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abstract: The mechanisms leading to structure in local assemblages

are controversial. On the one hand, assemblage structure is thought

to be the outcome of local interactions determined by the properties

of species and their responses to the local environment. Alternatively,

this structure has been shown to be an emergent property of assem-

blages of identical individuals or of random sampling of a regional

assemblage. In ants at baits, a combination of environmental stress

and interspecific competition is widely held to lead to a unimodal

relationship between the abundance of dominant ants and species

richness. It is thought that in comparatively adverse environments,

both abundance and richness are low. As habitats become more

favorable, abundance increases until the abundance of dominant ants

is so high that they exclude those that are subordinate and so depress

richness. Here we demonstrate empirically that this relationship is

remarkably similar across three continents. Using a null model ap-

proach, we then show that the ascending part of the relationship is
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largely constrained to take this form not simply as a consequence of

stress but also as a result of the shape of abundance frequency dis-

tributions. While the form of the species-abundance frequency dis-

tribution can also produce the descending part of the relationship,

interspecific competition might lead to it too. Scatter about the re-

lationship, which is generally not discussed in the literature, may

well be a consequence of resource availability and environmental

patchiness. Our results draw attention to the significance of regional

processes in structuring ant assemblages.

Keywords: abundance frequency distribution, assemblage structure,

competition, dominance.

The mechanistic basis of variation in diversity remains a

contentious topic in ecology. The debate can be charac-

terized as one concerning the significance of local, deter-

ministic processes, such as the operation of a set of as-

sembly rules based on local interactions (Weiher and

Keddy 1999), operating over small spatial and temporal

scales, as opposed to the significance of regional processes

that occur over larger areas and through evolutionary time

(Ricklefs 2004). The application of null models in ecology

has demonstrated that many of the patterns that have been

attributed to such local interactions can arise indepen-

dently of them (Gotelli 2000, 2001) and may well be a

consequence of regional-scale processes. Thus, two ap-

parently divergent views on the processes structuring local

communities exist: one emphasizing local mechanisms and

the other emphasizing those occurring at regional scales

(see Currie and Francis 2004; Qian and Ricklefs 2004). In

consequence, several authors have emphasized that an un-

derstanding of the ways in which local and regional pro-

cesses interact to determine the membership and prop-

erties of local assemblages, and therefore spatial variation

in diversity, is one of ecology’s most pressing goals (Rick-

lefs 1987, 2004; Lawton 1999; Gaston 2000; Currie and

Francis 2004; Simberloff 2004). Here we address this goal

by examining one of the most significant assemblage-level

patterns in ants: the relationship between dominance and

species richness, which has traditionally been regarded as

the outcome of an interaction between local environmental

stress and the extent of interspecific interactions.
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Figure 1: Graphical representation of the unimodal relationship between

dominance and species richness. A, Low dominance and high species

richness; B, high dominance and high species richness; C, low to inter-

mediate dominance and low species richness.

The dominance-impoverishment rule (Hölldobler and

Wilson 1990) describes the relationship between ant spe-

cies richness and dominant species in a community: the

fewer ant species in a local community, the more likely

the community is to be behaviorally dominated by one or

two species with large, aggressive colonies. In many stud-

ies, however, the direction of this causality has been re-

versed, and emphasis has been placed on the effect dom-

inants have on species richness, not vice versa (e.g.,

Andersen 1992; Andersen and Patel 1994; Morrison 1996;

Retana and Cerdá 2000). The effect of dominance on spe-

cies richness was examined in detail by Andersen (1992),

who suggested that, at baits, the full relationship between

species richness and dominance is unimodal. Species rich-

ness is low at very low levels of dominance, and as dom-

inance increases, species richness also increases until a

point is reached after which species richness declines as

dominance increases. The ascending portion of the curve

is thought to correspond to increasing habitat favorability

for ants: in conditions considered marginal (or stressful)

for ants, species richness and the abundance of dominant

ants are low. As conditions begin to improve, the abun-

dance of all ants begins to increase, as does species richness

(see also Andersen 1995, 1997b). The descending part of

this relationship is generally attributed to an increase in

the abundance of dominant ants to such an extent that

they reduce species richness via competitive exclusion (An-

dersen 1992; Morrison 1996). Indeed, interspecific com-

petition is thought to be a key mechanism structuring local

assemblages (Savolainen and Vepsäläinen 1988; Andersen

and Patel 1994; Majer et al. 1994; Sanders et al. 2003),

and it has been referred to as the “hallmark of ant ecology”

(Hölldobler and Wilson 1990; though see also Ribas and

Schoereder 2002; Gibb and Hochuli 2004).

