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Accurately determining the system order plays a vital role in system identification directly 

related to the accuracy of identification results, especially for nonlinear system identification. 

Due to the need for human subjective judgment, the traditional sequence determination 

method easily causes uncertainty in the results, and the phenomenon of virtual mode or 

omission occurs. An automatic nonlinear subspace identification method is proposed to 

address the above problems. When the eigenvalue decomposition of the constructed Hankel 

matrix is performed, the calculation range of the modal order of the system is estimated. The 

similarity coefficient and distance function are introduced to cluster the identified modal 

results, the poles of the false modes are removed to obtain the cluster stabilization diagram, 

and the best order of the system is received. Then the modal parameters and nonlinear 

coefficients are obtained. Simulation examples are carried out to verify the effectiveness and 

robustness of the proposed method. An experimental study is carried out on a multilayer 

building with nonlinear characteristics. Compared with the traditional stabilization graph, 

the accuracy of the automatic order determination proposed in this paper is proved.  
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Nomenclature 

(Nomenclature entries should have the units identified) 

A = dynamical system matrix of the state-space model 

Ac = dynamical system matrix of the continuous-time state-space model  

B = input matrix 

Bc = input matrix of the continuous-time state-space model 

C = output matrix 

c = damping 

Cd = viscous damping matrix  

D = direct feedthrough matrix of the state-space model 

f(t) = force vector 

H = underlying linear system receptance matrix 

HE = "extended" frequency response function (FRF) matrix 

K = stiffness matrix 

k = stiffness 

M = mass matrix 

m = mass 

NSI= nonlinear subspace identification 

p = eigenvalue of the system matrix 

r = natural frequency 

x = state vector  

z = displacement vector 

ω = angular frequency 

ξ = damping ratio  

α = coefficient of nonlinear damping  

Δt = sampling period 



I. Introduction 

n engineering, system identification [1][2] plays a significant role, which can provide theoretical support for 

response analysis [3], fault diagnosis, safety evaluation, and structural optimization [4]. This process can be applied 

to linear systems [5] and nonlinear ones [6][7]. Regardless of the type of system, determining the best model order is 

directly related to the accuracy of the identification result. 

In general, Singular Value Decomposition is used to evaluate system order in the linear methods. The order of 

the system is determined by examining the difference between two adjacent singular values, where the number of 

singular values before the maximum difference is the order of the system. However, the higher-order singular values 

of the matrix are not zero in real systems due to noise, often causing modal omission and spurious modal 

phenomena [8][9]. Different techniques were introduced to reduce user interaction. Vanlanduit et al. [10] proposed 

an automatic modal parameter estimation algorithm based on the maximum likelihood estimator. By making use of a 

clustering algorithm, the classification of physical and computational poles could be performed in an automatic 

manner. Zhang et al. [11] introduced the component energy index to measure the energy contribution of signal 

components. In this way, the order estimate is given in terms of component energy index rather than matrix singular 

values to avoid underestimating the state space model order. A new covariance driven stochastic subspace 

identification method [12] based on the automatic analysis of stabilization diagrams is proposed, successfully 

identifying a long-span arch bridge first 12 modes. Ni et al. [13] apply a recursive algorithm without SVD to 

determine the time-varying modal parameters. For the continuous real-time monitoring of structures, Bakir [14] 

proposed the Modal Phase Collinearity index to eliminate false modal poles and then used hierarchical clustering to 

perform large-scale clustering of real modalities. Rainieri et al. [15] developed an automated output-only modal 

parameter estimation, set the element count threshold as a function of the size of the hierarchical clustering 

dendrogram, and obtained candidate modalities for the true modalities. To sum up, in view of the problem of 

underestimating or overestimating the model order, scholars have conducted much research on linear structures and 

less on the problem of order determination of nonlinear structures. Nonlinear subspace identification (NSI) has been 

extensively developed recently[16][17][18]. Zhu et al. [19] broadened the method to recognize nonlinear damping 

and combined Bayesian methods [20] to discuss unknown models. Noël et al. [21] first introduce the stabilization 

diagrams in the presence of nonlinearity, and the results show the proposed method is effective for retrieving linear 

system parameters from nonlinear data. Marchesiello et al. [22] investigated the impact of spurious poles on the 

I 



nonlinear subspace identification and introduced some modal decoupling tools, finally identifying the modal 

contributions of physical poles on the nonlinear dynamics. 

