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Abstract: The Fourth Industrial Revolution has introduced innovative technologies to manufacturing,
resulting in digital production systems with consequences on workers’ roles and well-being. From
the literature emerges the necessity to delve into the work-related stress phenomenon since it affects
workers’ health status and performance and companies’ productivity. This review summarises the
stress indicators and other influential factors in order to contribute to a stress assessment of human
workers in smart and intelligent manufacturing systems. The PRISMA methodology is adopted to
select studies consistent with the aim of the study. The analysis reviews objective measurements,
such as physical, physiological, and subjective measurements, usually driven by a psychological
perspective. In addition, experimental protocols and environmental and demographic variables
that influence stress are illustrated. However, the investigation of stress indicators combined with
other factors leads to more reliable and effective results. Finally, it is discovered that standards
regarding stress indicators and research variables investigated by experimental studies are lacking. In
addition, it is revealed that environmental and demographic variables, which may reveal significant
suggestions for stress investigation, are rather neglected. This review provides a theorical summary
of stress indicators for advanced manufacturing systems and highlights gaps to inspire future studies.
Moreover, it provides practical guidelines to analyse other factors that may influence stress evaluation.

Keywords: stress; smart manufacturing systems; intelligent manufacturing systems; Industry 5.0;
Industry 4.0; review

1. Introduction

The growing trend of Industry 4.0 supports manufacturing companies to digitalise
assets [1] through the adoption of artificial intelligence (AI), Internet of Things (IoT), virtual
and augmented reality, and big-data technologies [2,3].The Fourth Industrial Revolution
had great benefits for the manufacturing sector, such as increasing productivity and making
production processes more efficient and flexible [4] through the real-time analysis and com-
munication of data generated in a smart and intelligent work environment [5]. However, it
is necessary to emphasise how concerns about the health and safety of workers have also
grown [5], since the new industrial paradigm has been leading to new sources of stress for
workers due to displacement or total replacement by robots [6]. In addition, changes in the
role of workers from “operator” to “supervisor” of the manufacturing process [7] have led
them to collect and interpret large amounts of data, as well as to face working compellingly
with robots, which has significantly increased fatigue and mental-stress levels [8,9].

Work-related stress usually occurs when the demand exceeds the worker’s capacity
to perform [10]. Exposure to stress has been shown to be related to adverse effects in
the way people feel, think, and behave [11], and generally, it is demonstrated to have
psychological consequences on workers, such as a negative emotional state of anxiety
and frustration [12]. At the physiological level, it can alter unconscious vital processes,
such as heart and breathing activity, whereas from the physical point of view, it affects
natural posture and body activity [12]. Industry 5.0, as a new human-centred perspective,
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focuses on the role of workers in the current revolution, examining the new industrial
paradigm by putting human workers at the centre of production processes and ensuring
that technology adapts to their requirements [13]. However, stress has further consequences
on production activity due to the positive correlation with errors and periods of distraction
at work, reducing the quality and performance of the worker [14] and leading to new costs
and losses for companies. Given the several consequences of stress on human health and
companies’ efficiency, the necessity of studies that focus on the stress phenomenon related
to smart and intelligent manufacturing systems emerges from the literature, suggesting
appropriate indicators for stress evaluation in order to support the advancement of research
in this field.

The purpose of this review, in line with the European commission’s goal [15], is to
contribute to modelling human behaviour and reactions to stressful conditions in smart
and intelligent manufacturing systems in order to take care of workers’ occupational health
and well-being and provide benefits for companies.

There is a growing body of literature that recognises the importance of human-centred
manufacturing systems [7,16], integration of new advanced technologies in manufacturing
systems [17,18], and the consequent human factors, especially workload, physical and men-
tal fatigue [19], and ergonomics [20–22] and related indicators [23,24]. However, a search
of the literature revealed few studies that focused on work-related stress, mostly delving
into a specific stress-assessment method or tool and proposing a specific design. From the
psychological perspective, studies review traditional standard questionnaires in order to
adapt them to new manufacturing contexts. For example, Lesage et al. [25] focused on the
properties of the Perceived Stress Scale, whereas Widyanti et al. [26] concentrated on the
adaptation of the Rating Scale Mental Effort. On the physiological perspective, the literature
includes significant studies, such as that of Leone et al. [27], who proposed a multi-sensor
platform for monitoring stress in manufacturing contexts; that of Han et al. [28], who de-
signed a wearable device for the detection of work-related stress; and that of Setz et al. [29],
who described a wearable device for discriminating the phenomenon of stress from the
cognitive load. On the other hand, Khamaisi et al. [30] proposed strategies for identifying
potential causes of stress for workers, which may be induced by collaboration with robots,
as explored by Arai et al. [8]. The main gaps in the literature are due to the limited inves-
tigation of the stress phenomenon with respect to the other human factors investigated
and to the variety of stress-evaluation methods that lack homogeneity. In addition, the
dynamics of innovative technologies in working contexts lead to changes in the production
tasks that, in combination with other factors, such as environmental factors and workers’
demographic profile, affect the potential sources of stress. These need to be analysed
and evaluated by comparing different potential stress-measurement methods in order to
develop solutions that reduce stress sources and, at the same time, increase companies’
productivity and efficiency.

Therefore, the purpose of this article is to review literature to summarise the measure-
ments and the related indicators that are adopted in the literature for assessing the impact
that smart and intelligent manufacturing processes have on the stress levels of human
workers. Moreover, the investigation of stress indicators is deepened through the analysis
of experimental conditions and other factors, such as environmental and demographic
factors, in order to answer the following research questions:

• What are the most appropriate stress measurements in smart and intelligent manufac-
turing systems?

• What are the other factors that may influence the stress evaluation?