While a unimodal or negative monotonic decline might

indicate competition (Andersen 1992; Morrison 1996), the

question of whether other mechanisms can give rise to the

unimodal pattern has not been addressed. An alternative

explanation to that of stress for the ascending part of the

relationship is that high species richness and low domi-

nance are possible only with a completely even abundance

frequency distribution (which might itself arise for several

reasons, including those that have little to do with com-

petition; Tokeshi 1999; Gaston and Blackburn 2000; Hub-

bell 2001). Here, individuals are distributed evenly among

species, which would result in low dominance, because all

species would have similar abundances. Put simply, area

A in figure 1 might be filled only if the assemblage has an

abundance frequency distribution that is unrealistic (e.g.,

Gaston and Blackburn 2000). Thus, the observed, ascend-

ing part of the unimodal relationship is constrained to

assume that form irrespective of the influence of habitat

adversity or stress. Similarly, although competition has

been assumed to reduce species richness at high domi-

nance levels, an alternative explanation is that high dom-

inance and high species richness (fig. 1, area B) are possible

only with a very highly skewed abundance frequency dis-

tribution (where one species is very highly abundant and

all other species have extremely low abundances, thus pro-

ducing very low evenness; see Magurran 2003 for a dis-

cussion of evenness, richness, and their relationships and

measurement). This is generally also considered unrealistic

in most natural communities but particularly for insects

(Halley and Inchausti 2002). If one species is highly abun-

dant while the other species have very low abundances,

over time it is likely that species with low abundances

would go extinct, often for purely stochastic reasons (Gas-

ton and Chown 1999). In other words, the form of the

dominance–species richness relationship may not be a

consequence of local interactions but of other processes

operating at a regional level (as has been found for as-

semblages elsewhere; see, e.g., Caley and Schluter 1997;

Blackburn and Gaston 2001; Smith 2001).

In addition, variability about the unimodal dominance-

richness relationship, which is clear in the few studies that

have demonstrated the full pattern, is rarely considered

(fig. 1, area C). In consequence, the cause of scatter around

the unimodal pattern is not known. Potentially important

factors that have received little attention in relation to ant

dominance–species richness relationships are environ-

mental patchiness (i.e., the distribution of resources) and

the availability of resources. This omission is surprising

given that natural systems are typically patchy and that

environmental heterogeneity has been shown to be im-

portant in structuring communities (Kolasa and Rollo

1991; Wiens 2000). Here we explore each of these issues

in turn by examining dominance–species richness patterns
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across a range of baiting trials on three continents, in-

cluding within- and between-habitat comparisons, and by

simulating the distribution of ants among baits using a

variety of realistic and unrealistic assemblage scenarios.

Methods

Study Sites and Field Sampling

South Africa. Baiting data were collected in the Kruger

National Park (KNP), South Africa, in three savanna hab-

itat types along a rainfall gradient: mopane woodland (Mo-

pane area, 23�33�S, 31�26�E), acacia savanna (Satara area,

24�26�S, 31�46�E), and terminalia woodland (Pretoriuskop

area, 25�12�S, 31�23�E). Mean annual rainfall is lowest in

the Mopane area (450–500 mm), intermediate in the Sa-

tara area (550 mm), and highest in the Pretoruiskop area

(700 mm; Parr et al. 2004).

Ant sampling was carried out on experimental burn

plots that form part of a long-term burning experiment

initiated in 1954; unburned plots have had no fires since

then. Plots are approximately 7 ha in size and are separated

by firebreak roads. Within each habitat type, treatment

plots representing a range of burn histories (including the

two extreme treatments, unburned and annually burned)

were replicated twice. Unburned plots are densely vege-

tated with moribund grass and a well-developed litter layer,

whereas annually burned plots are more open, with re-

duced ground cover and fewer trees (see Parr et al. 2004).

Baiting was conducted in the summer months of late

November 2001 to early February 2002. In the summer

rainfall region of South Africa, ants are most active and

abundant at this time (Parr et al. 2004). Ant baiting was

carried out on unburned and annually burned plots, rep-

licated twice in each of the three savanna habitats. The

relative behavioral dominance of species was quantified by

observing ants at fish baits (Fellers 1987; Savolainen and

Vepsäläinen 1988; Andersen 1992). Baiting was conducted

in the early morning, midday, and late afternoon and for

each time period was repeated at least three times. Baiting

across a range of temperature regimes, in addition to dif-

ferent plot and habitat types, enabled a wide range of stress

levels to be sampled. Large vertebrate carnivores precluded

sampling at night.

For each bait session, 15 bait stations were set out at

5-m intervals along a 70-m transect. A teaspoon of cat

food (≈3 g, pilchard fish) was placed on a small white

piece of paper (to aid observations at the bait), and all

species present at each bait after 60 min were recorded.

