J·mol−1·K−1), as
a function of temperature at 1 bar

T(K) Cp,NI T(K) Cp,NI

1000 16.120 4500 0.024

1500 1.178 5000 0.017

2000 0.288 6000 0.009

2500 0.122 7000 0.004

3000 0.070 8000 0.002

3500 0.046 9000 0.002

4000 0.033 10 000 0.000

6 Discussion

The Bethe and IP − kT methods for constraining the sum over atomic states are both
used to keep the “ideal gas” heat capacity of atoms from becoming unacceptably large.
Both methods are ad hoc and neither is really satisfactory but they appear to be the
best methods available for this purpose. The IP − kT method reduces the value of
C0

p,el more than the Bethe method as shown in Table 1. The same result is found for
other atoms when the two approaches are compared, e.g., Refs. [4–6].

This is expected since Table 2 shows that the number of electronic energy levels,
n, contributing to C0

p,el becomes less for the IP − kT method as T increases while
n becomes larger for the Bethe method as T increases. It seems reasonable to expect
that n would increase as T increases but, as shown in the fourth column of Table 1, the
values of C0

p,el are quite large, probably unreasonably large, when the Bethe method
is used but significantly smaller when the IP − kT method is used.

The IP − kT results appear to be more in line with what one would expect the
values of C0

p,el to be for atoms although experimental information to use for testing
the methods is lacking. The IP − kT method is used to generate the JANAF Thermo-
chemical Tables [3] for all atoms at higher temperatures and is probably the present
method of choice for calculating C0

p,el for atoms at higher temperatures.

Somewhat surprisingly, although the “ideal gas” results forC0
p,el are obtained using

rather unsatisfactory methods, the expressions for the non-ideal contributions to C0
p

for a virial gas are rigorous. Thus, the accuracy of the results in Table 4 depends on
two things in addition to the fact that only the lowest order contribution is calculated:
the accuracy of the semiclassical approach for calculating B(T) and the accuracy of
the electronic potential energy curves used to calculate B(T).

The result in Table 4 at 1000 K is clearly much too large to be correct, and the
result at 1500 K may also be too large. Similar results were found for sodium [5] and
potassium [6]. The primary reason for this is probably that the semiclassical expansion
for B(T) fails at lower temperatures and a full quantummechanical calculation of B(T),
involving the evaluation of phase shifts [24], is required.

The only other source of error in the calculation of Cp(NI) is the error in the
potentials used for the ten electronic states. Errors in representing the potential energy
curve for the ground X1 Σ+

g (1) state will be considered in some detail since it makes
the primary contribution to B(T) at many temperatures.
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Table 5 Ratio of the HH to the
DPF [42] potential energy,
V(HH)/V(DPF), for various
values of the vibrational
quantum number, v, for the
ground X1Σ+

g state of Cs2 for
R<Re

v V(HH)/V(DPF) v V(HH)/V(DPF)

0 1.000 68 1.020

4 1.001 72 1.021

8 1.002 76 1.022

12 1.003 80 1.023

16 1.004 84 1.024

20 1.006 88 1.024

24 1.007 92 1.025

28 1.008 96 1.026

32 1.010 100 1.026

36 1.011 104 1.026

40 1.012 108 1.027

44 1.014 112 1.027

48 1.015 116 1.028

52 1.016 120 1.029

56 1.017 124 1.028

60 1.018 128 1.028

64 1.019 132 1.028

136 1.028

For this state, there are a number of determinations of the spectroscopic constants
needed in the HH potential and a number of determinations of RKR, IPA, and DPF
potentials. We have examined a variety of combinations of spectroscopic constants
and “experimental” potentials. In all cases, the HH potential accurately represents
the experimental potential. To illustrate this, the spectroscopic constants in Ref. [46],
with De from Refs. [42, 47], are used to calculate the HH potential which is then
compared with the RKR-like results obtained from the DPF potential, V(DPF), given
in Appendix C of Ref. [42]. Comparisons are shown in Tables 5 and 6 as the ratio
V(HH)/V(DPF). Since there are lists of two R values for each of 137 values of the
vibrational quantum number, v, in the appendix [42], for simplicity only results for
every fourth value of v are given in Tables 5 and 6. Table 5 is for R<Re and Table 6 is
for R>Re. The agreement is very good over the entire range of R values which cover
99.3% of De, i.e., essentially the entire attractive region of the potential.