This paper proposes an automatic nonlinear system identification method using clustering judgment based on 

similarity filtering. Based on the traditional stabilization graph in NSI, a modal matrix and a distance function are 

constructed. Through clustering judgment based on similarity distance for each order mode, the number of modes 

that reach a predetermined scale is taken as the best order of the structure to avoid human judgment errors. The rest 

of this paper outline is as follows: Section II. A introduces the characterization of nonlinearity. Section II.B obtains 

the underlying frequency response function based on NSI. Automatic determination of modal order based on the 

Jaccard similarity coefficient is presented in Section II.C. Section III investigates the numerical simulation of the 

MDOF system with cubic stiffness and Coulomb friction. Section IV presents an experimental study on multilayer 

building with nonlinearity. The conclusions are drawn in Sect. V. 

II. Theory 

As known, nonlinear subspace identification [19] establishes the relationship between the underlying frequency 

response function and the nonlinear parameters. The accuracy of the nonlinear subspace identification method 

mainly depends on two factors, one is the nonlinear characterization, and the other is the order determination of the 

underlying linear system. The former has been studied in previous work [19], and the latter is the focus of this work. 

The equation of motion of a nonlinear system with r nonlinear parameters (nonlinear springs or dampers) can be 

described as 

         
1

, ,
r

i i
i

iz t z t z t l f tW z z t


     M C K                                                     (1) 

where M∈Rn×n, C ∈Rn×n, and K∈Rn×n are the mass, viscous damping, stiffness matrices, z(t) is the generalized 

displacement vector, and f(t) is the force vector. The nonlinear term is expressed as the sum of r components, each 

depending on the nonlinear scalar function Wi(t) through a vector li, which indicates the nonlinear element's location 

and whose entries may assume the values 1, -1, or 0. λ is the identified nonlinear coefficient in Fig. 1. 
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Fig. 1 Closed-loop representation with nolinearity 

A. Characterization of nonlinearity 

The classical way of applying the nonlinear subspace identification techniques requires a characterization step, 

which defines the nonlinear basis functions Gi(t) and the location of the nonlinearities. Typically, the restoring force 

surface method (RFS) can be used to have an initial guess about the nonlinear functions to include in the subspace 

analysis. The RFS constructs the three-dimensional point set between restoring internal force, velocity, and 

displacement. 

Eq. (1) can be rewritten as 

     ,z t F z z f t  M                                                                (2) 

where  ,F x x is restoring force of the system, and it can be expressed as 

           
1

,, ,
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F tW zz z z t z t f t zz t
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   = -  C K M                                                 (3) 

The intersection line between the surface with displacement x=0 and the restoring force surface can be obtained 

in [19]. This line represents the relationship between speed and restoring force, and represents the characteristics of 

system damping. More recently, a Bayesian approach has been developed to better characterize the nonlinear 

functions included in NSI [20].  

 

 



B. Underlying Frequency Response Function 

The equation of motion of a nonlinear system can be expressed as the state-space formulation. The state vector is 

chosen as  Tx z z  , the state-space formulation is described as 
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where Ac is the dynamical system matrix of the continuous-time state-space model, Bc is the input matrix of the 

continuous-time state-space model, C is the output matrix, and D is the direct feedthrough matrix of the state-space 

model. 

Meanwhile, the dynamical system matrix of the discrete state-space model A can be obtained 

c te  AA                                                                  (6) 

where Δt is the sampling period. 

The input matrix B is 

  1
2 2

c t
h h c ce I 
 AB A B                                                                   (7) 

The nonlinear subspace identification procedure is based on estimating the state space matrices A, B, C, and D 

obtained within a similarity transformation. Due to the nonlinear parameters, the “extended” frequency response 

function (FRF) matrix is expressed as 

    1

2 2 ,c t i t
E h hz e z e 
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   AH D C I A B                                         (8) 

After some mathematical manipulations [16], it can be proven that 

   1 1E r rl l   H H H H                                                 (9) 

where 

    12
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
  H K C M                                                 (10) 



is the underlying linear system receptance matrix. The nonlinear coefficients λi can be identified in Eq.(9), which are 

complex-valued and frequency-dependent. Ideally, the real parts of the coefficients converge to their exact values, 

independent of frequency, while the imaginary parts are relatively small [16]. 

General, the model order n can be confirmed as the singular value decomposition. As mentioned in Ref.[20],  the 

singular value decomposition (SVD) of the following weighted oblique projection is performed: 
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where S1 can be expressed： 
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where the number of non-zero elements is the order of the underlying linear system. 

When the matrix A can be estimated, the eigenvalue decomposition is implemented 

 -1A ΨΛΨ                                                                  (13)  

Where  idiag Λ  represents a diagonal matrix of eigenvalues，Ψ represents a matrix of eigenvectors.  
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where pi represents the eigenvalues of the system matrix; t is the minimum sampling time. 

