
12 June 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Mix & Latch: An Optimization Flow for High-Performance Designs with Single-Clock Mixed-Polarity Latches and Flip-
Flops / Minnella, Filippo; CORTADELLA FORTUNY, Jordi; Casu, Mario R.; Lazarescu, Mihai T.; Lavagno, Luciano. - In:
IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - (2023), pp. 1-1. [10.1109/ACCESS.2023.3265809]

Original

Mix & Latch: An Optimization Flow for High-Performance Designs with Single-Clock Mixed-Polarity
Latches and Flip-Flops

Publisher:

Published
DOI:10.1109/ACCESS.2023.3265809

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2977854 since: 2023-04-11T07:18:27Z

IEEE

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Mix & Latch: An Optimization Flow for
High-Performance Designs with
Single-Clock Mixed-Polarity Latches and
Flip-Flops
FILIPPO MINNELLA1, JORDI CORTADELLA2, MARIO R. CASU3, MIHAI T. LAZARESCU4,
LUCIANO LAVAGNO5
1Politecnico di Torino, Turin I-10129, Italy (e-mail: filippo.minnella@polito.it)
2Universitat Politècnica de Catalunya, Barcelona S-08034, Spain (e-mail: jordi.cortadella@upc.edu)
3Politecnico di Torino, Turin I-10129, Italy (e-mail: mario.casu@polito.it)
4Politecnico di Torino, Turin I-10129, Italy (e-mail: mihai.lazarescu@polito.it)
5Politecnico di Torino, Turin I-10129, Italy (e-mail: luciano.lavagno@polito.it)

Corresponding author: Filippo Minnella (e-mail: filippo.minnella@polito.it).

ABSTRACT Flip-flops are the most used sequential elements in synchronous circuits, but designs based
on latches can operate at higher frequencies and occupy less area. Techniques to increase the maximum
operating frequency of flip-flop based designs, such as time-borrowing, rely on tight hold constraints that
are difficult to satisfy using traditional back-end optimization techniques. We propose Mix & Latch, a
methodology to increase the operating frequency of synchronous digital circuits using a single clock tree
and a mixed distribution of positive- and negative-edge-triggered flops, and positive- and negative-level-
sensitive latches. An efficient mathematical model is proposed to optimize the type and location of the
sequential elements of the circuit. We ensure that the initial registers are not moved from their initial
location, although they may change type, thus allowing the use of equivalence checking and static timing
analysis to verify formally the correctness of the transformation. The technique is validated using a 28 nm
CMOS FDSOI technology, obtaining 1.33X post-layout average operating frequency improvement on a
broad set of benchmarks over a standard commercial design flow. Additionally, the circuit area was also
reduced by more than 1.19X on average for the same benchmarks, although the overall area reduction is
not a goal of the optimization algorithm. To the best of our knowledge, this is the first work that proposes
combining mixed-polarity flip-flops and latches to improve the circuit performance.

INDEX TERMS Integrated circuit synthesis, Design automation, Sequential circuits, Latches, Flip-flops

I. INTRODUCTION

SEQUENTIAL circuits use flip-flops (FFs) or latches for
data storage. Latches can be used in error-resilient appli-

cations [1], work at lower supply voltages, reduce power con-
sumption [2]–[4], and can increase operating frequency [5],
[6]. Yet, more complex timing constraints limit their support
in commercial flows and their use in industrial designs. This
motivated us (and many others, as described below) to auto-
matically convert an FF-based design to a latch-based design.
We focus mostly on performance, i.e., on reducing the clock
period, but in some cases we also achieve area improvements.
We use three combined techniques: (1) latch-based design
with time borrowing, (2) negative transparent latch (NTL)-

based retention barriers, instead of delay padding, to meet
short-path hold constraints, and (3) only one clock tree. We
start with an arbitrary FF-based design and temporarily con-
vert it into a pulse-based single-phase positive transparent
latch (PTL) design functionally equivalent to the original,
but faster thanks to time borrowing and reduced delays in
latches. Latch-based designs exacerbate the presence of hold
violations, which must traditionally be fixed either by using
narrow clock pulses or adding buffers to delay short paths [7].
Narrow clock pulses are difficult to distribute without van-
ishing and reduce the margins for time borrowing. On the
other hand, buffers increase area and power and may have a
negative impact on timing.

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265809

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

We propose the Mix&Latch method, which uses a con-
ventional 50% duty cycle (DC) single-phase clock. Hold
time violations are solved by inserting NTLs driven by the
same clock tree as the PTLs. First the resulting clock pe-
riod is optimized by combining time borrowing and NTL
retiming. Then, as a secondary objective, area recovery is
used to reduce the area overhead by creating NTL-PTL se-
quences whenever possible. These master/slave pairs are then
converted into either positive-edge-triggered flops (PETFs)
or negative-edge-triggered flops (NETFs), thus obtaining an
optimized mixed design with PTL, PETF, NTL, and NETF
sequential elements. Mix&Latch also preserves a sequential
element in each of the original FF locations. This enables a
1-to-1 mapping from FFs to sequential elements and ensures
that equivalence checking can be performed using conven-
tional methods comparing combinational clouds.

Fig. 1 shows the application of our optimization algo-
rithm to a simple case. The original arbitrary PETF circuit
is shown in Fig. 1a. All pins are annotated with a parenthe-
sized number pair indicating the (minimum arrival time at
pin p (ATmin

p), maximum arrival time at pin p (ATmax
p)).

For simplicity, in this figure we assume unitary delays for
combinational gates, zero delays for the sequential elements,
and zero setup/hold FF constraints, while our algorithm uses
delays from timing analysis. In a PETF-based circuit, the
minimum clock period, Tmin, is set to the longest maximum
arrival time at the endpoint pin (ATmax

end), hence Tmin = 6 in
our example. After the PTL conversion shown in Fig. 1b, the
circuit can use time borrowing up to half a clock period (for
DC = 50%) for ATmax

end

ATmax
end = Tmin (1 +DC) =⇒ Tmin =

6

1 + 0.5
= 4. (1)

Note that there is an additional critical path with delay 6,
PTL B → PTL Z, due to time borrowing at PTL B.

Despite the desirable Tmin reduction by 33% compared
to the PETF version, there are hold violations at the inputs
of PTLs X, Y, and Z because their minimum arrival time is
lower than the positive pulse width, PPW = DC · Tmin. To
solve the hold violations, a group of nets is selected using the
mathematical model described below, and an NTL is placed
in front of the endpoint pin of the selected nets. As the NTLs
become transparent after the positive pulse, they guarantee a
delay longer than the PPW for all paths.