Essentially, the same good agreement is obtained using other combinations of spec-
troscopic constants and experimental potentials. It is reasonable to conclude that the
HH potential represents the ground electronic X1Σ+

g state of Cs2 very accurately.
For the first excited a3Σ+

u (1) state, an “experimental” potential is not available
[48]. An attempt to calculate an RKR potential led to bending of the inner wall of
the potential well [48]. However, the vibrational potential energy data were used to
construct a MLR (Morse long range) potential for this state [48]. A comparison of
the HH and MLR potential for this state gives an error of no more than 0.77% from
5.3 Å to 15.0 Å (Re � 6.23 540 Å). The R value of 5.3 Å is on the repulsive wall
where the HH potential, based on the bound-state spectroscopic constants, would not
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Table 6 Ratio of the HH to the
DPF [42] potential energy,
V(HH)/V(DPF), for various
values of the vibrational
quantum number, v, for the
ground X1Σ+

g state of Cs2 for
R>Re

v V(HH)/V(DPF) v V(HH)/V(DPF)

0 1.001 68 0.989

4 0.999 72 0.989

8 0.998 76 0.990

12 0.997 80 0.991

16 0.996 84 0.991

20 0.995 88 0.992

24 0.994 92 0.993

28 0.993 96 0.994

32 0.993 100 0.995

36 0.992 104 0.997

40 0.991 108 0.998

44 0.990 112 0.998

48 0.990 116 0.999

52 0.989 120 0.999

56 0.989 124 0.999

60 0.989 128 0.999

64 0.989 132 0.998

136 0.998

necessarily be expected to be very accurate so this good agreement is satisfying. Even
at R � 5.0 Å, where the HH potential is 125% of De, the disagreement between the
two potentials is only 4.8%. At smaller R values, the HH potential rises more steeply
than the MLR potential.

For R>15.0 Å, agreement between the two potentials is almost perfect. In this
region, the dispersion coefficients primarily determine the (small) values of the poten-
tial and the HH potential does not include terms representing dispersion coefficients.
Thus, the good agreement is, again, satisfying. The HH potential appears to represent
this state very accurately.

The MLR potential for the a3Σ+
u (1) state was redone by Sovkov et al. [47]: call it

MLR1. TheHHpotential is in agreementwith theMLR1potential in the attractivewell
region but the agreement is not as good as for the MLR potential. The disagreement is
more significant along the repulsive wall with the MLR1 potential rising more steeply
than theHHpotential. Again, however, the good agreement in the attractivewell region
indicates that the HH potential is representing this state quite accurately.

For the b3Πu state, RKR values are given in Table VI of Ref. [49] for 51 values of
v. Table 7 gives the ratio V(HH)/V(RKR) for every third value of v. The ratio in the
second column is for R<Re, and the ratio in the third column is for R>Re. Although
the agreement is not terrible, it is muchworse than is usually obtainedwhen comparing
the HH and “experimental” potentials. For all 102 ratios, the average error is 14.8%
and the median error is 15.4%.

Relatively poor agreement between the HH and RKR potential for an electronic
state is often a sign that the state has some unusual property. In this case, the b3�u
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Table 7 Ratio of the HH to the
RKR [49] potential energy,
V(HH)/V(RKR), for various
values of the vibrational
quantum number, v, for the
b3�u state of Cs2

v V(HH)/V(RKR) V(HH)/V(RKR)

0 1.023 0.976

3 1.059 0.936

6 1.079 0.912

9 1.093 0.894

12 1.106 0.878

15 1.116 0.864

18 1.125 0.851

21 1.133 0.839

24 1.139 0.828

27 1.147 0.819

30 1.153 0.809

33 1.159 0.800

36 1.164 0.792

39 1.169 0.784

42 1.173 0.777

45 1.178 0.770

48 1.182 0.763

50 1.184 0.759

state couples very strongly through spin–orbit interaction with the next higher lying
state, the A1Σ+

u state, which crosses the b3�u state. These two crossing states are well
illustrated in Fig. 7 of Ref. [56] and Fig. 2.13 of Ref. [57]. The spin–orbit coupling
means these states are non-adiabatic. The spin–orbit coupling does not split the ground-
state 2S atom but splits the interacting excited state 2P atom into two states: a 2P1/2
state (the lower state) and a 2P3/2 state.