To avoid problems of data nonindependence, the location

of transects was randomized on each of the plots such that

consecutive baiting sessions were generally separated by a

distance of more than 50 m and the locations of any two

baiting sessions were never closer than 50 m. The plots

themselves were separated by a minimum distance of 60

m. Following Andersen (1997a), abundances of ants were

scored according to a six-point scale: ant, –1 p 1 2 p 2

5 ants, –10 ants, –20 ants, –50 ants,3 p 6 4 p 11 5 p 21

and 6 p 150 ants. A species’ abundance per baiting session

was defined as the total of its abundance scores summed

across the 15 baits. The total abundance (all species com-

bined) during a baiting session was the sum of each spe-

cies’ total abundance for each bait station. Because dom-

inants do not coexist at baits, the total maximum

abundance of dominants per baiting session was 90 (abun-

dance score of baits). For all other ants combined,6 # 15

it is possible to have a total maximum abundance per

baiting session of 190 because each species’ abundance

was scored separately and often there was more than one

subordinate species at a bait. Voucher specimens of South

African ants collected are held at the Iziko Museum of

Cape Town, South Africa.

Australia and North America. In Australia, baiting data

were collected at sites varying in structural complexity of

the vegetation and included sites in tropical savanna wood-

land (Darwin, Northern Territory, 12�40�S, 31�00�E) and

in open semiarid savanna (Kidman Springs Research Sta-

tion, Northern Territory, 16�18�S, 13�48�E). The mean an-

nual rainfall for Darwin is 1,700 mm, while at Kidman

Springs it is 650 mm (Commonwealth Bureau of Mete-

orology). Sampling was carried out during the buildup to

the wet season (November 2002), a period when most ants

are highly active (Andersen and Patel 1994). The relative

behavioral dominance of species was quantified by ob-

serving ants at fish baits (canned fish-based cat food).

Baiting was conducted in the morning and late afternoon

to avoid extreme midday temperatures, following the same

method as described above. Voucher specimens of Aus-

tralian ants are held at Commonwealth Scientific and In-

dustrial Research Organisation Tropical Ecosystems Re-

search Centre, Darwin.

In North America, baiting was carried out at sites cen-

tered in the Chiricahua Mountains of southeastern Ari-

zona (31�52�N, 109�15�W), situated along an elevation

gradient (1,400–2,600 m above sea level), covering a va-

riety of habitats from desert scrub to fir forest. Results

from this latter study are published by Andersen (1997a).

Baiting was carried out in July 1993. The baiting protocol

involved using tuna fish baits arranged in a grid ( )5 # 3

with 10-m spacing, and all species at the bait after 60 min

were recorded according to the same abundance scores

described above (see Andersen 1997a for further detail).

Data Analysis. Although there are no standard protocols

for identifying dominant ants, dominance is usually de-
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Table 1: Dominance measures and degree of patchiness used in each of the simulations

Model

Dominance measure Patchiness type

Mean abundance

only

Monopolization

only

Mean abundance and

monopolization

Even bait

distribution

Poisson bait

distribution

Number of baits limited

(two to 15 baits)

Null 1 X X

Null 2a X X

Null 2b X X

Null 3 X X X

Competition 1 X X X

Competition 2 X X X

fined in terms of either ecological dominance (a larger

number of individuals) or behavioral dominance (displays

of aggression toward other species such that they display

avoidance behavior; see Andersen 1992; Cerdá et al. 1997).

This study focused on ecological dominance to define

dominant ants. Thus, dominant ant species are considered

those that occurred at a large proportion of baits, nu-

merically dominated and monopolized many of the baits

where they occurred, and had high mean abundance scores

(Andersen 1992; Morrison 1996; Cerdá et al. 1997). Al-

though behavioral dominance was not explicitly tested for

using observations of interspecific interactions at baits to

produce a dominance index (see Fellers 1987), any inter-

specific aggression that was observed was noted. Dominant

species were identified, and general dominance levels for

each area were determined on the basis of the following

descriptors (see Andersen 1992, 1997a; Morrison 1996;

Cerdá et al. 1997): number of baits monopolized with 120

individuals of a species where they occurred and high mean

abundance score.

Best-fit generalized linear models were determined for

dominance and species richness. In all cases, a Poisson

distribution and log-link function were specified, and the

Akaike Information Criterion (AIC) was used to identify

whether a quadratic regression provided a better fit than

a linear model or a simple squared term.

Modeling Ants at Baits

A model was developed using VisualBasic to simulate the

distribution of ants at baits and to determine what con-

ditions are necessary to generate different dominance and

species richness combinations. The model consisted of two

parts: a null simulation with no competitive exclusion at

baits (i.e., the mechanism being tested is deliberately ex-

cluded; see Gotelli 2001) and a second simulation incor-

porating some degree of competitive interaction between

species. In the null simulations (indicated as Null), there

were no rules restricting the number of ants at baits; thus,

no structuring mechanism is implied. Individuals were

assigned to species using all three (even, skewed, and re-

alistic) abundance frequency distributions, and the de-

scriptors of dominance were varied as were occupancy

frequency distributions (even or Poisson distribution) at

baits (table 1). Competition (models indicated as Com-

petition) was incorporated into the simulation using two

rules. First, the number of species that could co-occur at

a bait was restricted to four, and second, if the abundance

of any species at a bait was 120 (i.e., abundance score of

14), no other species were allowed to co-occur at the bait.