However, the added NTLs can reduce performance. For
example, Fig. 1c shows that while placing the NTL too close
to the source PTL solves the hold violation at the input of
PTL X, the additional delay causes a setup violation at the in-
put of PTL Z, which now requires a longer period, T > Tmin.
Fig. 1d shows that an NTL can solve the hold violations at
the input of PTL Z, but it causes a new setup violation at the
input of the NTL that closes at T . Hence, the signal cannot
reach PTL Z in time, which also requires a longer T > Tmin.

Our algorithm optimizes the position of NTLs to reach
a solution that, as shown in Fig. 1e, solves all hold vio-

lations without performance penalty, under the assumptions
discussed in Section III-C.

Next, adjacent NTL-PTL pairs are merged as PETF to
reduce the area, and PTL-NTL pairs as NETF, as shown in
Fig. 1f. This solution has the same Tmin and area as the one
in Fig. 1b, no hold violations, and uses the same number of
sequential elements as the original version. In some cases
some latches cannot be merged, which leads to some area
penalty (discussed in the experimental results). In other cases
the PTLs do not need hold time fixing, yielding both faster
and smaller circuits.

Several works propose design optimization using a mix of
PETF and PTL. Here we describe the main ones, in order
to set the stage for our work, while a more complete litera-
ture review is provided in the next section. Hassan et al. [3]
propose to start from an FF-based netlist, analyze sequences
of three FFs, and replace the middle one with a PTL re-
timed to match the timing constraints. This approach seems
to increase the clock frequency, reduce the power consump-
tion and the cell area, but the experimental data cover only
logic synthesis, without considering placement and routing.
Furthermore, equivalence checking may be more difficult be-
cause retiming changes the original position of the sequential
elements [8].

Singh et al. [2] describe a retiming method to generate
a PTL-NTL-based netlist starting from a FF-based one. Be-
cause the synthesis tools have poor support for latch retim-
ing, they propose replacing the master/slave latches with FF
pairs, doubling the frequency and finally retiming the design
using a commercial tool. Although they focus on reducing
the power consumption, the results are poor in terms of both
power and area because the algorithm is effective for only one
frequency due to a sub-optimal retiming strategy. Moreover,
experimental results are shown only for one circuit.

Our main contributions to the state-of-the-art are:
• A two-step implementation flow to obtain a working

layout for an optimized version (Fig. 1f) of the PETF-
based netlist (Fig. 1a). The implementation is fully
based on commercial EDA tools and we fully exploit
useful skew, both in the baseline against which we com-
pare and in our own results.

• A methodology to reduce the sequential resources and
generate the NTL allocation, using post-layout timing
data and exploiting incremental placement and routing
starting from the post-layout netlist. The NTLs work as
retention barriers for signals in short paths, reducing the
hold constraints complexity. To recover area, the PTL-
NTL pairs are merged into FFs.

• Maintaining a 1-to-1 correspondence between each
original FF and a FF or a latch in the final circuit, to
allow equivalence checking for design verification with
traditional tools.

• The evaluation of the proposed method on a diverse
range of circuits, each implemented at multiple frequen-
cies, achieving an average frequency increase of 1.33X
and a 1.19X average area reduction.

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265809

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

D Q
PETF

Z

D Q
PETF

Y

D Q
PETF

X

D Q
PETF

C

D Q
PETF

B

D Q
PETF

A

(1,1)

(1,3)

(1,6)

1D1

(0,0)

(0,0)

(0,0)

N1

(2,4)

(1,1) (2,2)N2

N4 (3,5)

N3

1D2

(1,3)

(a) Original arbitrary circuit using PETFs

D Q
PTL

Z

D Q
PTL

Y

D Q
PTL

X

D Q
PTL

C

D Q
PTL

B

D Q
PTL

A

(1,1)

(1,3)

(1,6)

A1D1

(0,0)

(0,2)

(0,0)

N1

(2,4)

(1,1) (2,2)N2

N4 (3,5)

N3

A2D2

(1,3)

(b) PTL-based version of the original circuit

D Q
NTL1

D Q
PTL

Z

D Q
PTL

Y

D Q
PTL

X

D Q
PTL

C

D Q
PTL

B

D Q
PTL

A

(3,3)

(1,5)

(1,8)

1D1

(0,0)

(0,2)

(0,0)

N1

(3,3) (4,4)N2

N4 (3,7)

(2,2)

N3

1D2

(1,5)

(2,6)

(c) NTL close to source PTL

D Q
PTL

Z

D Q
PTL

Y

D Q
PTL

X

D Q
PTL

C

D Q
PTL

B

D Q
PTL

A

(1,1)

(1,3)

(2,

N/A)

1D1

(0,0)

(0,2)

(0,0)

N1

(1,1) (2,2)N2

(3,5)

N3

1D2

(2,4) (1,3)N4

D Q
NTL1

(1,6)

(d) NTL close to sink PTL

D Q
PTL

Z

D Q
PTL

Y

D Q
PTL

X

D Q
PTL

C

D Q
PTL

B

D Q
PTL

A

(2,2)

(2,3)

(3,6)

1D1

(0,0)

(0,2)

(0,0)

N1

(2,2)

N4

(1,1)

(3,5)

N3

1D2(2,4)

(1,3)

(2,2)

D Q
NTL1

N2

D Q
NTL2

D Q
NTL3

(e) NTL-based solution

D Q
NETF

C

D Q
PTL

Z

D Q
PETF

Y

D Q
PETF

X

D Q
PTL

B

D Q
PTL

A

(1,1)

(1,3)

(3,6)

1D1

(0,0)

(0,2)

N1

(2,2)

N4 (3,5)

N3

1D2(2,4)
(2,2)

N2

(f) Solution with merged resources: PTL-to-NTL
yields NETF, NTL-to-PTL yields PETF

FIGURE 1. Optimization algorithm applied to an arbitrary positive-edge-triggered flop (PETF) circuit (1a). Conversion to a circuit based on positive transparent
latch (PTL) (1b). Optimization for sequences of PTL-to-negative transparent latch (NTL) (1c) or NTL-to-PTL (1d). Conversion of complementary latch sequences
(1e) into positive-edge-triggered flops (PETFs) (1f) or NETFs. Pins are annotated with (minimum arrival time (ATmin), maximum arrival time (ATmax)). Gate delays
are unitary and sequential delays are zero.

II. RELATED WORK
A. LATCH-BASED DESIGN TIMING ANALYSIS
The seminal work of [9], [10] provides a formal definition
of the min clock cycle problem for PTL-based circuits based
on linear programming. They resolve the non-linearity of the
constraints using linear inequality constraints to implement
the min/max functions. Their formulation points out two
main parameters for optimizing the clock scheduling for each
PTL: the phase and the width of the high clock pulse.