These two new atomic states lead to two newmolecular states in the�
(+/−)
g,u notation:

the O+
u (

2P1/2) and O+
u (

2P3/2) states; see Table III(b), columns 4 and 5, in Ref. [58].
These states do not cross, and they are also shown in the figures referred to above. The
crossing of the original states occurs at about 5.8 Å [57], within the attractive well
region of each state. This probably has an effect on the quality of the RKR results.

The value used for De in the HH potential for the b3�u state, 7051 cm−1 [49],
is larger than the value obtained by many others: e.g., 7029 cm−1 [59], 6775 cm−1

[60], 6404 cm−1 [61], and 7035.1427 cm−1 [56]. As a test, the value of De from Ref.
[56] was used in the HH potential instead of the value from Ref. [49]. However, the
agreement with the RKR results is slightly worse in this case.

For the A1Σ+
u state, RKR values are given in Table IV of Ref. [50] for ten values

of v. For R<Re, the largest error in the HH potential is 25.7% and the smallest error
is 6.2%. For R>Re, the largest error is 7.5% and the smallest error is 0.8%. The
average error is 7.4% and the median error is 5.0%. Despite a fairly large error at
several values of v, overall the HH potential is reasonably accurate. Since this state
has a strong spin–orbit interaction with the b3�u state, this may have some effect on
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Table 8 Percent contribution of
each electronic state to the
degeneracy-averaged value of
B′′(T) as a function of
temperature

State % at 1500 K % at 9000

X1Σ+
g (1) 97.1 11.0

a3Σ+
u (1) 1.9 2.2

b3Πu 1.0 50.9

A1Σ+
u 0.0 2.6

3Σ+
g 0.0 10.6

1Σ+
g (2) 0.0 1.0

B1Πu 0.0 1.8
1Πg 0.0 3.2
3Πg 0.0 0.0
3Σ+

u (2) 0.0 16.8

the quality of the RKR potential energy curve as discussed above. The HH potential
for this state predicts a local maximum [62] at approximately 9.5 Å.

RKR/IPA/DPF values are not available for the 3Σ+
g state.

For the 1Σ+
g (2) state, IPA values are given in Table X of Ref. [52] for 50 values

of v. For R<Re, the largest error in the HH potential is 21.0% and the smallest error
is 0.01%, For R>Re, the largest error is 3.2% and the smallest error is 0.04%. The
average error is 4.8% and the median error is 2.4%. Despite fairly large errors at
several values of v, overall the HH potential is quite accurate and correctly [52, 63,
64] predicts that this state has a local maximum.

For the B1Πu state, RKR values are given in Table 5 of Ref. [53] for 13 values of
v. For R<Re, the largest error is 5.1% and the smallest error is 1.6%. For R>Re, the
largest error is 4.9% and the smallest error is 1.3%. The average error is 2.1% and
the median error is 1.9%. There is another set of RKR values in Table 4 of Ref. [54]
for 21 values of v. For R<Re, the largest error is 7.7% and the smallest error is 2.0%.
For R>Re, the largest error is 7.0% and the smallest error is 1.3%. The average error
is 2.4% and the median error is 2.1%. The HH potential is quite accurate for this state
and correctly [54] predicts that it has a local maximum.

For the 1Πg state, IPA values are given in Table XI of Ref. [52] for 36 values of
v. For R<Re, the largest error is 8.0% and the smallest error is 1.7%. For R>Re,
the largest error is 20.7% and the smallest error is 2.8%. The average error is 10.6%
and the median error is 7.9%. The Morse potential is surprisingly accurate despite
significant errors at a few values of v.