Patchiness was then introduced into the model in several

different ways (see app. A in the online edition of the

American Naturalist), leading to two competition models

(table 1). Both Null and Competition simulations used 14

ant species and up to 15 baits. These values were chosen

because in KNP, the maximum number of species recorded

during a baiting session was 14, and 15 baits were deployed

during each baiting session. The total abundance of ants

in the starting pool (a) ranged from 50 to 2,500.

Each individual in the starting pool was randomly as-

signed to one of the 14 species based on one of three

abundance frequency distributions. These were an even

distribution (all ants had an equal probability of being

assigned to any species); a more likely, but somewhat un-

usual (see Gaston and Blackburn 2000), highly skewed

distribution (most of the ants in the starting pool were

assigned to one species, while a very small number of ants

were assigned equally to the other 13 species); and a re-

alistic distribution (ants were assigned to species according

to a Poisson distribution; most species are not highly abun-

dant, with most being much less abundant than the most

abundant species). This distribution was derived from an

abundance frequency distribution for pitfall trap data from

all areas sampled in KNP combined. Because abundance

frequency distributions for each area were similar, this

represents an abundance frequency distribution that is re-

alistic for the assemblages in the field.

Once an individual from the pool had a species identity,

this individual was then assigned to a bait. Depending on

the model specifications to assign individuals to baits, ei-

ther a random, uniform distribution (equal chance of be-

ing assigned to any bait) or a nonrandom distribution
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Table 2: Occurrence of dominant and subordinate ants at baits in Kruger National Park

Baits recorded (%) Baits monopolized (%) Mean abundance scorea

M S P M S P M S P

Dominant:

Pheidole spp. 27.5 53.0 17.8 35.7 60.8 40.0 3.80 4.06 3.21

Crematogaster spp. 6.9 1.1 30.0 54.3 50.0 23.0 4.09 4.93 3.62

Myrmicaria natalensis 11.2 14.5 19.3 64.5 33.3 33.3 3.36 4.22 3.30

Anoplolepis custodiens … 1.7 5.1 … 88.9 26.1 … 3.93 4.06

Monomorium emeryi 8.8 … … 55.6 … … 3.88 … …

Nondominant:

Camponotus spp. 11.8 5.1 14.0 3.3 0 1.6 1.45 1.53 1.55

Polyrhachis spp. 5.9 11.0 18.7 0 0 0 1.46 1.52 1.39

Note: Data are for morning and afternoon readings only. ; ; . Total number of baits : MopaneM p Mopane S p Satara P p Pretoriuskop n p 1,485 n p

; Satara ; Pretoriuskop .510 n p 525 n p 450
a Mean abundance scores range from a possible minimum of 1 (always a single ant recorded whenever the species occurred) to a possible 6 (always 150

ants whenever the species occurred).

(chance of being assigned to a bait is not equal because

some baits are more likely to attract ants than others be-

cause of factors such as differing proximity of baits to

nests) was used. The nonrandom distribution also incor-

porated variability in the abundance of ants at baits (see

app. A). Aggregated distributions, which are common in

nature, are often best described by the negative binomial

distribution (NBD; Taylor et al. 1978; Warren et al. 2003).

The parameter k of the NBD was calculated to determine

whether the abundance scores of ants at baits (using KNP

field data for each area separately and combined) were

aggregated. All values for k were, however, relatively high

(3.8–6.14 as opposed to 0.01–0.6; see Warren et al. 2003),

which indicated that abundance scores at baits were less

aggregated than is commonly found for arthropod assem-

blages. Moreover, because the frequency distribution for

abundance scores did not differ significantly from a Pois-

son distribution, this distribution was used for the as-

signment of ants to baits.

Once all ants in the starting pool had been assigned to

baits, raw abundances for each species at each bait were

transformed to abundance scores based on the same scor-

ing system (0–6) used by Andersen (1997a). The abun-

dance scores of all species that were considered dominant,

based on the descriptors we used previously, were summed

(thus providing a total abundance score for dominants),

and species richness was determined for all baits occupied.