B. PULSED LATCH SOLUTIONS
The pulsed latch design style is introduced in [11]–[15] using
a circuitry to generate, from the input clock of the digital
system, a different width of the high clock pulse (Ti) for each
sequential block. To limit the area cost, the pulse generators
are shared by PTL groups and they are integrated either in a
single sequential cell for pulsed FF (pulsed latches with the
pulse generator within the latch cell) or in a cell containing
multiple sequential blocks for pulsed registers.

Nevertheless, with shared pulse generators it is very diffi-
cult to prevent pulse signal degradation in all operating con-
ditions [11], and the additional retimed registers for solving

the remaining hold violations further increase the area.

C. SINGLE AND MULTI-PHASE CLOCK SOLUTIONS
A different set of solutions use single or multi-phase clocking
schemes without focusing on the width of the high clock
pulse. Zhang et al. [16] study the distribution of errors caused
by sub-threshold voltage supply and propose a two-phase
clocked latch-based method to solve the timing violations.
Fojtik et al. [1] analyze a two clock-phase latch-based im-
plementation of Razor flops to detect errors in an ARM
Cortex-M3 processor. Cheng et al. [17] discuss a conver-
sion algorithm using three clock phases to improve area and
power consumption. Yoshikawa et al. [18] present a single-
phase forward retiming algorithm for FF-based design con-
version, using commercial tools for retiming. Hassan et al.
[3] and Singh et al. [2] present implementation flows to trans-
form FF-based designs into latch-based or mixed designs.
In almost all previous cases, the optimization uses post-
synthesis timing information that may substantially differ
from the post-layout one, thus potentially leading to grossly
sub-optimal post-layout performance. Furthermore, [3], [18]
evaluate the performance only on post-synthesis data, thus

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265809

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

RTL

Synthesis

Post-syn

netlist

Substitute PETFs

with PTLs

Optimize

PTL-based

netlist

Place and

Route

(To extract info)

PETF

layout

Place and

Route

PTL

layout

Extract timing

information and

NTLs list

Generate new

netlist

Mixed

netlist

Place and

Route

Mixed

layout

FIGURE 2. Implementation flow starting from the register-transfer level (RTL)
description using positive-edge-triggered flops (PETFs), positive transparent
latches (PTLs), and negative transparent latches (NTLs). Synthesis steps are
in red, post-synthesis netlists in orange, layout steps in green, and post-layout
netlists in blue. The PETF layout is only used to provide the baseline results.

ignoring the place and route (P&R) overheads.

III. MIX & LATCH OPTIMIZATION FLOW
Fig. 2 shows our optimization flow, which starts from a
register-transfer level description and produces a layout with
mixed sequential resources. It includes four main steps:

• Generate the PTL-based layout by replacing all sequen-
tial elements with PTLs (shown in the second column in
Fig. 2 and discussed in Section III-A).

• Create a graph representation of the timing and posi-
tional information extracted from the PTL-based lay-
out (discussed in Section III-B, Section III-C, and Sec-
tion III-D).

• Define the circuit location of NTLs, PETFs, and NETFs
using an integer linear programming (ILP) formulation,
and inserting them in the PTL-based netlist.

• Generate the layout of this new circuit (see the right
column in Fig. 2 and the discussion in Section III-E).

The NTL selection using ILP is similar to backward re-
timing [18] in a master-slave FF netlist. However, the for-
mulation and graph representation are different because they
consider the post-layout timing data and avoid the redun-
dant NTLs. The designs are synthesized and implemented at
several clock frequencies to determine iteratively the highest
possible operating frequency for both the mixed design and
of the PETF design.

We leave to future work the in-depth analysis of design for
testability needed for the practical adoption of our method-
ology. We note however that design for testability can be
implemented with traditional tools by adding some scan-only
NTLs to the PTLs [19].

Retiming techniques have the drawback that equivalence
checking for design verification cannot be solved in a reason-
able amount of time even for relatively small circuits, such
as the s38584 from the ISCAS benchmark [8], which we
also use in our experiments as shown in Section IV. Mix &
Latch does not have this problem because it preserves a 1-to-
1 correspondence with the FFs in the original design using
either FFs or PTLs. The 1-to-1 correspondence also helps
solving the initialization problem for the netlist, i.e., finding
a consistent initial value of the circuit registers that maintains
the circuit equivalence [20].

A. POSITIVE TRANSPARENT LATCH-BASED CIRCUIT
The first processing step generates the PTL-based layout.
The register-transfer level description of the target design is
synthesized using a commercial tool. The considered circuits
have only PETFs to ease the analysis, but the same method-
ology can be extended to circuits based on NETFs or mixed.
Once the netlist is synthesized, all the PETFs are replaced
with PTLs using the same commercial tool. Because cell
resizing will be automatically done by the layout tool (if
needed), the PETFs are replaced with the smallest PTLs from
the technological libraries.

The netlist modified this way is provided to the layout
tool, which produces the post-P&R design. Unlike [9], [10],
all hold constraints are temporarily ignored (using a standard
design constraint command of the tool) to obtain a layout of
the PTL-based netlist that meets the setup constraints.

The generated layout thus potentially violates hold condi-
tions, which will be solved afterwards.

B. GRAPH MODEL
The state-of-the-art circuit graph representations [10], [21]
are not suitable for our optimization algorithm because they
either exclude the sequential elements [21], or aggregate pin
data for the worst case delay [10].

For our method, the circuit is represented as a graph
(V,E), where V represents the set of all pins and I/O ports
and E the connections (wires or cells) between them. The
nets and pins of the clock tree are not included.

Fig. 3 shows an example of two graphs which are dis-
cussed later. Static timing analysis (STA) timing information
is a three-value tuple associated to graph edges (see Sec-
tion III-C), while latch location is a value associated to edges
of a different graph (see Section III-D).