From the literature, it is possible to distinguish objective stress measurements, includ-
ing physical and physiological indicators, and subjective measurements, such as psycholog-
ical ones. The discussion of the potential analysis of multiple indicators combined with the
investigation of the gap in the literature due to the missing consideration of other potential
factors influencing stress, such as intrinsic experimental-context variables and external
environmental and demographic factors of workers, makes this review particularly signifi-
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cant. Finally, the future directions provide several fundamental insights about the selection
of the most appropriate indicators and other factors for comprehensive stress analysis.

On the one hand, this study proposes a theorical guide to researchers that aim to
deepen stress measurements and indicators and other significant factors that may be
considered while analysing stress levels and causes. On the other hand, it provides an
overview of the great variety of stress indicators for manufacturing contexts that may be
enriched, including the new indicators that will be adopted in future studies. Finally, this
review acts also as a practical guide for the selection of appropriate stress indicators and
research variables for future studies inspired by the emerging gaps in the literature.

The paper is divided into 10 sections. The first two sections illustrate the main
definition of work-related stress and manufacturing contexts. The third section aims to
deal with all the abbreviations that will be adopted in the following paragraphs, and the
fourth describes all stages of the methodology adopted for the literature search. The next
sections show and describe the results of the literature analysis on stress measurements
and other related factors. The results are discussed, highlighting the main findings and
the gaps in the literature. Finally, the last sections include conclusions and limitations and
suggest new directions for future works.

2. Work-Related Stress

The work-related stress phenomenon is a particularly investigated concept in literature.
Among the variety of work-related stress definitions, the most frequently adopted is the
cognitive model [31], which states that this phenomenon occurs when the work demands
exceed the worker’s capacity to perform them. The work-related stress phenomenon is
not limited in time but has long-term consequences on workers’ health status. The forms
in which it manifests are at the physical and psychological levels [11], such as chronic
disorders and depression [28], undermining the general health and well-being of the
worker. Therefore, lower levels of stress may lead to minor consequences for the operator,
such as accumulating worries, whereas higher levels may divert workers’ attention [10],
causing production errors or accidents. A negative correlation between stress and workers’
performance has been demonstrated, since as stress increases the quality of the performance
decreases [32] and the task time completion increases [33], leading to a significant impact
on the efficiency of the working system [34]. Decrements in companies’ productivity have
repercussions at the economic level in the form of costs associated with worker turnover
and presenteeism, i.e., the presence of workers with disorders and sick absenteeism due to
stress-related disorders [35]. Finally, the stress phenomenon requires further investigations
in order to design solutions that, at the same time, improve the health status of workers
and reduce the economic impact it has on companies.

3. Smart and Intelligent Manufacturing Systems

The growing trend of Industry 4.0 supports manufacturing companies in the applica-
tion of information and communication technologies (ICTs) for real-time interconnection
and real-time data communication between the smart and intelligent systems integrated
in the real industrial context [36]. This industrial revolution has great benefits for the
manufacturing sector. However, it is necessary to emphasise how concerns about the
health and safety of workers have also grown [5]. Indeed, the new industrial paradigm
is supporting the introduction of new emerging technologies that improve efficiency and
minimize manual work [37].

In the past industrial revolutions, human workers had to possess more manual skills,
specific to the assigned workstation, and the complexity of manufacturing tasks was
particularly low. As new technologies have been introduced into production industries,
such as numerical control machines, co-robots, and advanced modelling software, the
complexity of the tasks has increased, and currently, data-analytics skills, simulation
capability, and culture for teamwork and improvement are required of workers [38].
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This is leading to new sources of stress due to changes in human roles, especially
in manual production inspection and quality-monitoring tasks, or to displacement and
total replacement by robots [6]. In fact, the past human-based inspection processes, which
were more inclined to errors, are currently substituted with smart automation technology,
which is error free and guarantees more reliable inspection [39,40]. Despite expectations of
reduced stress on both a physical and mental level by means of intelligent automation and
digitisation of the workstation [41], currently, even monitoring new systems and robots
can stress workers due to their complex interfaces [42]. Further sources of stress emerge
when a process goes from a normal state to a disturbed state. In this condition, the operator
is stressed very quickly by the high number of alarms generated that intend to notify
an anomalous state of the system; a simplified and user-friendly interface may help the
worker to find the system problem and solve it [43]. In order to adapt the new technologies’
usability to the workers’ needs, the European Commission [15] aims to model human
behaviour and reaction to stressful conditions in digital manufacturing systems to take care
of workers’ occupational health and well-being, promoting human-centred manufacturing
systems. In line with European goals, this review provides new insight into stress indicators
and related influential factors to contribute to the progress of the research in solving this
social problem.

4. Methodology

The approach taken in this study is based on PRISMA methodology. It provides
guidelines for conducting an appropriate search for studies through four selection steps:
identification, screening, eligibility, and inclusion [44,45].

During the identification phase, a query was launched on the Scopus database.
The query, as shown in Figure 1, consisted of two parts. The first part was related to

the research object, i.e., mental and physical stress. Other keywords related to workload
and fatigue were added in order to include studies focused on other human factors but
they yielded results relevant to stress evaluation. The second part of the query, which was
linked through an AND condition to the first part, concerned the research domain and
consisted of smart, intelligent, and advanced manufacturing-system keywords combined
with Industry 4.0 and 5.0 ones.
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Figure 1. Research query.

The resulting studies were then selected and reviewed following the PRISMA method-
ology guidelines, as shown in Figure 2, in order to consider only those coherent with the
objective of this review. The identification-phase selection criteria, as shown in Table 1,
were applied via the Scopus automation tools.
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Table 1. Selection criteria.

Identification-Phase Criteria Value

Subject area Engineering
Document type Article, conference paper

Source type Journal, conference proceeding
Publication stage Final

Language English

During the screening phase, the abstract of each study was analysed and the studies
that aimed to assess human factors in manufacturing contexts were selected. Finally,
through a full-text analysis, only the studies that proposed at least one measurement for
the evaluation of worker stress were evaluated as eligible and then included in the review.