Numerically dominant ant species were identified either

as those that had high mean abundance scores or as those

that monopolized many of the baits at which they oc-

curred, or both, depending on the model specifications

(see also Andersen 1992, 1997a; Morrison 1996; Cerdá et

al. 1997). This “either/or” approach differed from the de-

scriptors used for the field data but only for the null models

because monopolization was always absent therein. None-

theless, competitive models were always based on both

descriptors (table 1), and null models using abundance

descriptors are unlikely to bias our results only to the

extent that the null models are uninformative (see app. A

for further information). For a species to monopolize a

bait, it had to be the only species at the bait, and there

had to be 120 individuals of that species at the bait (i.e.,

score of 14 in the system developed by Andersen [1997a]).

Both measures were calculated only for baits where species

are recorded, and thus zeros (species absences) in the data

were excluded. This is common practice in ant studies and

therefore importantly enables direct comparison of the

results from this modeling exercise with studies that have

investigated dominance–species richness patterns (e.g.,

Andersen 1992, 1997a; Cerdá et al.1997).

For each species, a mean abundance score was calculated

by dividing the sum of the abundance scores for the species

at all baits by the number of baits at which the species

was present, and the percentage of baits monopolized (ex-

cluding zeros) was calculated. Dominant species were clas-

sified as those with a mean abundance of 13.2, as those

that monopolized 122.9% of baits where they occurred,

or both, depending on model specifications. These values

were based on thresholds from field baiting data (see table

2).

To explore a reasonably broad range of outcomes pos-

sible for each model, each simulation was iterated 100

times. All dominance and species richness values obtained

from the 100 iterations were then plotted to determine

how the relationship varied; these values often converged

on the same value, although this was not always the case.

In addition, to explore the sensitivity of the models to

changes in the assumptions and to the inclusion of re-

cruitment, a suite of additional model runs was under-

taken (see app. A).

The extent to which the model simulations could pro-

duce an upper bound and variability in the dominance-





Figure 2: Relationship between species richness and the abundance score of dominants at baits for (A) within habitat at Satara (quadratic regression:

, , ), (B) between habitat using all three habitat types in Kruger National Park (quadratic regression:2 2y p �0.003x � 0.21x � 1.63 R p 0.49 P ! .001

, , ), and (C) continental comparison of Southern Africa, Australia, and North America (quadratic2 2y p �0.003x � 0.27x � 2.25 R p 0.33 P ! .001

regression: , , ). Each data point represents total species richness and total dominance for 15 baits2 2y p �0.003x � 0.22x � 3.37 R p 0.39 P ! .001

and may represent a number of dominant species.

richness relationship similar to that of the field data was

investigated by using quantile regressions (Cade and

Noon 2003) with the Blossom statistical package (available

from U.S. Geological Survey, http://www.fort.usgs.gov/

products/software/blossom/blossom.asp). Specifically, the

field data for all continents were compared with the out-

come of Competition 1 with a realistic abundance fre-

quency distribution. Quantile regression parameters were

compared between the field and model data using an in-

verted permutation and hypothesis testing approach (Cade

and Richards 1996, 2001). Parameters where 95% confi-

dence intervals overlapped were not considered signifi-

cantly different.

Results

Field Sampling

A total of 69 ant species were recorded at the baits in

South Africa with 38, 36, and 49 species occurring in the

Mopane, Satara, and Pretoriuskop areas of KNP, respec-

tively (table 2). Thirty-three species of ants were recorded

at baits in Australia and 83 species in North America. For

all baiting scenarios, the best-fit model was the full qua-

dratic model (within habitat: full model ,AIC p 190.0

squared-term , linear ; betweenAIC p 211.2 AIC p 211.6

habitats: full model , squared-termAIC p 504.4 AIC p

, linear ; between continents: full model550.0 AIC p 554.0

, squared-term , linearAIC p 601.8 AIC p 664.1 AIC p

). Thus, the dominance–species richness relationship682.3

can be considered unimodal at all levels (fig. 2). In Satara,

dominance was significantly higher on annually burned

plots (open habitat) than unburned plots (Mann-Whitney

U, , , ). Species richness gen-U p 146.0 z p 2.93 P p .003

erally increased with increasing dominance on unburned

plots but decreased with a continued increase in domi-

nance on annually burned plots (representing the descend-

ing side of the pattern; fig. 2A). When all three habitats

were combined, the upper bound was unimodal, but when

species richness was low, dominance levels were highly

variable, ranging from very low to very high, and variation

in species richness was greatest at intermediate levels of

dominance. The upper bound also indicates a threshold

(abundance score of dominants between 30 and 40) be-

yond which species richness declined as dominance in-

creased (fig. 2B). Although the dominance–species rich-

ness relationship is unimodal when baiting data from

South Africa, Australia, and North America are combined

(fig. 2C), the relationship is similar to figure 2B, with a

distinct unimodal upper bound and considerable variation

in richness for a given dominance level, especially at in-

termediate dominance values.