C. TIMING GRAPH
We create a timing graph (TG) that drives our optimization
algorithm to limit the setup slack (SS) degradation due to
potential NTL insertions before gate input pins in the PTL-
based netlist. The computation of the edge attributes of this
graph uses the timing data extracted from static timing anal-
ysis (STA), shown in Fig. 4, Fig. 5, and Table 1. Unlike
Fig. 4, all arrival times are obtained from the STA considering
the clock latencies of the PTL-based layout. The pin (p) for
which STA extracts the info is the endpoint of the edge (e) to

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265809

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

N1I N1O
(-1,5,1)

XD
(3,0,1)(-2,6,0)

AQ

N2I

(,5,1)

N2O
(,4,2)

D1I1
(,4,2)

D1O

(,3,3)

BQ (-2,3,1)D1I2
(-2,4,0)

YD
(3,0,3)

CQ

N3O
(,2,4)

N3I

(,3,3)

N4O
(,1,5)

N4I
(,2,4)

ZD
D2I1

(,1,5)
(-2,0,6)

D2O

(,0,6)

(2,0,1)D2I2
(3,1,0)

O

(3,0,1)

(3,0,3)

(-2,0,6)
(3,1,0)

(-2,4,0)

(-2,6,0)

I

(a) : Timing Graph (TG)

N1I N1O XD
cffclat

AQ

D1OBQ D1I2
clat

YD
cff

CQ ZD
cff

D2OD2I2
clat

O

cff

cff

cff

I

(b) : Short-Path Graph (SPG)

FIGURE 3. Graph generation: (a) TG of the example in Fig. 1b. The attribute is a 3-tuple with elements computed using Alg. 1, Eqn. (6), and Eqn. (5), respectively.
The first value is an estimation of the setup slack caused by NTL insertion, the second and third values are the lengths of the sub-paths generated by NTL insertion.
(b) SPG of the same circuit: it has fewer edges and vertices than TG because it considers only pins and connections that belong to short paths.

tp

ATp

ATp

min

max

max

t
CLK

PPW

t
end

ATend

HSp mTBendTBend

T

ATend
min

SSp=0

FIGURE 4. Timing diagram, showing the arrival times and the slacks related
to an ideal clock. During attribute computations the clock latencies are real
and referred to the clock tree built in the PTL-based netlist. Because ATmax

end

arrives during the PTL transparent window, SSp is 0.

HCPp
D QPTL

A
N3 D QPTL

X

D QPTL
Y

N1 N2

1D1

D QPTL
B

N5 (ATend)

N
4

CLK

(tlaunch)scp

(tlaunch)hcp hcp
(tcapture)

max

D Q
NTL

(ATp)
max

p

(mTBend)
SCPp

(tcapture)
scp

FIGURE 5. Circuit showing how the information from the STA tool is extracted.

which the related attribute is associated. From the STA timing
data we obtain three values: (1) the Estimated Setup Slack for
pin p (ESSp), (2) the p to SCPp endpoint delay (Dp

ptl), and
(3) the SCPp startpoint to p delay (Dptl

p). These three values
are assigned as a 3-tuple attribute to the edges of TG.

1) Estimated Setup Slack
The Estimated Setup Slack (ESSp) is computed for each
edge (e) endpoint pin (p) using Algorithm 1, which estimates
the value of the setup slack (SS) related to the pin (p) if an
NTL were placed in front of it. It receives in input the timing
info from STA for the considered pin and returns the attribute
ESSp. It is important to highlight that the computation of
ATmax

p takes into account the possible time borrowed by the
launching PTL. It relies on the following assumptions:

• To estimate the SSp degradation caused by the NTL
insertion, we need the NTL opening time, tntl

open, and
closing time, tntl

close. They depend on the NTL clock la-
tency (tntl

del), from PPW and from T . Since it is difficult
to know tntl

del at this stage, we assume that it is equal to
tHCP

capture, unless an NTL is merged into a NETF when we
use the latency tHCP

launch.
In Fig. 4, the NTL would have the clock latency of
PTL X. Lines 4–10 implement these computations. The
condition on line 4 checks if the pin is the output of a
PTL, thus the resulting NTL would be merged into a
NETF.

• The additional delay from NTL insertion is ignored be-
cause it is usually small compared to the SCPp delay
and because it is hard to estimate before the layout. Note
that we ignore it only to simplify the TG generation, but
in the final layout step the P&R tool does consider the
NTL delays.

We explain the steps in Algorithm 1 analyzing the four
cases which cover all the possible combinations, while in
Fig. 3a we illustrate an example of TG for the circuit of
Fig. 1b:

TABLE 1. Timing computed by Algorithm 1 with data from static timing analysis

NAME DEFINITION

HCPp Hold critical path passing through pin p

SCPp Setup critical path passing through pin p

tHCP
launch Clock latency of the considered HCPp launching PTL
tSCP

launch Clock latency of the considered SCPp launching PTL
ATmax

p Maximum arrival time at pin p

ATmin
p Minimum arrival time at pin p

SSp Setup slack at pin p

HSp Hold slack at pin p

tHCP
capture Clock latency of the considered HCPp endpoint PTL
ATmax

end Maximum arrival time at endpoint PTL
ATmin

p Minimum arrival time at endpoint PTL
mTB end Time borrowing margin at endpoint PTL of SCPp

TB end Time borrowing at endpoint PTL of SCPp

PPW Clock positive pulse width

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265809

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 1 Estimated Setup Slack attribute for pin p

Inputs: Parameters from Table 1 Output: ESSp

1: if HSp ≥ 0 then
2: ESSp ←∞
3: else
4: if p is output of PTL then
5: tntl

del ← tHCP
launch

6: else
7: tntl

del ← tHCP
capture

8: end if
9: tntl

open ← tntl
del + PPW

10: tntl
close ← T + tntl

del
11: if ATmax

p < tntl
open then

12: ESSp ← SSp − tntl
open +ATmax

p +mTB end
13: else
14: if ATmax

p > tntl
close then

15: ESSp ← tntl
close −ATmax

p

16: else
17: ESSp ← SSp +mTB end
18: end if
19: end if
20: end if

a: Case 1 — Positive hold slack
If the considered p has positive hold slack, HSp, then there
is no violation to fix. To reduce the number of NTLs that will
be used after retiming, all the NTLs that would be placed
close to pins not belonging to short paths will not be added
to the PTL netlist. Avoiding NTL insertion means no SSp

degradation, hence in this case we set weight to ∞ (lines 6–
7 of Algorithm 1). An example is the edge D1O → N3I
in Fig. 3a, corresponding to the edge D1 → N3 in Fig. 1b,
which does not belong to a short path.

b: Case 2 — NTL close to the source PTL
The additional delay caused by the late opening of the NTL
may cause a setup violation, as shown in Fig. 1c. Attribute
computation estimates the degradation of the pin setup slack,
taking into account the late arrival time at the selected pin
(ATmax

p), SSp, tntl
open, and the margin for time borrowing

(mTB end). The delay introduced by the NTL can be tolerated
up to mTB end. Lines 11–12 of Algorithm 1 perform these
computations. An example is edge AQ → N1I from Fig. 3a,
corresponding to the edge from PTL A to N1 in Fig. 1c.