5. Abbreviation

In order to improve the readability of this review, Table 2 below lists the abbreviations
adopted in the following paragraphs and their descriptions.

Table 2. Abbreviations.

Abbreviation Description Abbreviation Description

BDP Body Part Discomfort Scale OCRA Occupational repetitive action

CLAM Cognitive Load Assessment
for Manufacturing OWAS Ovako working-posture

analysis system
DASS Depression Anxiety Stress Scales PSS Perceived Stress Scale
ECG Electrocardiography REBA Rapid Entire Body Assessment
EDA Electrodermal activity RULA Rapid Upper Limb Assessment
HR Heart rate RSME Rating Scale Mental Effort

HRV Heart-rate variability SSSQ Short Stress State Questionnaire
ISA Instantaneous Self-Assessment SC Skin conductance

MCH Modified Cooper–Harper Scale STAI State–Trait Anxiety Inventory

NASA-TLX National Aeronautics Space
Administration–Task Load Index SWAT Subjective

workload-assessment technique
NAS Numeric Analog Scale VMU Vector-magnitude units

WP Workload profile
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6. Results of Stress-Evaluation Methods

Looking at the set of studies resulting from the literature review, an interesting trend
emerged regarding the publication rate. In recent years, there has been an increasing
amount of literature on stress in smart and intelligent manufacturing systems, as shown
in Figure 3. The first study on this topic was published in 2018, but subsequently, no
publications were recorded in 2019. In 2020, there was a slight increment, but then the
number of studies decreased to zero in 2021. Finally, significant growth was evident in 2022.
The unsteady trend may be related to the complexity of the stress phenomenon with respect
to the other human factors that are being investigated in the context of manufacturing,
delaying the publication of meaningful results. Although only one study included in this
review was published in 2023, given the high number of publications in 2022, it is possible
to foresee a growing trend and thus a considerable increase in studies about the stress
phenomenon in advanced manufacturing systems over the following months and years.
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In addition, the geographical distribution of studies, on the basis of the affiliation
of each first author, highlighted a concentration of publications in Europe, as shown in
Table 3. Most of the studies (13 out of 22, more than half) had first authors with affiliations
in Italian universities. Moreover, on the national Italian level, the University of Modena and
Reggio Emilia recorded the highest number of publications (4 studies out of 20), followed
by the University of Marche (3 studies out of 20). The other cited studies were uniformly
distributed in other Italian universities.

The set of included studies proposes a great variety of measurements for the evaluation
of levels of stress in smart and intelligent manufacturing systems. They can be mainly
divided into two main types: objective and subjective, and into three main categories:
physical, physiological, and psychological, as shown in Table 4.

Table 3. Number of studies vs. first author’s affiliation.

Country First Author’s Affiliation Number of Studies

Belgium imec-mict-UGent, Gent 1
Finland Tampere University, Tampere 1
France Université de Toulouse, Toulouse 1

Germany Fraunhofer Institute for Manufacturing
Engineering and Automation IPA, Stuttgart 1

Greece University of Patras, Rion Patras 1
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Table 3. Cont.

Country First Author’s Affiliation Number of Studies

Italy

Università Politecnica delle Marche, Ancona 3
Polytechnic University of Bari, Bari 1

Politecnico di Torino, Turin 1
University of Modena and Reggio

Emilia, Modena 4

University of Bozen-Bolzano, Bolzano 1
University of Campania 1
University of Bologna 1

Istituto Italiano di Tecnologia, Genoa 1
India Shiv Nadar University, Uttar Pradesh 1

Norway Norwegian University of Science and
Technology, Trondheim 1

Serbia University of Belgrade, Belgrade 1

Switzerland University of Applied Sciences and Arts of
Southern Switzerland, Manno 1

Table 4. Measurement classification.

Measurement
References

Type Category Object

Objective

Physical Posture [46–49]
Behaviour [50,51]

Physiological

Cardiac activity [12,30,46–48,52–55]
Electrodermal activity [30,53,55,56]

Breathing activity [46,47]
Brain activity [57]

Subjective Psychological Emotional state [12,32,34,35,58]
Perceived stress [47,59–65]

The objective type of measurement consists of collecting data related to stress condi-
tions that are not influenced by their personal and subjective perceptions. Objective data
regards the physical and the physiological unconscious processes of workers. The physical
category of measurements consists of postural and behavioural indicators that consider the
motion activity of workers and their body language to evaluate stress; as shown in Figure 4,
they were adopted by the minority of the studies. The physiological category includes all
measurements that involve recording the physiological and cognitive internal processes of
workers to identify patterns that are related to stressful conditions.
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Finally, the subjective type of measurement aims to evaluate stress on the basis of
workers’ perceptions. It consists of adopting questionnaires and tests or tools to investigate
the emotional state or the perceived stress of workers from a psychological perspective.
As represented in Figure 4, the physiological and psychological measurements were the
most adopted techniques in the literature for evaluating stress in smart and intelligent
manufacturing systems.

6.1. Physical Measurements

The physical category of measurements involved stress investigation from the pos-
tural and behavioural perspectives. Posture data allowed how workers are placed while
performing work tasks and how they use the tools and resources at their disposal to be
analysed. Behavioural measurements were carried out by evaluating the worker’s conduct
and attitude while carrying out the activities.

As in Figure 5, among the cited studies, only three based stress analysis on postural
indicators, with the other two articles based on behavioural indicators.
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6.1.1. Posture

From the literature analysis, four different indicators for stress evaluation emerged, as
shown in Table 5.
Table 5. Postural indicators.