Model Results

Not unexpectedly, the outcomes of the null model (i.e.,

excluding competition) simulations varied substantially

depending on the conditions (see app. A). Most notably

with model Null 3 it is possible to have high dominance

and high species richness (maximum value of 14 species)

with a realistic abundance frequency distribution when

there are no competitive rules operating (fig. 3A). A sim-

ilarly broad range of outcomes, which varied depending

on the conditions, was produced with the competitive

model simulations (see app. A). Take note that dominance

values of 0 with high richness could be produced in these

models (the values on the upper portion of the Y-axis),

but these were a function of a; when a low starting abun-

dance of ants was specified, there were insufficient indi-

viduals for the mean abundance score to be 13.2 and for

a species’ score a bait to be 14 (necessary to meet the

monopolization rule). Thus, dominance values 10 did not

occur because the dominance descriptors were not met.

In other words, when ants occur, all do so at very low

abundances (though relative abundances might differ),

which is atypical of natural systems. Thus, we exclude

consideration of these points. The key outcomes were as

follows. In Competition 1, high species richness and low

dominance were possible only with an even abundance

frequency distribution (fig. 3B). Neither area A nor area

B in figure 1 could be filled (especially below a dominance

value of 20) when using realistic or skewed abundance

frequency distributions (see app. A). In the case of Com-

petition 2, even with a realistic abundance frequency dis-

tribution, area A in figure 1 still cannot be filled, and

although values of both dominance and species richness

tended to be intermediate, some simulations resulted in

high dominance and high species richness (fig. 3C). In-

creasing competition at baits by altering the abundance

threshold for co-occurrence in Competition 3 resulted in

a reduction in species richness and a wider range of dom-

inance values with an even bait distribution and generally



Figure 3: Relationship between species richness and abundance of dominant ants at baits for (A) Null 3 model using a realistic abundance frequency

distribution, (B) Competition 1 using an even abundance frequency distribution, and (C) Competition 2 using a realistic abundance frequency

distribution. Each data set represents the result of 100 iterations of the model.
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Table 3: Parameter estimates for quantile regressions of model data and field data shown

in figure 4

Estimates for

parameters

Quantile

.01 .1 .5 .9 .99

Model:

a 1 1.0808 2.1055 �.4108 3.4168

b �1 # 10�17
�.101 �.0126 .2256 .3362

c 2 # 10�19 .0003 .0003 �.0021 �.0039

Field:

a �.1893a .0 NS 1.9000 NS 4.8004a 10.6267 NS

b .1327a .2091a .2807a .2923 NS .2194 NS

c �.0014a
�.0025a

�.0034a
�.0035a

�.0035 NS

Note: Model data are Competition 1 with a realistic abundance frequency distribution, and field data

are for all continents. The regression was of the form , where y was species richness2y p a � bx � cx

and x was abundance of dominants. NS indicates parameter estimates that do not differ significantly

between field and model data at .P ! .05
a Parameter estimates do differ significantly between field and model.

reduced species richness with a Poisson bait distribution

(figs. B7, B8 in app. B in the online edition of the American

Naturalist). In Competition 4, using a Poisson bait distri-

bution and a realistic abundance frequency distribution,

when the number of species allowed to coexist at baits

was increased (from four to five species), both species

richness and dominance increased (fig. B10B).

Sensitivity analyses for the dominance rules (mean

abundance and monopolization values) indicated that

simulations were generally insensitive to alteration of dom-

inance thresholds. In addition, adding recruitment into

the simulations did not affect the overall findings from

the different models (see app. A for both dominance sen-

sitivity analyses and recruitment).

Comparison of Variability between Field and Model Data

None of the 0.99 quantile regression parameters for the

field data including all continents and the output of Com-

petition 1 with a realistic abundance frequency distribution

was significantly different (table 3). Therefore, our models

can produce an upper bound of the form typical of the

field data. However, the parameters for the other quantiles

typically differed significantly, indicating that the models

do not always reproduce the scatter under the upper bound

in the field data (fig. 4).

Discussion

Field baiting data for South Africa produced a unimodal

relationship between dominance and species richness, al-

beit with considerable variation in baiting sessions result-

ing in several values lying between the upper and lower

bounds of this relationship. Nonetheless, the unimodal

pattern was consistent across all three habitats in the KNP

despite the rather different characteristics of their habitats

and ant assemblages (Parr et al. 2004). Even more re-

markably, the unimodal pattern was also consistent across

the three continents on which similar baiting trials were

undertaken (fig. 2). Indeed, the fact that it was possible

to plot results from baiting trials in South Africa, North

America, and Australia on the same graph serves to em-

phasize how similar the pattern is among these very dif-

ferent biotas. Therefore, the unimodal relationship be-

tween dominance and species richness at baits appears to

be general.