Considering that the SCP for this edge ends in PTL Z,
the parameters SSp, ATmax

p and mTB end are all equal to 0
because the SCP delay is equal to the clock period added to
the maximum time borrowing. tntl

open is equal to 2 for all the
cases shown in Fig. 3a because the clock is considered ideal.
Given the previous considerations, compute ESSp:

ESSp = 0− 2 + 0 + 0 = −2 (2)

c: Case 3 — NTL close to the sink PTL
If the input signal of the sink PTL belongs to a critical path,
then the setup constraints added by the early NTL closing
will likely prevent satisfying the setup constraints. If the late
arrival time at the pin, ATmax

p , exceeds tntl
close, then the signal

will not pass through the NTL. The SSp degradation is com-
puted as the difference between these two values (lines 14–
15 of Algorithm 1). An example is edge D2O → ZD from
Fig. 3a, corresponding to the edge from D2 to PTL Z in
Fig. 1d. tntl

close is equal to 4 for all the cases because the clock
is considered ideal and ATmax

p is 6. Given the previous con-
siderations, ESSp is computed as:

ESSp = 4− 6 = −2 (3)

d: Case 4 — General case
If none of the previous cases occurs, then ATmax

p at the NTL
input falls into the NTL transparency interval and there is
no SSp degradation (line 17 of Algorithm 1). An example is
edge D1O → YD from Fig. 3a, corresponding to the edge
from D1 to PTL Y in Fig. 1d.

Considering that the SCP for this edge ends in PTL Y ,
SSp = 1 because the signal arrives 1 time unit before the
rising edge of the clock, while mTB end = 2 because there is
no time borrowing. Given the previous considerations, ESSp

can be computed as:

ESSp = 1 + 2 = 3 (4)

2) Sub-path delays
The second value of the tuple, Dp

ptl, shows the delay of the
path between the pin p and the endpoint PTL of SCPp. It is
equal to the difference between ATmax

end and ATmax
p

Dp
ptl = ATmax

end −ATmax
p . (5)

The third value of the tuple, Dptl
p , shows the delay of the

path between the start point PTL of the SCPp and the pin p.
It is computed as the difference between tSCP

launch and ATmax
p

Dptl
p = ATmax

p − tSCP
launch. (6)

D. SHORT-PATH GRAPH
The Short-Path Graph (SPG) is a subgraph of the TG that
only contains the pins and edges that belong to short paths,
i.e., all those pins p such that HSp < 0. Hold violations will
be fixed by finding a cut (subset of edges) of the SPG where
the NTLs will be inserted.

Two types of edges can be distinguished in the SPG:

E = Ecells ∪ Ewires

whereas Ecells correspond to those edges that connect input-
to-output pins in combinational cells and Ewires correspond
to the remaining edges. The cut of the SPG must be defined
using edges in Ewires.

The insertion of an NTL in an edge may benefit from the
presence of an adjacent PTL at the start or end point of the
edge. Thus, both latches can be merged into an FF, either
PETF (NTL-PTL) or NETF (PTL-NTL), as shown in Fig. 1f.
Thus, we can define

Ewires = Eff ∪ Elat

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265809

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 2 Integer linear programming (ILP) Model
Inputs: SPG // Short-Path Graph

T // cycle period
δ // fraction of T to meet setup constraints
cff // cost of merging an NTL with a PTL
clat // cost of not merging an NTL (clat > cff)

Output: Location of the NTLs (edges with R(e) = 1)

1: E ← Edges(SPG)
2: Ecells, Ewires, Eff, Elat ← E
3: ESSp, D

ptl
p , Dp

ptl ← TimingAttributes(E)

minimize clat

∑
∀e∈Elat

R(e) + cff

∑
∀e∈Eff

R(e) (7)

subject to ∀e ∈ Ecells : R(e) = 0 (8)
∀e ∈ Ewires : R(e) ≥ 0 (9)
∀e ∈ Ewires : R(e) · ESSp(e) ≥ 0 (10)
∀e ∈ Ewires : R(e) ·Dp

ptl(e) ≤ δ · T (11)

∀e ∈ Ewires : R(e) ·Dptl
p (e) ≤ δ · T (12)

to distinguish these edges, with Eff representing the edges
in which the merging is possible and Elat representing the
remaining edges. Additionally, two parameters are defined
to represent the cost of inserting an NTL, cff and clat, with
cff < clat, since merging implies area savings. These parame-
ters can be tuned to control the area overhead of the solution.

Graph 3b shows the SPG of the example circuit from
Fig. 1b.

E. INTEGER LINEAR PROGRAMMING MODEL
Starting from the SPG and the attributes computed from static
timing analysis of the PTL post-layout netlist, an ILP model
is defined to fix the hold violations and select the NTL loca-
tions.

For each pin (p) of the SPG, a binary variable p is created.
For each edge (e), pend(e) and pstart(e) represent the variables
associated to the endpoint and the start point of e, respec-
tively. Each edge is characterized by the edge selection value,
R(e), defined as

R(e) = pend(e)− pstart(e). (13)

The constraint (9) enforces pend(e) ≥ pstart(e). The cut (lo-
cation of the NTLs) is defined for those edges with R(e) = 1,
i.e., pstart(e) = 10 and pend(e) = 1, as shown in Fig. 6.

The constraint (9) implies that all pins p belonging to a
path that reaches pstart(e) will have p = 0, while all pins
belonging to a path that crosses pend(e), reaches p, and ends
at a PTL will have p = 1. Then, the algorithm splits the graph
in two partitions, before and after the NTLs, by removing
the edges with R(e) = 1. The partition in which all pins
have p = 1, i.e. the part of the graph that includes the PTL
endpoints, will have no early arriving signals. Fig. 6 shows
an example of the graph partitioning generated by the model.

Although solving an ILP generally has very high runtime,
in this particular case it is very close to a max-flow min-
cut problem, which is known to have polynomial complexity.

NTL
LOCATIONS

0 0
0

1
10

0

00
0

0
0

1
1

1 1
0

1
0

1
0

1

0

0

01

0

0

0

FIGURE 6. Solution example showing the cut chosen for the SPG from
Fig. 3b. The vertex attributes correspond to the P variables of the ILP model
and the edge attributes represent the edge selection value (R(e)) computed
for each edge. The vertices with input edge attribute equal to 1 are selected for
NTL insertion.

This is the likely reason why the runtime of our algorithm
remains very small, as shown in Table 3, even for designs
with tens of thousands of gates and FFs. The development of
a heuristic algorithm is left to future work, if the execution
time becomes excessive, e.g. comparable to or larger than the
physical design time.

The cost function (7) accounts for the number of new
sequential elements added to the circuit, i.e., the number of
NTLs inserted in edges not connected to a PTL. This will
push the solution of Algorithm 2 to use as many NETFs and
PETFs as possible to reduce the final number of sequential
elements in the circuit.

The constraint (10) guides the model towards solutions
that do not worsen setup violations, because the SSp for each
selected edge for NTL insertion must be greater than zero.
The estimation done in ESSp is an approximation of the final
SSp that takes into account not only the length of the combi-
national logic delay, but also the clock tree latency generated
by the layout tool, as discussed in Section III-C.