Postural Measurements Indicators References

Entire Body Assessment OWAS [47,49]
Entire Body Assessment REBA [47,48]
Upper Limb Assessment RULA

[47]Entire Body Assessment VMU

• Peruzzini et al. [47] and Caterino et al. [49] discussed the complexity of the task and its
impact on the worker’s posture through the Ovako working-posture analysis system
(OWAS). This assessment is based on analysis of the position assumed by the main
sections of the body (such as the back, legs, and arms) and also the weights the worker
has to deal with during the task. The result of this assessment is a score associated
with a specific colour depending on the risk level of the task analysed. An acceptable
risk score is associated with the colour green; in this case, the task can be improved
by reducing the postural load. A medium-risk level is associated with the colour
orange, and some tasks modifications and improvements may be required. A high-risk
level is associated with the colour red, and corrective actions on the tasks need to be
taken urgently.

• The second indicator is called Rapid Entire Body Assessment (REBA) and was adopted
by Peruzzini et al. [47] and Grandi et al. [48]. This indicator considers the position
of the upper and lower limbs, trunk and wrists of the workers, the stability of their
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position, and the force required to perform the tasks. The result is a numerical score
that can range from 1 to 15. Scores between 1 and 3 are associated with very low
postural risk, scores between 4 and 7 scores indicate medium risk, for scores from 8 to
10 the risk is high, and scores over 11 are very high risk—in this case, urgent actions
are required to improve and correct the tasks.

• The third indicator is the Rapid Upper Limb Assessment (RULA). It evaluates the
postural risk and musculoskeletal problems in the upper body, taking into account the
position of the worker’s legs, arms, trunk, wrists, and neck. The final score can vary
from 1 to 7 and is directly proportional to the level of postural risk.

• The vector-magnitude units (VMU) indicator is calculated as the vectorial sum of the
activity physically performed by the worker in the three orthogonal directions and is
very useful in the analysis of the worker’s physical activity [46].

6.1.2. Behavioural Measurements

Studies about behavioural observations cannot be overlooked, since 55% of the com-
munication of internal emotional state occurs through body movements [66]. However,
only one study adopted body-language indicators, and two studies of 20 referred to body
motion for the stress investigation.

Regarding body language, Lagomarsino et al. [50] considered self-touching an indi-
cator of stress and anxiety. The study involved the analysis of body language through a
video recording of workers performing tasks and assessed the number of times the workers
touched their bodies. The indicator was calculated by measuring the distance between
each hand and a predefined key point on the worker’s head. Whenever the distance value
measured was less than the predefined threshold, an occurrence of the self-touching event
was recorded and contributed to the final evaluation of the stress level, through the formula
in Table 6.

Table 6. Body-language and body-motion indicators.

Behavioural Measurement Indicators References

Body language

S(t) =
S
∑

s=1

[selftouching istant]s+60−t
60

S is equal to the number of
occurrences recorded in a 1 min
interval from time t-60 to time t;
t indicates the time in seconds

[50]

Body motion Assembly-line speed [51]
Hyperactivity [50]

The same authors stated that the analysis of human body movement could be crucial
for assessing stress levels during periods of particularly intense activity. For this reason,
they developed a body-motion indicator, defined as Hyperactivity. The calculation is made
on the basis of a video recording of the movements performed by the worker, where the
movement of each joint is calculated as the sum of the 3D position displacements, in two
consecutive instants of time. The final value of the indicator is calculated as the average of
the movements recorded for the joints of the upper body.

Finally, Rao Pabolu et al. [51] defined the assembly-line speed as an indicator of stress
levels, as it has been shown that as operating speed increases, worker stress consequently
grows. In turn, the operating speed is proportional to the assembly-line speed, i.e., the
speed of the assembly-line conveyor in centimetres per second.

6.2. Physiological Measurements

At the physiological level, cardiac and electrodermal activity are the processes of
greatest interest and were most frequently analysed in the literature, followed by breathing
activity, as represented in Figure 6. All the techniques adopted to collect physiological
signals were non-invasive.
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6.2.1. Cardiac Activity

It was recorded in nine studies, as shown in Figure 6. This physiological process is
significant for stress evaluation since the heart activity reflects the reaction of the autonomic
nervous system to external or internal physical or emotional stimuli, such as stressful
situations. It is usually measured by the electrocardiography (ECG) technique, which
records the electrical activity of the human heart’s cardiac activity through the application
of electrodes in standard position configurations or by other wearable devices such as
smartwatches. The main stress indicator calculated through cardiac-activity measurement
is heart rate variability (HRV), which refers both to the measurement of heart beats per
minute (bpm) and changes in the time interval between two consecutive ECG R-waves (also
known as the RR series, where R is one of the periodical ECG signal peaks) [67]. In addition
to HRV, the literature has shown that there are no standard formulas or parameters; as a
consequence, there was a wide range of indicators adopted, as shown in Table 7.

Table 7. Cardiac-activity indicators.

Physiological
Measurement Indicators References

Cardiac activity

HR, HRV [46,47,53–55]
HA = (HRuser−HRbaseline)

(HRmax−HRbaseline)
HRuser is the mean value of the

specific user’s HR as recorded during
the task simulation; HRbaseline is the
mean HR value as recorded during
the user’s baseline phase; HRmax is
the maximum HR value as recorded
for each user during the entire test

[48]

RR = (RRmean−HRbaseline)
(RRmax−RRbaseline)

RR baseline refers to the RR value
during a resting phase of the activity

participant; RR mean and RR max
refer to values calculated under stress

[12]

∆RR = RRmean − RRresting value [30]
RMSSD [56]

VO2
VO2max = 15 ×HR/RHR

15 ×HRmax/RHR
VO2 corresponds to individual
oxygen consumption; VO2max
corresponds to the maximum

individual oxygen consumption; HR
is the heart rate; RHR is the resting

heart rate

[52]

Papetti et al. [53] evaluated workers’ stress levels by monitoring HRV. Peruzzini et al. [47]
calculated heart rate (HR) and HRV. Moreover, Ciccarelli et al. [55] only adopted HR.
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Bettoni et al. [54] assessed mental stress by means of an RR interval series, i.e., the time
intervals between two consecutive beats and HRV. The latter was calculated by measuring
both HR and RR every 5 min and comparing the most recent values with those obtained
during the previous intervals. Brunzini et al. [12] adopted inter-beat RR intervals for stress
assessment. Specifically, they calculated RR variability by adopting the formula in Table 7.
Gervasi et al. [56] employed the root mean square of successive differences (RMSSD) of
adjacent inter-beat intervals as an indicator of stress, replacing HRV. On the other hand,
Grandi et al. [48] investigated mental-stress conditions by defining a new heart-activity
(HA) indicator, closely related to HR, through a specific formula represented in Table 7.