There are no RKR/IPA/DPF results for the 3Πg state. The Morse results are com-
pared with the theoretical calculations in Table I.(E) in Ref. [28]. Agreement is poor
with an average error of 106.3% and a median error of 27.4%. The large difference
between the average and median errors is due to a very large error at several small and
large R values. Near Re, errors are of the order of 10% to 15%. Better results could
be obtained by fitting the Morse potential to the potential in Ref. [28] but the accuracy
of that potential is unknown. As shown in Table 8, this state makes no contribution to
Cp(NI).
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For the repulsive 3Σ+
u (2) state, the average error of the fitted exponential repulsive

potential compared to the theoretical calculations in Table I.(E) of Ref. [28] is 10.5%
and themedian error is 12.1%.This agreement is reasonably good.Again, the accuracy
of the theoretical results [28] is difficult to determine.

An exponential repulsive potential for this state is given in Eq. 4 of Ref. [65].
However, the values of V as a function of R range from about eight times to ninety-six
times larger than the values obtained from the theoretical potential [28]. The potential
in Ref. [65] was obtained by assuming that this repulsive state crosses the C1�u state,
which dissociates to 2S + 2D atoms, allowing the C1�u state to predissociate [65].
Thus, the theoretical potential [28] appears to have better justification. Figure 7 in
Ref. [65] appears to show a shallow minimum and a local maximum for the 3Σ+

u (2)
state. However, this is a consequence of spin–orbit coupling between the 3Σ+

u (2) and
C1�u states as discussed previously for the b3�u and A1Σ+

u states. Since spin–orbit
coupling is not included in the theoretical calculations for the 3Σ+

u (2) state [28], this
may be a significant source of error.

Table 8 shows the percent contribution of each electronic state of Cs2 to the
degeneracy-averaged value of B′′(T), given by Eq. 13, at two values of T. At 1500 K,
the lowest value of T at which it is reasonably likely that quantum mechanical effects
on B′′(T) have “washed out,” the overwhelmingly most important contribution comes
from the ground X1Σ+

g (1) state and it has been shown above that the HH potential
gives very good agreement with the RKR/IPA/DPF “experimental” potentials for this
state.

Most of the rest of the contribution at 1500 K comes from the first excited a3Σ+
u (1)

state. Since there are no RKR/IPA/DPF calculations for this state, it is necessary to rely
on theMLR potential [48] as the standard. The HH potential is in very good agreement
with the MLR potential. There is also a small contribution from the b3Πu state for
which agreement between the HH and RKR [49] potentials is not as good but the HH
potential is still quite accurate. There is a rough rule of thumb that an error of a factor
of two in the potential leads to an error of 20% to 40% in the calculation of transport
properties [66]; i.e., the integrations over the potential required to calculate the trans-
port properties “wash out” some of the error in the potential. It is reasonable to assume
that something similar happens upon integrating over the potential to calculate B′′(T)
and Cp(NI). Thus, it can be concluded that at lower temperatures, but temperatures
above which quantum mechanical effects are important, these calculations of Cp(NI)
are quite accurate.

At higher temperatures, the situation is different. At 9000K, the highest temperature
at which Cp(NI) is 0.001 J·mol−1·K−1 or greater, the b3Πu , 3Σ+

g , and
3Σ+

u (2) states
make more than 78% of the contribution to the degeneracy-averaged value of B′′(T).
Again, the HH potential for the b3Πu is reasonably accurate [49] but not as accurate
as one might like. The accuracy of the 3Σ+

g potential cannot be determined since there
are no RKR/IPA/DPF results for this state. The accuracy of the exponential repulsive
potential for the 3Σ+

u (2) state is difficult to determine since the fit is to a theoretical
potential [28] of unknown accuracy. Of course, if Cp(NI) is nearly zero at 9000 K,
then the accuracy of the representation of the states is unimportant. Table 4 shows
that Cp(NI) falls off rapidly with T, even at lower temperatures where the calculation
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is quite reliable. Thus, errors in the potential at higher temperatures are probably not
very important.
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