However, this is an approximation and we need two more
inequalities, (11,12), to simplify the problem of meeting the
setup constraints. The Dp

ptl and Dptl
p attributes report the dis-

tance, in terms of post-layout delay, between each pin p and
the source/sink PTLs. An NTL placed in front of p divides
the path in two parts and the two graphs give an estimation of
the length of these sub-paths. To make these paths as short as
possible, these time intervals are constrained to be a fraction
δ of T , that is a parameter of our algorithm. The value of δ,
with 0 < δ < 1, is discussed in the next section.

IV. EXPERIMENTAL RESULTS
Open-source PULP [22] library is used to model the ILP, the
default solver is CBC. To evaluate the proposed algorithm,
we apply the optimization flow to 13 circuits from a pool of
benchmarks, each implemented at a range of operating fre-
quencies. Four circuits are cryptographic IPs from the CEP
benchmark [23], eight are from the ISCAS89 benchmark
[24], and one is a small processor core from the ITC99 bench-
mark [25]. The implementation flow uses an industrial 28 nm
FDSOI CMOS technology, Design Compiler from Synopsys
for logic synthesis, and Innovus from Cadence for P&R.

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265809

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

TABLE 2. Operating frequency and sequential resources for designs from
ISCAS⋄, CEP◦ and ITC99• benchmarks. Columns labeled ‘Original” refer to
PETF-based layouts, while those labeled “mixed” refer to the optimized ones.

Design fmax (GHz) Original Mixed
Original Mixed Ratio PETF PETF NETF PTL NTL

s1196⋄ 2.50 3.33 1.33 18 1 0 17 19
s1423⋄ 2.00 2.50 1.25 74 5 4 65 128
s5378⋄ 1.67 2.00 1.20 176 80 3 93 105
s9234⋄ 2.00 2.50 1.25 145 47 28 70 113
s13207⋄ 1.00 1.43 1.43 625 395 137 93 521
s15850⋄ 1.25 1.67 1.33 442 94 88 260 453
s38417⋄ 0.48 0.67 1.40 1564 690 110 764 1213
s38584⋄ 0.43 0.53 1.21 1275 636 136 503 1116
b22• 0.48 0.67 1.40 613 78 72 463 1141
des3◦ 0.67 1.00 1.50 199 34 65 100 125
md5◦ 0.43 0.67 1.53 269 71 61 137 519
sha256◦ 0.56 0.62 1.12 1040 502 284 254 579
aes_192◦ ∗1 0.33 ∗1 9382 0 9153 229 530

We set δ = 0.75 in Algorithm 2, i.e. the maximum sub-
path delay is 75% of T . Since δ defines the length of the
sub-paths generated by NTL insertion, 75% for a DC of
50% means that the two sub-paths are reasonably balanced.
Further exploration of the impact of δ is left to future work.

We also set cff = 0 and clat = 1 to account for the number
of new sequential elements in the circuit.

Table 2 shows the frequency improvement for the consid-
ered benchmarks, together with the final sequential resource
mix. The average improvement in frequency is about 1.33X.
We used a granularity of 0.1 ns in the exploration of the min-
imum clock period (T). The algorithm is doing better than
average for the cryptography IPs like des3 and md5, probably
because they are designs with acyclic paths that are generally
not well-balanced.

Fig. 7 shows the frequency improvement and the area com-
parison considering the maximum frequency for the original
design and the optimized one. In most of the cases there is an
area penalty which can exceed 1.2X. However, this is com-
pensated by a maximum frequency increase above 1.2X for
these designs. There are also cases in which the performance
improvements do not cause any area increase, like for des3,
sha256, s38584 and b22.

Fig. 8 shows the results obtained at frequencies at which
both design versions meet the timing for a meaningful area
comparison. To demonstrate the actual scalability of this ap-
proach, Table 3 shows the runtime of the ILP algorithm com-
pared to the time needed for the layout in the three cases. The
ILP runtimes are always less than 10% of the layout times.

A. TIMING CLOSURE
The P&R tool converges to a good solution if, at the end of
the automated implementation flow, the hold and setup vio-
lations are small and can be fixed with only a few iterations
of the final design optimization commands. If they are too
large, then the designers typically conclude that the P&R tool
cannot implement the design at that specific frequency. In
these cases we do not report the area because it is usually

1The maximum frequency reached for the original designs is low com-
pared to [17] and to the mixed result. For this reason, we do not report it for
the frequency and runtime comparisons.

TABLE 3. ILP execution time (s) and layout times (s). Orig layout refers to the
starting PETF netlist, PTL layout to the netlist without hold constraints and with
only PTLs, and mixed layout to the final step after NTL insertion. The columns
#SEQ. and #COMB. report the number of sequential and combinational
elements in the PTL layout, which is the netlist analyzed and provided to the
ILP solver.

Design Orig layout (s) PTL layout (s) #SEQ. #COMB. ILP (s) Mixed layout (s)

s1196 461 425 18 332 1 461
s1423 698 577 74 456 1 670
s5378 1078 925 176 645 5 1219
s9234 620 554 145 503 2 566
s13207 4867 4151 625 1918 11 5049
s15850 816 784 442 1589 6 924
s38417 1252 1651 1564 4049 24 5155
s38584 1624 1809 1275 8058 32 1506
b22 2044 2306 613 11 026 29 2242
des3 727 746 199 1795 7 725
md5 4175 3838 269 10 639 19 2114
sha256 3456 2406 1040 4116 30 3121
aes_192 ∗1 39 703 9382 130 264 3130 44 800

FIGURE 7. Ratio of post-layout area, considering the layouts obtained at the
highest working frequencies for both MIXED and ORIG versions, compared to
the related frequency improvements. The black line shows the linear
regression of the area increase with respect to the frequency gain. The offset
and the slope of the line are stated in the legend.

excessive. We do at most five optimization iterations to solve
the remaining setup and hold violations.

B. AREA COMPARISON
Fig. 8a shows the area comparison at different frequencies in
the cases in which both the FF-based and the mixed designs
meet the timing. The optimized designs from the ITC99 and
CEP benchmarks also have a smaller area than the original
ones. However, this is not true in general for the circuits from
the ISCAS89 benchmark.

Fig. 8b shows the same area comparison as Fig. 8a, but in
this case the x-axis shows the ratio of FFs in the mixed design
compared to the original netlist

FF_MIXED

FF_ORIG
=

max(#PETFMIXED,#NETFMIXED)

#PETFORIG
(14)

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265809

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

(a) Area vs. operating frequency (b) Area vs. flip-flops used (c) Sequential area vs. flip-flops used

(d) Combinational area vs. flip-flops used (e) Area vs. flip-flops used with modified NETF cost

FIGURE 8. Results of area comparison when both the mixed-based netlist and the PETF-based one successfully yield a layout

where #PETFORIG is the number of PETF in the origi-
nal circuit. The paths that constrain the design the most are
those between pairs of same polarity FFs, because paths from
PETF to NETF allow time borrowing and paths from NETF
to PETF cannot be generated by Algorithm 2. This is why
in (14) we consider the maximum between the two FF types,
rather than the sum.