The cross-continental similarity in assemblage structure

found here is striking and immediately begs the question

of whether the outcomes of the baiting trials are con-

strained to take a unimodal shape owing to the form of

abundance frequency distributions. If this is the case, then

the similarity is of little interest because it provides no

evidence of general mechanisms beyond those responsible

for producing skewed abundance frequency distributions

in any assemblage (see Tokeshi 1993; Gaston and Black-

burn 2000; Hubbell 2001). However, if this is not the case,

then one or more additional mechanisms might well be

responsible for the pattern. In particular, the main con-

tenders for this role are interspecific competition at high

dominance levels and environmental stress where domi-

nance is low. Andersen (1992, 1997b) came out strongly

in favor of these two mechanisms, and they have since

been widely accepted in the literature (Retana and Cerdá

2000; Albrecht and Gotelli 2001).

Our models suggest that the patterns might be the out-

come of a variety of processes and may be constrained to

take this form. Indeed, quantile regression and particularly

the 0.99 quantile served to emphasize the similarity in

unimodal form between field and model data (fig. 4). Be-

fore discussing the outcomes of the models in detail, it is
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Figure 4: Fitting of quantiles to (A) field data (data from all continents included) and (B) model data (Competition 1, realistic abundance frequency

distribution).

important to note that, like all models, the ones used here

make several assumptions (including species equivalence,

consistency of behavior, and patterns of dominance rel-

ative to abundance; see Bestelmeyer 2000), the effects of

which remain to be fully explored in the field situation.

Moreover, we have not explored the full range of variation

in abundance frequency distributions that might be char-

acteristic of ant assemblages. Nonetheless, our models pro-

duce remarkably consistent outcomes under a wide range

of conditions (see app. A) that provide several testable

hypotheses regarding the potential mechanisms structur-

ing ant assemblages.

The Ascending Part of the Relationship

These simulations revealed that it is possible to have high

species richness and low dominance (the upper portion

of area A in fig. 1) only with an even abundance frequency

distribution (fig. 3B; app. A) or with very high co-occur-

rence levels (e.g., 14 species at three baits). Because such

co-occurrence levels are entirely unrealistic (i.e., no com-

petition between ants, as in Null 3, is unrealistic), and

because an even abundance frequency distribution is bi-

ologically unlikely (Tokeshi 1999; Gaston and Blackburn

2000), a situation with high species richness and low dom-
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inance is improbable. Therefore, it appears that the as-

cending part of the unimodal relationship is largely con-

strained to take this form. In other words, stress is not

required to produce low richness and dominance (as is

often assumed; Andersen 1995, 1997b; Morrison 1996;

Bestelmeyer 1997), but rather this combination could be

a function of the way in which community assembly leads

to a skewed abundance frequency distribution (see Tokeshi

1993, 1999; Bell 2001, 2003; Hubbell 2001; Sugihara et al.

2003). These results are in keeping with a growing liter-

ature indicating that regional processes play a significant

role in generating local assemblage structure (Caley and

Schluter 1997; Lawton 1999; Blackburn and Gaston 2001;

Ricklefs 2004).

However, the simulations also suggest that stress could

play a role in producing a positive relationship between

richness and dominance at low dominance values. In those

simulations (null and competitive) where ant abundance

was held low and ants were constrained to just a few baits,

there was a strong positive relationship between domi-

nance and richness at low dominance levels for realistic

and skewed abundance frequency distributions. Thus, any

factor that results in low abundances and patchy distri-

butions could also produce the ascending portion of the

unimodal curve, without assuming an unrealistic abun-

dance frequency distribution (e.g., fig. 4). Environmental

stresses, such as limited food availability, lack of nesting

sites, and extreme temperatures, reduce ant abundance

(Andersen 1995, 2000; Cerdá et al. 1998; Bestelmeyer

2000), and consequently bait occupancy, and could there-

fore result in the positive relationship between dominance

and richness. The fact that area A in figure 1 remains

unoccupied as a consequence of the form abundance fre-

quency distributions are constrained to take, as an effect

of stress, or as some combination of the two may reflect

the combination of local and regional effects. The form

of the abundance frequency distribution is likely to set the

upper bound to the ascending part of the dominance-

richness relationship, while stress, resulting in low abun-

dances and patchy distributions, might further alter it.

The Descending Part of the Relationship

Without competitive interactions, both dominance and

species richness were generally high. When competition

was introduced into the model, high dominance and high

species richness (fig. 1, area B) were possible with an even

abundance frequency distribution and very high ant abun-

dances (fig. 3B; app. A). However, under these conditions,

the number of species at baits was high, and all or the

majority were dominants and had high abundances, a sit-

uation that is not realistic. Under natural circumstances,

there is seldom more than one species dominant at a bait

after 60 min (e.g., Bestelmeyer 2000), and where there is

more than one species dominant across a number of baits

in a given area at one time, the number of species coex-

isting at a bait is low (e.g., !3; C. L. Parr and A. N.