Cavallo et al. [52] defined the oxygen-consumption rate as an indicator of stress, per
the formula in Table 7. From a physiological point of view, VO2 is defined as aerobic
capacity, i.e., the amount of oxygen the body uses, which increases when the worker
is stressed.

6.2.2. Electrodermal Activity (EDA)

It was the second most recorded physiological activity; in this review, four cited articles
recorded it for stress assessment, as shown in Figure 6.

EDA allows for the definition of a further stress indicator: skin conductance (SC). It
is directly proportional to sweat secretion, which is related to the sympathetic nervous
system’s reaction to stressful situations. The EDA signal can be decomposed into the tonic
and the phasic components. The tonic component, also defined as the skin-conductance
level (SCL), refers to the long-term fluctuations of the EDA signal due to the psychophys-
iological characteristics of the subject. The phasic component of the signal, also called
the skin-conductance response (SCR), corresponds to the short-term reaction of the skin
conductance in response to a stimulus; therefore, it is considered a valuable indicator of
stress levels [29].

Papetti et al. [53], Ciccarelli et al. [55], and Gervasi et al. [56], as shown in Table 8, only
took the phasic component of the EDA signal into account since it is associated with the
reaction to external events and is considered a valid indicator of the arousal and stress
levels during workers’ activity.

Table 8. Electrodermal-activity indicators.

Physiological Measurement Indicators References

Electrodermal activity ∆EDA = EDAmean − EDAresting value [30]
SC [53,55,56]

An exception was represented by Khamaisi et al. [30], who designed an indicator
given by the combination of parameters from cardiac and electrodermal activity. It is the
result of the sum of the absolute values of the changes in the EDA and RR signals. The
absolute values are employed to solve the problems of the different correlations of EDA
and RR variations with respect to stress levels: as stress increases, the EDA value increases
and RR decreases.

6.2.3. Breathing Activity

Respiration is particularly influenced by emotional state and stress events, and has
been recognized as more sensitive than the other physiological measures [68]. In this review,
only two studies referred to breathing indicators, as shown in Table 9. Peruzzini et al. [46,47]
calculated the breathing rate, measuring breaths per minute (BPM) combined with the
measurement of skin temperature (ST), carrying out a complete analysis of the operator’s
health conditions in the working environment in order to assess stress and fatigue.
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Table 9. Breathing-activity indicator.

Physiological Measurement Indicators References

Breathing activity BR [46,47]

6.2.4. Brain Activity

It is usually recorded through electroencephalography (EEG). EEG is a technique
adopted for recording electrical activity generated by the brain. The data are collected by
applying electrodes to the scalp, usually according to a standard position. Each electrode
measures the voltage produced by neuronal activity from the region of the brain in which it
is placed. The recorded signal is then divided into five different bands based on frequency:
delta (0.5 to 4 Hz), theta (4 to 8 Hz), alpha (8 to 12 Hz), beta (12 to 25 Hz), or gamma
(25 to 45 Hz). Each band is associated with specific cognitive processes. In the literature,
only Eyam et al. [57] referred to EEG for the assessment of stress levels on the basis of the
emotional states of workers. As shown in Table 10, the stress evaluation was based on
signal recording focusing on activations in the beta band, which in turn was divided into
sub-bands based on frequency: low beta, beta, and high beta bands. An EEG signal that
falls into the latter category, high beta, is a perfect indicator of stress conditions; however,
it can also indicate the execution of cognitive processes related to complex analyses or
new experiences.

Table 10. Brain-activity indicator.

Neurophysiological
Measurement Indicators References

Brain activity High-beta frequency band (23 to 38 Hz) [57]

6.3. Psychological Measurements

Subjective measurements involve workers’ self-assessment of stress levels, based on
their perceptions from the psychological perspective. This is usually carried out through
the administration of questionnaires at the end of the work activity. In this category, it
is possible to distinguish direct and indirect measurements of stress. Perceived stress
measurements are direct measurements that involve questionnaires and tests asking the
workers about their perceptions and feelings about this phenomenon; they were adopted
by seven studies, as shown in Figure 7. Emotional-state measurements, adopted by five
studies, can also be defined as indirect since they indagate the emotional state of workers
and then, from the collected answers, the stress perception is discovered.
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6.3.1. Emotional State

Ciccarelli et al. [55], as shown in Table 11, adopted the State–Trait Anxiety Inven-
tory (STAI) questionnaire, where subjects indicated on a four-point scale (ranging from
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“almost never” to “almost always”) the frequency with which they experienced the 40 emo-
tions/feelings listed, combining both positive feelings (such as “I feel pleasant,” “I feel
satisfied with myself”) and negative feelings (“I feel nervous and restless,” “I feel like a
failure”). This questionnaire was administered before the biomedical devices were put on,
then after monitoring, and again a few days after the experimental activity had taken place.

Table 11. Psychological parameters.