Fig. 8b shows that the area increase in the mixed designs
is well correlated with the ratio FF_MIXED/FF_ORIG .

In some circuits, even our cost function, which drives the
solution to use as many FFs as possible, could lead to con-
siderable overhead of the mixed version area. Fig. 8c and
Fig. 8d show the sequential and combinational area compari-
son. The sequential area increases in most examples because
of the higher number of sequential elements in the design.
However, for the designs with a low FFs ratio, easier timing
convergence reduces the number of high speed gates.

Thus, it tends to compensate this overhead and sometimes
leads to a smaller total area. In the next section, we analyze
the effect on the area overhead of modifying the NETF allo-
cation cost in the ILP model. We show that results in a sig-
nificant improvement in the worst cases. We conjecture that
power would also be improved, but its evaluation is outside
the scope of this paper, which focuses on performance gains
with limited area cost, or even with area improvement.

C. ALGORITHM TUNING TO REDUCE AREA OVERHEAD
To reduce the area overhead, we discouraged the use of
NETFs by increasing the cost of inserting NTLs in locations
enabling the PTL-NTL merging.

We slightly modified the ILP model by defining a different
cost for merging latches into NETF (cost 1) or PETF (cost 0).
Fig. 8e shows that the original area overhead for the ISCAS89
circuits is reduced.

Although this configuration improves the quality of the
ISCAS89 worst cases, it increases the area compared to
Fig. 8a for some of the des3, md5, and b22 designs. Consid-
ering the best result among these two values for NETF costs,
the average area improvement is 1.19X over the considered
benchmarks, with above-average performance for the cryp-
tography IPs. In some cases belonging to ISCAS89 bench-
mark, the area increases considerably. Addressing this issue,
e.g. by further tuning the algorithm parameters, is left to
future work.

D. COMPARISON WITH OTHER WORK
Some of our results can be directly compared with those
presented in [17], which converts an FF-based netlist to a 3-
phase PTL-based netlist using two variants of the same algo-
rithm. While our main goal is to improve the maximum oper-
ating frequency, [17] focuses instead on reducing the area oc-
cupation. For this reason, despite the differences in technol-

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265809

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

ogy and implementation setup, the area overhead introduced
by our optimization algorithm is compared with the results
of [17]. There are six common benchmark circuits used by
us and [17], four from CEP and two from ISCAS89. For the
CEP benchmarks, [17] reports maximum area reductions at
500MHz of 14% for des3, 17.7% for sha256, and 5.8% for
md5. Our results in Fig. 8d and Fig. 8e show that, for the cryp-
tography IPs our area reduction exceeds [17], with peaks of
22.38% for des3, 41.32% for sha256, and 51.13% for md5.
But for most ISCAS89 benchmark circuits our algorithm
increases or only slightly reduces the area, while the area
reduction achieved by [17] is more than 10%. Specifically,
our algorithm reduces the area by 5.29% for s1423, 7.59%
for s5378, and 8.82% for s38584, and increases the area
by 3.28% for s38417, 9.35% for s9234, 4.79% for s1196,
and 41.75% for s13207. Note that performance, which is our
main design goal, is improved in all cases.

V. CONCLUSIONS AND FUTURE WORK
The Mix & Latch methodology introduced in this pa-
per optimizes flip-flop (FF)-based netlists by replacing the
positive-edge-triggered flops (PETFs) with positive transpar-
ent latches (PTLs), and solving the hold violations gener-
ated by such replacement using an efficient integer linear
programming (ILP) model that selects a specific group of
edges, and places negative transparent latches (NTLs) on
short paths. The algorithm takes as input the timing data from
the post-layout netlist of the FF-based design.

We obtain simultaneously smaller area and higher work-
ing frequency for all the circuits that we considered, except
for s38417, s9234, s1196, and s13207, where only perfor-
mance is significantly improved. For most cryptography cir-
cuits, the area improvement exceeds 1.3X.

Even though our approach does not aim at improving area
and uses just one clock phase, our area reduction is in some
cases comparable to that of a recent work [17], which uses
three clock phases,rather than just one, and focuses on area
optimization. Note also that [17] reports the final area with-
out including the three clock trees, that most likely would
decrease their gains significantly.

Future work will focus on further improving parameter
selection (e.g., depending on circuit topology) to reduce area
occupation at a given operating frequency, on extending the
evaluation to other circuits, and on analyzing the impact on
power consumption and on design for testability.

REFERENCES
[1] Matthew Fojtik, David Fick, Yejoong Kim, Nathaniel Pinckney,

David Money Harris, David Blaauw, and Dennis Sylvester. Bubble razor:
Eliminating timing margins in an arm cortex-m3 processor in 45 nm cmos
using architecturally independent error detection and correction. IEEE
Journal of Solid-State Circuits, 48(1):66–81, 2013.

[2] Kamlesh Singh, Hailong Jiao, Jos Huisken, Hamed Fatemi, and
José Pineda de Gyvez. Low power latch based design with smart retim-
ing. In 2018 19th International Symposium on Quality Electronic Design
(ISQED), pages 329–334, 2018.

[3] Nik Azman Nik Hassan, Asrulnizam Bin Abd Manaf, and Leong Chan
Ming. Optimization of circuitry for power and area efficiency by using

combination between latch and register. In 2011 IEEE International Con-
ference on Computer Applications and Industrial Electronics (ICCAIE),
pages 240–244, 2011.

[4] Marc Pons, Thanh-Chau Le, Claude Arm, Daniel Séverac, Jean-Luc
Nagel, Marc Morgan, and Stéphane Emery. Sub-threshold latch-based
icyflex2 32-bit processor with wide supply range operation. In 2016 46th
European Solid-State Device Research Conference (ESSDERC), pages
33–36, 2016.

[5] Aaron P. Hurst and Robert K. Brayton. The advantages of latch-based
design under process variation. 2006.

[6] B. Taskin and I.S. Kourtev. Time borrowing and clock skew scheduling
effects on multi-phase level-sensitive circuits. In 2004 IEEE International
Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), vol-
ume 2, pages II–617, 2004.

[7] N.V. Shenoy, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Minimum
padding to satisfy short path constraints. In Proceedings of 1993 Interna-
tional Conference on Computer Aided Design (ICCAD), pages 156–161,
1993.