Thus, the natural frequency and damping ratio are obtained: 

 2, 1i i i i i ip p r jr        (15) 

The i-th order natural frequency ri, damping ratio ξi, and mode shape Φi are: 

 | |iir p    (16) 
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C. Automatic determination of modal order based on Jaccard similarity coefficient 

First of all, it is necessary to determine the minimum order and maximum order, and the real order of the 

system needs to be included in this range. The initial calculation order of the system is 2, and the maximum order is 



determined according to eigenvalue decomposition based on Eq. (12). Taking the value that accounts for 90% of the 

eigenvalues as the assumed true order ñ, the maximum calculation order is 10ñ, then the modal order is 10ñ /2=5ñ 

because the modal order is 1/2 of the system order.  

When the calculation order range is determined, the nonlinear subspace algorithm is used to identify the modal 

parameters of the potential linear system of the structure, and 5ñ groups of identification results are obtained, 

including the frequency values and the damping ratios. 

The 5ñ group recognition result is regarded as a 5ñ class, a 5ñ subset is established, and the 5ñ subset is 

written into the lower triangular matrix G. The distance function is used to judge the similarity of frequency and 

damping ratio, and the modal square matrix is constructed as follows: 
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where gj
i
 = (rj , d,j)i represents jth element in ith group, rj is the jth modal frequency and dj is the jth modal damping. 

Jaccard similarity coefficient [23] is a statistic used to compare the similarity and diversity of sample sets. The 

Jaccard coefficient can measure the similarity of a finite sample set, which is defined as the ratio between the size of 

the intersection and the size of the union of two sets 

 ,
U V U V

J U V
U V U V U V

 
 

   
                                                       (20) 

If U and V are coincident, then define J(U, V) = 1. So there is 

 0 , 1J U V                                                                   (21) 

The i-th column modal vector (ri , di)a in the parameter result of group a and the modal vector (rj , dj)b of the j-th 

column in the parameter result of group b are regarded as two sets, and the similarity of the two sets is computed: 
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Starting from the initial set, calculate the distance between the ith subset and the jth subset of Jaccard in turn. To 

establish the distance matrix, the similarity between the vector gi
a and the vector gj

b needs to be considered, and the 

distance is defined as 



  2 2

| |
, 1

( ) ( ) | |

a b
i ja b

J i j a b a b
i j i j

g g
d g g

g g g g
  

 

g

g
                                     (23) 

δ is the threshold value. When dJ is set to be less than δ, the two-order modes meet the requirements of the 

distance function and are clustered into one class. Based on experience, the value of δ is set to =0.01. It can be 

adjusted according to the test noise and other factors in practical applications. When all orders are clustered, the 

number of modalities in each classification is counted. Since the number of data groups is 5ñ, when the number is 

greater than 0.7×5ñ =3.5ñ, the cluster is considered to be a true modal cluster. Clusters with a number less than 3.5ñ 

were regarded as false modal clusters. After clustering, the modal clustering matrix of the stable poles is obtained, 

and they are drawn into a cluster stabilization diagram. The number of stable axes ň is counted as the best order of 

the system, which is substituted into Eqs. (8) ~ (10) in the nonlinear subspace method. Then, modal parameters of 

the underlying linear FRF and nonlinear parameters can be obtained. The framework of this method is shown in Fig. 

2. 
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Fig. 2 Automated nonlinear subspace identification process 



III. Numerical example 

A numerical example is considered to demonstrate the performance of the automatic nonlinear identification 

approach with simulated data from MDOF systems with typical nonlinear characteristics. Consider the MDOF 

system with cubic stiffness and Coulomb friction depicted in Fig. 3. 
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Fig. 3 A six degrees of freedom mass-spring system with cubic stiffness and Coulomb friction 

The system parameters is summarized in Table 1. The type and the location of the nonlinearity can be obtained. 

In this section, the mode order is mainly investigated. 

Table 1 System parameters of six degrees of freedom with cubic stiffness and Coulomb friction 
Mass (kg) Linear stiffness (N/m) Damping (Ns/m) Nonlinear stiffness Nonlinear damping 
m1=m3=m5=1 
m2=m4=m6=0.5 

k1= k4=6000 
k2= k3=2000 
k5=4000 k6=5000 
k14= k25= k36=1000 
k30= k60 =1000 

ci=0.2 (i=1,2,3,4,5,6) 
c14= c25= c36=0.1 
c30= c60 =0.05 

knl =1×108 N/m3 α1=1  

 

A zero-mean Gaussian random force is selected to be applied at DOF 1, whose root-mean-square value is 30 N. 