Psychological
Measurements Indicators References

Emotional state

Trait and state anxiety [55]
Depression, anxiety, and tension/stress [58]

Interest, excitement, focus, and
relaxation alterations [57]

Pleasure–arousal–dominance of the
affective state of the participants [56]

Perceived cognitive and
emotional conditions [12]

Perceived stress

Mental stress [64]
Time load, mental load, and

psychological-stress load [59,62]

Stress level [60,61,65]
Body-area stress [63]

Perceived comfort [47]

On the other hand, Petrovic et al. [58] used the Depression Anxiety Stress Scales
(DASS) for the evaluation of negative emotional states. Participants had to indicate how
frequently (on a four-point Likert scale) they had experienced each of the listed feelings.
These feelings, 42 in total, referred to negative emotional states such as depression, anxiety,
and tension/stress.

In addition, Gervasi et al. [56] adopted the Self-Assessment Manikin technique. At
the end of the entire experimental task, their perceptions of the valence, arousal, and
dominance of their emotions and affective state were assessed on a scale of 1 to 9. In this
model, “valence” refers to the nature of the emotion, explicating whether it is positive or
negative (relaxation and enjoyment or fear, anger); “arousal” is associated with the intensity
of the emotion, and “dominance” refers to the perception of having that particular emotion
under control.

Eyam et al. [57] exploited the valence–arousal test by asking the participants to evalu-
ate their feelings about emotions such as sadness, stress, and anger in a range of four levels
(low, low–medium, medium–high, and high).

Finally, for the assessment of perceived cognitive and emotional conditions, Brun-
zini et al. [12] adopted the Numerical Analogue Scale (NAS) method both before and after
the experimental task. The test requires the worker to indicate the level of perceived stress
on a scale from 0 to 10, represented by a straight line divided into 10 intervals; higher scores
are associated with a higher intensity of the perceived stress. By administering the test prior
to the performance of the activity, it is possible to record the basal level of perceived stress.
Then, the test can be repeated first to assess the stress perceived during the performance
of the activity, and successively at the end of the procedure, after a period of rest for the
worker, to check whether the perceived stress has returned to the basal level.

6.3.2. Perceived Stress

At the end of each experimental trial, Mailliez et al. [64] proposed that the participants
conduct a mental-stress assessment, as shown in Table 11, based on the 10-item Perceived
Stress Scale (PSS-10). This is a short self-assessment scale where subjects are asked to
express on a five-point scale (0 = never, 4 = very often) how often they experienced the
10 proposed feelings. The proposed feelings include both positive ones, e.g., “Felt confident
about your ability to handle your personal problems,” “Felt that things were going your
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way,” “Were able to control irritation in your life,” and “Felt that you were on top of things,”
and negative ones such as “Upset because of something that happened unexpectedly,”
“Unable to control the important things in your life,” “Nervous and stressed,” “Could not
cope with all the things that you had to do,” “Angered because of things that happened
that were beyond your control,” and “Difficulties were piling up so high that you could
not overcome them” [25].

In their framework, Arkouli et al. [59] and Vijayakumar et al. [62] suggested the Sub-
jective Workload Assessment Technique (SWAT) to ask participants to express themselves
with respect to time load, mental load, and psychological-stress load.

Morton et al. [60] asked workers to indicate their perceived level of stress and frustra-
tion on a seven-point Likert scale, where the workers could express their agreement with
the statement “While solving these tasks, I felt frustrated/stressed” on a scale from “totally
disagree” to “totally agree.” This test was administered only at the end of each experimental
condition performed. Gualtieri et al. [61] and Panchetti et al. [65] asked participants to rate
items on a five-point semantic differential scale (e.g., “Irritated/Calm,” “Concerned/Quiet,”
“Motivated to finish task/Demotivated to finish task,” “Skilled/Unqualified,” “At ease/
Discomfort”) extrapolated from the Short Stress State Questionnaire (SSSQ) after each
experimental scenario.

Moreover, for the assessment of physical stress, Kopp et al. [63] proposed the Body
Chart (or rather, Body Part Discomfort [69]), a questionnaire that investigates the level of
stress, on a numerical scale, for each region of the body.

Finally, Peruzzini et al. [47] proposed the NASA Kopp et al. [63], Task Load Index
(NASA-TLX) questionnaire to evaluate perceived comfort. Although this questionnaire is
widely adopted for workload assessment, in this case, it was limited to assessing the levels
of anxiety, physical stress, and comfortable conditions on a seven-point scale.

7. Results of Other Factors

For a comprehensive stress investigation in smart and intelligent manufacturing
contexts, this review includes an analysis of the experimental protocols adopted in the
literature, together with experimental environmental factors and demographic data of
participants, since they may influence the evaluation of human factors.

7.1. Experimental Protocols

The main aspects related to experimental protocols include the experimental tasks and
environment, as shown in Table 12.

Table 12. Experimental condition of studies.

Reference
Indicators

Experimental Task
Experimental
EnvironmentPhysiological Physical Psychological

[54] HRV Plastic-injection
assembly line

Injection-moulding
manufacturing line

[12] RR
Perceived cognitive

and emotional
conditions

Engine oil-filter
replacement

sequence
Laboratory

[52] VO2
VO2max

Cognitive task
Motor task Laboratory

[57] EEG
Interest, excitement,
focus, and relaxation

alterations

Assembling a wooden
box alone/with the

cobot
Laboratory

[56] SCR, RMSSD

Pleasure–arousal–
dominance of the

affective state of the
participants

Human–robot
collaboration for an

assembly task
Laboratory

[48] HA REBA Tractor assembly Virtual
simulation
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Table 12. Cont.

Reference
Indicators

Experimental Task
Experimental
EnvironmentPhysiological Physical Psychological

[61] Stress level
Pneumatic cylinder

assembly with
collaborative robot.