[8] Cunxi Yu, Chau-Chin Huang, Gi-Joon Nam, Mihir Choudhury, Victor N.
Kravets, Andrew Sullivan, Maciej Ciesielski, and Giovanni De Micheli.
End-to-end industrial study of retiming. In 2018 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 203–208, 2018.

[9] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. Optimal Clocking of
Synchronous Systems. In TAU90—ACM International Workshop on Tim-
ing Issues in the Specification and Synthesis of Digital Systems, University
of British Columbia, Vancouver, August 1990.

[10] K.A. Sakallah, T.N. Mudge, and O.A. Olukotun. Analysis and design
of latch-controlled synchronous digital circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 11(3):322–
333, 1992.

[11] Youngsoo Shin and Seungwhun Paik. Pulsed-latch circuits: A new dimen-
sion in asic design. IEEE Design Test of Computers, 28(6):50–57, 2011.

[12] Jin-Fa Lin. Low-power pulse-triggered flip-flop design based on a signal
feed-through. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 22(1):181–185, 2014.

[13] Hyein Lee, Seungwhun Paik, and Youngsoo Shin. Pulse width allocation
and clock skew scheduling: Optimizing sequential circuits based on pulsed
latches. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 29(3):355–366, 2010.

[14] Seungwhun Paik, Lee-eun Yu, and Youngsoo Shin. Statistical time bor-
rowing for pulsed-latch circuit designs. In 2010 15th Asia and South Pa-
cific Design Automation Conference (ASP-DAC), pages 675–680, 2010.

[15] Thomas Baumann, Doris Schmitt-Landsiedel, and Christian Pacha. Archi-
tectural assessment of design techniques to improve speed and robustness
in embedded microprocessors. In 2009 46th ACM/IEEE Design Automa-
tion Conference, pages 947–950, 2009.

[16] Yanqing Zhang and Benton H. Calhoun. Hold time closure for subthresh-
old circuits using a two-phase, latch based timing method. In 2013 IEEE
SOI-3D-Subthreshold Microelectronics Technology Unified Conference
(S3S), pages 1–2, 2013.

[17] Huimei Cheng, Xi Li, Yichen Gu, and Peter A. Beerel. Converting flip-flop
to clock-gated 3-phase latch-based designs using graph-based retiming.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pages 1–1, 2021.

[18] K. Yoshikawa, K. Kanamaru, S. Inui, Y. Hagihara, Y. Nakamura, and
T. Yoshimura. Timing optimization by replacing flip-flops to latches. In
ASP-DAC 2004: Asia and South Pacific Design Automation Conference
2004 (IEEE Cat. No.04EX753), pages 186–191, 2004.

[19] Kun Young Chung and Sandeep K. Gupta. Design and test of latch-based
circuits to maximize performance, yield, and delay test quality. In 2010
IEEE International Test Conference, pages 1–10, 2010.

[20] Jie-Hong R. Jiang and Robert K. Brayton. Retiming and resynthesis: A
complexity perspective. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 25(12):2674–2686, 2006.

[21] Charles E Leiserson and James B Saxe. Retiming Synchronous Circuitry.
1988.

[22] Optimization with pulp. https://coin-or.github.io/pulp/, 2009.
[23] MIT-LL. Common evaluation platform (cep). https://github.com/mit-ll/

CEP.git, 2021.
[24] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequen-

tial benchmark circuits. In Circuits and Systems, 1989., IEEE International
Symposium on, pages 1929–1934 vol.3, May 1989.

[25] F. Corno, M.S. Reorda, and G. Squillero. Rt-level itc’99 benchmarks and
first atpg results. Design Test of Computers, IEEE, 17(3):44–53, Jul 2000.

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265809

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://coin-or.github.io/pulp/
https://github.com/mit-ll/CEP.git
https://github.com/mit-ll/CEP.git

FILIPPO MINNELLA received the Master De-
gree from Politecnico di Torino in 2018. He
worked for STMicroelectronics Automotive group
as IC Designer focusing in digital circuits for
mixed-signal devices and developing different
SoC solutions. He started his PhD in Politecnico
di Torino in 2020 and his main research interests
are: digital circuits optimization, EDA and HLS.

JORDI CORTADELLA (Fellow, IEEE) received
the Ph.D. degree in CS from the Universitat
Politècnica de Catalunya, Barcelona, Spain, in
1987. He is a Professor with the Computer Science
Department, Universitat Politècnica de Catalunya.
His current research interests include formal meth-
ods and computer-aided design of VLSI systems
with a special emphasis on asynchronous circuits,
concurrent systems, and logic synthesis. Dr. Cor-
tadella received best paper awards at the Interna-

tional Symposium on Advanced Research in Asynchronous Circuits and
Systems in 2004 and 2016, the Design Automation Conference in 2004,
and the International Conference on Application of Concurrency to Sys-
tem Design in 2009. He has served on the technical committees of several
international conferences in the field of design automation and concurrent
systems. He is a member of Academia Europaea.

LUCIANO LAVAGNO (SM’89) received the
Ph.D. degree in electrical engineering and com-
puter science from U.C. Berkeley in 1992. He was
an Architect with the POLIS HW/SW co-design
tool. From 2003 to 2014, he was an Architect
with the Cadence CtoSilicon high-level synthesis
tool. Since 1993, he has been a Professor with the
Politecnico di Torino, Italy. He co-authored four
books and over 200 scientific papers. His research
interests include synthesis of asynchronous cir-

cuits, HW/SW co-design, high-level synthesis, and design tools for wireless
sensor networks.

MIHAI T. LAZARESCU (M’98) received the
Ph.D. degree in Electronics and Communica-
tions from Politecnico di Torino (Italy) in 1998,
where he is now Assistant Professor. He was Se-
nior Engineer at Cadence Design Systems and
founded several startups. He co-authored over 60
scientific publications, 4 books, and international
patents. His research interests include design tools
for WSN/IoT platforms, ubiquitous environmental
sensing, efficient neural networks, indoor human

localization, edge and leaf IoT data processing, high-level HW/SW co-
design and synthesis.

MARIO R. CASU (Senior Member, IEEE) re-
ceived the Ph.D. degree in electronics and com-
munications engineering from the Politecnico di
Torino, Torino, Italy, in 2001. He is currently an
Associate Professor with the Politecnico di Torino.
His research interests are systems-on-chip with
specialized accelerators, system-level design and
design methodology for FPGAs and ASICs, and
embedded machine learning. He is also interested
in the design of circuits, systems, and platforms

for industrial applications, such as biomedical, automotive, and food. His
past work focused mostly on latency-insensitive design of systems-on-chip
(SoC) and networks-on-chip. He regularly serves in the Technical Program
Committee for international conferences, such as DAC, ICCAD, and DATE.

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265809

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