Numerical integration of the equation of motion has been performed, and a total number of 105 samples have been 

generated. 2% noise of the signal standard deviation is added to the signal. The traditional stabilization diagram can 

be shown in Fig. 4. There are false modes, unstable poles, and stable poles for the underlying linear FRF of the 

nonlinear system, making it difficult to determine the order of the system.  
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Fig. 4 The traditional stabilization diagram  
 

Meanwhile, the proposed cluster stabilization diagram is described in Fig. 5 with model orders from 2~100. The 

similarity coefficient and distance function are used to cluster the identified modal results, the poles of the false 

modes are removed to obtain the cluster stabilization diagram, and the true order (n=6) of the system is obtained 

automatically, avoiding the influence of human judgment. The underlying estimated FRF h61 can be obtained as 

shown in Fig. 6, which is in good agreement with the true value. The modal frequencies are shown in Table 2, and 

the maximum error is only 2.04%. 
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Fig. 5 The cluster stabilization diagram with the threshold value δ =0.01 
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Fig. 6 Underlying FRF h61 

0

4

8

12

Cubic stiffness Coulomb friction

0.99

9.76

0.01

nlk

S
tif

fn
es

s 
an

d 
da

m
pi

ng
 

rm
s 

fo
rc

e 
co

nt
ri

bu
ti

on
(N

rm
s)

25k 60c
1

Nonlinear force 
contribution is dominant

3.50

 

Fig. 7 Stiffness and damping rms force contributions  

Table 2 Modal frequencies of underlying FRF with 2% noise 
Mode order 1 2 3 4 5 6 
Exact value 6.68 10.41 13.61 18.01 21.14 25.26 
Identified value 6.69 10.62 13.69 18.00 21.11 25.19 
Error/% 0.06 2.04 0.62 -0.08 -0.14 -0.27 

 

The coefficients of the nonlinear basis functions can be calculated by Eq. (9) with model order n=12. Fig. 8~Fig. 

9 illustrate the identified nonlinear stiffness k3 and damping α: the frequency correlation is little, and the imaginary 

part is zero relative to the real part, confirming the identification quality. The nonlinear force contribution index [19] 

is used to evaluate the strength of nonlinearity as follows: 

   , ,rms i iCon rms W z z t  &                                                               (24) 

Force contribution is shown in Fig. 7, which show the structure has obvious cubic nonlinearity and Coulomb 

friction. The identified coefficients are listed in Table 3. The maximum error of the nonlinear stiffness is 4.75%, 



which assesses the goodness of identification. Results show that the proposed automatic nonlinear subspace method 

not only effectively distinguishes the real modes from the false modes but also judges the stable axis quickly based 

on automated ordered cluster analysis, which verifies the validity of the method. 
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Fig. 8 Real and imaginary parts of the coefficient k3. 
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Fig. 9 Real and imaginary parts of the coefficient α. 

Table 3 System parameters with noise 
 Nonlinear stiffness k3 (N/m3) Nonlinear damping α 
Exact value 1.00×108 1.00 
Identified value 1.03×108 1.0475 
Error/% 3.12% 4.75% 

 

IV. Experimental study 

The multilayer building with nonlinearity is depicted in Fig. 10. The structure has been studied in [10] and [25] 

and the specific geometric parameters can be found in [10]. A thin wire with a small pretension is attached to the 

fifth layer, which makes the restoring force nonlinear if its motion is large enough. Ref. [26] indicated that the wire 

produces a nonlinear force of the form fn=klx5+knx5
3. An external random is applied by using an electrodynamic 

shaker at the second layer of the structure, whose RMS value is 20.89 N. An acceleration sensor is arranged in each 



layer, and the displacement signal can be obtained by quadratic integration of the acceleration response. The 

excitation and the response of the second layer are shown in Fig. 12. 
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Fig. 10 The schematic of a multilayer building with nonlinearity 
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Fig. 11 The experimental photo of the multilayer building with nonlinearity 
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Fig. 12 Experimental test. (a) Excitation signal; (b) Time history of the second layer's displacement by quadratic 
integration 

A first experimental characterization is carried out to check if the structure behaves nonlinearly for the selected 

excitation level (20.89 Nrms). To this end, a second test is performed applying a random excitation at a much lower 

level (0.76 Nrms). The experimental FRF h52 is computed in both cases using the average H1, H2 estimator, and the 

result is depicted in Fig. 13. 

 

Fig. 13  Comparison between linear estimates of h52 at low (0.76 Nrms, red solid line) and high (20.95 Nrms, 
black dotted line) excitation level. 