Laboratory

[30] ∆EDA, ∆RR
Oil- and gas-pipes

manufacturing
sequence

Virtual-reality
simulation

[63] Body-area stress Assembly and
disassembly Automotive plant

[50] Self-touching,
Hyperactivity Assembly Laboratory

[60] Stress level Assembly and
cognitive Laboratory

[53] HRV, EDA Assembly
Real

manufacturing
environment

[46] HR, HRV, BR
Skin temperature Body activity Motor task

Mixed reality: virtual
model and real items

in a laboratory context

[47] BR OWAS, REBA,
RULA, VMU Perceived comfort

Air-cabin
filter

assembly

Virtual-reality
simulation

[58]
Depression,

Anxiety, and
tension/stress

Pushing and pulling Industrial
environment

[65] SSSQ Perceived stress Assembly task with
collaborative robots Laboratory

[49] OWAS Stress Manual assembly Automotive Italian
company

Concerning the experimental tasks, as shown in Figure 8a, the majority of the studies
proposed traditional assembly activities, and almost half of them, as shown in Figure 8b,
proposed to execute the task in collaboration with a robot. Moreover, only Petrovic et al. [58]
included a push-vs.-pull task, whereas the other studies adopted a variety of tasks, such as
real steps in an oil-replacement sequence [30] or a combination of motor and cognitive tasks.
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In addition, the environments where the experiments were conducted were mainly
distinguished as being in laboratories or real manufacturing systems for in-field measure-
ments. With respect to the studies cited in this review, the majority of the experiments were
conducted in laboratories, even implementing virtual-reality simulations in an attempt to
faithfully reproduce the real manufacturing environments. On the other hand, only a mi-
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nority of the studies, as shown in Figure 9, had the opportunity to carry out measurements
on site, e.g., at automotive industrial plants [49,63].
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7.2. Environmental Factors

The importance of environmental factors, including temperature and noise [70], air
quality, and lighting conditions [71], is due to the fact that these can represent risk factors for
the health of workers. As shown in Table 13 some studies specified the environmental-factor
measures related to the context where the experimental activities were executed.

Table 13. Environmental factors.

Reference Environmental
Temperature Environmental Noise Environmental Light Environmental Air

Quality

[12] Constant temperature
at 24 ◦C

Silence (no sources
of noise)

Totally artificial light
sources (neon lamps

positioned on the ceiling)

[30] Temperature is variable
with the external one. Around 85–135 dB Artificial light High presence of dust

[50] Constant Constant lighting
conditions

[60] Ambient factory-floor
sounds were played

[53]
Temperature, based on

operators’ clothing
and activity

Noise exposure evaluated
by a sound-level meter and

according to the Daily
Personal Noise Exposure
Level (LEP, d) established

by the Directive
2003/10/EC

A colorimeter is used to
measure the colour

temperature and lux.

Global pollution index
(GPI), a weighted
compound of the

different pollutants
measured

Only a few studies referred to the environmental factors and detailed the relative mea-
sures. As far as temperature is concerned, Lagomarsino et al. [50] and Brunzini et al. [12] speci-
fied that this was a constant value during the duration of the study, whereas Khamaisi et al. [30]
pointed out that this value was considered variable and particularly affected by the outside
temperature. Finally, Papetti et al. [53] illustrated methods for measuring and evaluating
temperature and each of the other variables and provided a guideline with acceptable
value limits.

The noise factor was quantitatively measured only by Khamaisi et al. [30], who
reported the exact value in decibels (dB), whereas the other studies, especially those
conducted in a laboratory, stated that absolute silence or traditional industrial sounds were
reproduced in order to simulate real production contexts.
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The lighting condition is among the environmental variables that may affect the
perceptions of the workers. In particular, Papetti et al. [53] was the only one who also
explored a method for its quantification by means of a colorimeter, whereas the other
studies reported just the light source, distinguishing natural from artificial light.

Finally, the air quality was evaluated only in two studies. Khamaisi et al. [30] spec-
ified the dust quantity, whereas Papetti et al. [53] proposed an indicator including the
measurements of the various pollutants on site.

7.3. Demographic Factors

In the demographic-factor analysis, the gender and age variables were considered
together with the aspect related to background, expertise, and experience levels, as shown
in Table 14 Among these, increasing age caused a regression of human capabilities with
consequences for working performance, and a direct relationship between human–system
errors and the age of workers was observed [72]. Only a few studies detailed results
from demographic analysis, such as that of Cavallo et al. [52], who found a negative
relation between cardiac-stress indicators and age, whereas Grandi et al. [48] noted that the
performance of experts and non-experts was comparable.

Table 14. Workers’ demographic factors.

Reference Gender Age Expertise/Experience/Background

[54] 1 female, 3 males
[12] 1 female, 7 males Mean age: 25.6 years
[52] Males and females Different ages for each task

[56] 42 participants (71.4% males,
28.6% females) Mean age: 28.24 ± 8.1 years

• 28.6% of participants had never
interacted with a cobot;

• 45.2% of participants had never
interacted with a cobot but knew

of them;
• 16.7% of participants had already

interacted with a cobot;
• 9.5% of participants had already
programmed and interacted with

a cobot.

[48] Five users with different levels
of expertise

[61] 12 males, 2 females The age of participants ranged
from 23 to 57 years old

-No previous experience with
collaborative robots and minimal

experience in
manufacturing operations.

Different backgrounds: researchers,
master student,

technicians/administrative
[63] Young experts

[50]

Model calibration experiment:
5 males;

Multi-subject
cognitive-load-assessment

experiments:
5 males, 5 females

Model-calibration experiment:
(Mean age: 27.6 ± 2.0 years)

Multi-subject
cognitive-load-assessment

experiments:
(Mean age: 26.6 ± 3.7 years)

No previous expertise or experience

[60] 25 females, 21 males
46 participants between 19

and 40 years old
Mean age: 25.8 ± 4.19 years

Variability in participants’
educational background (from
secondary education to PhD)

[53] 2 males 31 and 28 years old

[58] 20 males Mean age: 35.0 ± 5.8 years Experienced and non-experienced in
industrial physical tasks

[65] 11 males, 3 females Mean age: 31.6 ± 4 years
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After analysing these factors among the contributions, it emerged that only a few
studies mentioned detailed information about these factors. Moreover, even fewer studies
cross-analysed them with stress-indicator results.