Andersen, unpublished data). Thus, an absence of baits

with high richness and dominance could be a consequence

of the constraints associated with the shape of abundance

frequency distributions.

However, the simulations indicated that it is also pos-

sible to have high dominance and high richness in a com-

petitive situation with a realistic abundance frequency dis-

tribution, high ant abundance, many baits occupied, and

a weighted, rather than uniform, occupancy frequency dis-

tribution (or the way in which ant species differentially

occupy baits; fig. 3C; app. A). The high level of bait oc-

cupancy and high abundance coupled with at least some

measure of aggregation meant that although dominant

ants controlled some of the baits, at least several other

baits could support a variety of nondominant species (and

also occasionally dominant species at low abundances).

That this was the case is clearly shown by the relaxed

competition model, which tended to result in even higher

richness at high dominance levels, and the intensified com-

petition model, in which the reduction in the number of

ants that could co-occur at a bait strongly depressed species

richness. Indeed, these outcomes also suggest that the

mechanism underlying the presence of both high domi-

nance and richness is similar to the aggregation model of

coexistence proposed by Atkinson and Shorrocks (1981,

1984). In this model, developed originally for species on

patchy, ephemeral resources and since supported in many

taxa (Ives 1991; Giller and Doube 1994; Kouki and Hanski

1995; Krijger and Sevenster 2001), higher levels of intra-

specific competition relative to interspecific competition

enable inferior competitors to coexist. Thus, high species

richness can be maintained. The simulations suggest that

the upper right-hand portion of the dominance-richness

space can be filled given a scenario that might be consid-

ered realistic for a variety of organisms.

If this space can be filled under a biologically realistic

scenario, the question remains as to why the combination

of high richness and dominance is so uncommon for ant

assemblages. One reason might be that interspecific com-

petition is much more pronounced than intraspecific com-

petition in ants, so it makes coexistence via an aggregation

model of the kind proposed by Atkinson and Shorrocks

(1981, 1984) unlikely. This does seem to be the case. Usu-

ally, ants from the same colony do not compete against

each other but rather recruit additional nestmates to food

resources (Hölldobler and Wilson 1990). Moreover, in our

models in which interspecific competition was increased,

or where competition was pronounced in the absence of

low levels of aggregation, high dominance was never ac-
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companied by high richness (see app. A; fig. B7). There-

fore, it is clear that interspecific competition of the form

envisaged by Andersen (1992, 1997b), and accepted by

several other workers, can also produce the descending

part of the dominance-richness relationship (see fig. 4).

Once again, it appears that regional processes might con-

strain the dominance-richness relationship to a given

form, while local factors, such as competition, are likely

to alter it further. Thus, interspecific competition can still

be considered a hallmark of ant ecology (Hölldobler and

Wilson 1990).

The Area between the Bounds

The model showed that patchy occurrence of ants at baits

can result in variation between the upper and lower

bounds in the central area of the unimodal relationship

(fig. 1, area C). Reducing occupancy at baits resulted in a

variety of outcomes especially at intermediate dominance

levels (app. A; e.g., fig. B3B), producing variation similar

to the field data but not identical to it (figs. 2, 4; table 3).

While Gotelli and Ellison (2002) suggest that unoccupied

baits (patchiness) reflect nonlimiting resources, our data

and models indicate that the converse might also be true

(see also Palmer 2003). As the number of baits occupied

increases, the starting abundance of ants (a) must also

increase; otherwise, dominance is 0. Therefore, bait oc-

cupancy is likely to be proportional to resource availability.

Increased foraging intensity of ants in areas of high re-

source availability (Sanders and Gordon 2002) lends fur-

ther support to this idea. Although this study cannot un-

equivocally demonstrate the influence of resource

availability on bait occupancy (especially because model

data and field data produced rather different quantile re-

gression values), these simulations do draw attention to

the importance that patchiness might have as a mechanism

generating the scatter of points in dominance-richness

relationships.

Conclusions

The unimodal relationship between dominance and rich-

ness in ant assemblages appears to be characteristic of ant

assemblages across a wide variety of scales. However, like

other such relationships, there is substantial variation

about it, which appears to be a consequence of resource

availability and patchiness. Moreover, the form of the up-

per bound to the relationship is likely constrained by those

processes that lead to skewed abundance frequency dis-

tributions, while local factors such as variation in abun-

dance (which could be a consequence of stress) and in-

terspecific competition can substantially modify it. What

the relative contribution of each of these factors is likely

to be has yet to be determined, but the similarity of as-

semblages across three continents suggests that regional

processes deserve further scrutiny. This finding is in keep-

ing with work on a wide variety of other assemblages

(Caley and Schluter 1997; Lawton 1999; Blackburn and

Gaston 2001; Smith 2001; Ricklefs 2004).
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