 
Clear signs of nonlinearity can be observed in the FRFs, mainly consisting of frequency shifts and augmented 

distortions. Considering now the high level case, the proposed method can be applied to estimate the parameters of 



the nonlinear model.The traditional stabilization diagram can be shown in Fig. 14; there are false modes, unstable 

poles, and stable poles. For comparison, the proposed cluster stabilization diagram is described in Fig. 15. There are 

five groups of clusters, so the modal order of the system is n=5, and the proposed method can effectively avoid false 

modes. Then, the modal frequency of each order can be obtained by averaging each group of cluster identification 

results. The coefficient of the nonlinear basis functions can be calculated by Eq. (9) with model order n=10.  The 

real part and imaginary part of the nonlinear coefficient can be shown in Fig. 16 between 2 and 15 Hz. A spectral 

mean in this range is a reasonable choice because the real part is higher than the imaginary part, with a 

real/imaginary ratio of roughly 36. The real part also shows a stable behavior, confirming the quality of the 

estimation. The mean value of the real part is kn= 6.11×107 N/m3, with a standard deviation of 1.78×104 N/m3. This 

result is consistent with the one in [10], which was 6.28×107 N/m3. 
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Fig. 15 The cluster stabilization diagram with the threshold value δ =0.01 

 

Fig. 16 Real and imaginary parts of the coefficient kn. 

As known, the dynamic characteristic of this structure can be considered as a linear system when the low 

excitation level (0.76Nrms) is conducted in the system. In this case, the corresponding FRF h32 is shown in Fig. 17, 

and the frequencies can be found in our previous work [10]. By comparing the frequency identification results of the 

two methods above, the absolute maximum error occurs in the fifth mode (1.62%) in Table 4. The underlying-linear 

FRF estimated using NSI is depicted in Fig. 14 and overlapped with the low-level experimental one. As previously 

stated, the correspondence is acceptable except for the fifth mode. The reason for this discrepancy is explained in 

[10], and it may be addressed to another form of nonlinearities not included in the present model. 



 

Fig. 17 Underlying linear FRF estimated using NSI and the low-level experimental one 

Table 4 Comparison of frequency estimation by two methods 
Mode number 1 2 3 4 5 
Frequency of linear system at low-level excitation [10] (Hz) 2.94 6.13 10.23 14.61 27.58 
Frequency of underlying FRF based on the proposed method (Hz) 2.95 6.07 10.18 14.55 27.14 
Error/% -0.48 0.93 0.46 0.40 1.62 

 
Results prove the accuracy of the algorithm in identifying the frequency of the underlying linear system and also 

show the effectiveness of the automatic order determination, which reduces the difficulty of the identification task. 

The robustness of the clustering algorithm is further investigated by assessing the effects of the threshold value 

δ. To this end, different values of δ are used in the clustering stage (δ=0.001,0.005,0.02,0.05,0.08). The 

corresponding cluster stabilization diagrams are shown in Fig. 18. When the threshold value (δ=0.001) is too small, 

it can cause some modal loss due to noise (in Fig. 18 (a) ); On the opposite side, a high value (δ=0.08) will add one 

more  cluster with a large dispersion in Fig. 18 (e), which can be excluded based on other tools such as underlying 

FRF. When the threshold is selected between 0.005 and 0.05, the results have good consistency, which verifies the 

robustness of the proposed method. 
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Fig. 18 The cluster stabilization diagram with the different threshold value (a) δ =0.01; (b) δ =0.005:(c) δ = 0.02; 

(d) δ =0.05; (e) δ = 0.08 



V. Conclusion 

In this paper, an automatic nonlinear system identification method is proposed based on the clustering 

stabilization graph and similarity filtering. The significant advantage of the method is that it can effectively 

eliminate the spurious modes of the underlying linear system, determine the true order of the structure, and reduce 

the influence of human judgment. MDOF simulation system with typical nonlinear characteristics is conducted to 

verify the proposed approach's effectiveness. The multilayer building with nonlinearity is investigated 

experimentally. Linear modal parameters can be obtained as a criterion for subsequent verification by applying low-

level excitation. Further, at a high-level excitation, the method of this paper is used to determine the order of the 

structure and then obtain the modal parameters of the underlying linear system. By comparing with the traditional 

stabilization graph, the accuracy of the automatic order determination proposed is proved. Finally, nonlinear 

parameter coefficients are effectively identified. Under different thresholds, the method has better robustness. The 

above test results verify the effectiveness of the method proposed in this paper, and it has good adaptability to 

engineering. 
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