As far as gender is concerned, the majority of studies recruited both females and males
as participants; however, Petrovic et al. [58] and Papetti et al. [53] only recruited males.

The age range of the participants was quite wide, from 19-year-old participants re-
cruited by Morton et al. [60] to 57-year-old participants in Gualtieri et al.’s [61] experiment.

Finally, some studies also specified other factors such as the background, expertise,
and experience of the participants. In particular, Petrovic et al. [58], Lagomarsino et al. [50],
and Grandi et al. [48] paid attention to how experienced the participants were in performing
real or similar industrial tasks, whereas Gervasi et al. [56] and Gualtieri et al. [61] also
investigated experience in collaborating with robots.

8. Discussion

The analysis of the results of this review demonstrates that there is a great variety
of measurement categories and indicators for stress assessment in smart and intelligent
manufacturing systems.

8.1. Objective Measurements

Concerning the physical measurements, the adoption of a specific postural indicator
depends on the areas of the body of most interest for the evaluation. The REBA indicator,
compared to OWAS, provides a more detailed assessment by considering not only the main
parts of the body but also the trunk and wrists. In addition, it considers both the weight
of the task and the force required. REBA is preferable for the analysis of postural stress,
especially in the case of tasks to be performed standing up. On the other hand, RULA is
preferable to provide a detailed analysis of the postural risk on the upper body [47].

The combination of several different indicators from postural measurements can
improve the assessment of the quality of stress at the postural level for workers. On the
one hand, the variety of postural indicators is advantageous since there are appropriate
indicators for almost each area of the worker’s body on which the stress analysis is focused
and, as a consequence, the results obtained are particularly specific and extremely detailed.
Moreover, the postural analysis can provide significant suggestions and new requirements
for the design and development of more ergonomic workstations. On the other hand,
there are no standard postural indicators for different experimental conditions and the
comparison of the postural assessment outcomes obtained in the literature is particularly
complicated. Behavioural measurements include body motion and language indicators
that, unfortunately, have not been adopted enough in the literature to execute a reliable
comparison and to discuss their advantages and disadvantages. However, the analysis of
body language is the best solution for automatic stress detection based on the analysis of
video recordings of participants’ activity and data extrapolated from skeleton tracking [50].

Regarding the objective analyses, physiological measurements were widely adopted in
the literature and cardiac and electrodermal activities were the most collected physiological
signals. Among the several indicators related to cardiac activity, some were calculated in the
time domain, such as the variability of RR interval duration [30] or the RMSSD [56], whereas
the others, such as HR and HRV, were in the frequency domain. Moreover, although VO2
depends on the age and gender of the subject being assessed, it can still be considered an
excellent indicator for stress assessment [52].

EDA is considered the ideal stress measurement, since it evaluates the conductance of
the skin that is innervated only by the sympathetic nervous system. As a consequence, SC
is the result of the pure physiological reaction of workers to stress situations [29]. An EDA
recording device is more suitable for and less invasive to adoption during work activity
than other biomedical devices; however, it entails some ethical complications. Furthermore,
a lower variability is noted regarding the parameters based on EDA, since the contributions
included in this review isolated and analysed only the phasic component of the signal. With
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regard to respiratory activity, the breathing rate seemed to be the only indicator adopted
for evaluation. Finally, the EEG technique is a particularly accurate and reliable method
for carrying out analyses of human emotions. However, this method may reduce the
comfort of the worker during measurement and thus may be the least suitable in the case
of experimental studies to be carried out in real manufacturing contexts [57].

The results of this review show that physiological measurements have both advan-
tages and disadvantages. On the one hand, they allow for a better understanding of the
reactions of the participants in the studies and provide a trace of the processes that occur
unconsciously and allow for in-depth knowledge of the stress levels of the workers [56].
Moreover, the combination of more physiological signals can lead researchers to investigate
how the same stressful phenomenon affects the physiological and unconscious processes
from different physiological perspectives and carry out crossed analysis with cognitive-load
indicators in order to test the relation between stress and other human factors [27]. On the
other hand, physiological signals are not to be regarded as absolutely reliable. Indeed, the
physiological data recorded are influenced by unconscious processes such as the valence
of the emotion experienced, variations in emotion intensity, and mental-workload states,
which influence the signals and thus the recognition of stress phenomena and assessment
of stress levels through it [12]. Eventually, it is necessary to point out the complexity of
integrating the use of biomedical devices into the industrial work environment [47]. The
devices adopted for techniques such as ECG and EEG that require the use of particularly
delicate electrodes and sensors may divert the workers’ attention from the task due to their
sense of responsibility in not damaging them while executing the manufacturing tasks.
Therefore, the type of devices adopted for the measurements can influence not only the
quality of physiological data but also the stress perception of workers. For this reason,
the choice of biodevices to collect data is also significant for the experimental activities.
On the one hand, wearable technologies for data collection [22] are the most comfortable
for participants. On the other hand, complex devices and systems, such as edge sensors
that are combined with the AI cloud, allow for faster recognition of workers’ emotional,
affective, and physiological states [73]. This factor should not be underestimated, since it
can overload the worker, becoming a new source of stress and affecting the measurements
and the results obtained from the indicators.

8.2. Subjective Measurement

At the psychological level, the object of the measurement is the emotional state of
workers or, more directly, their perceived stress, but in both cases there are no standard
indicators for the self-assessment. The emotional state related to the execution of a task is
deepened by asking the workers their perceptions about the nature of their emotions and
feelings, focusing on negative emotions such as anxiety, depression, tension, or frustration.
Sometimes, the focus of the self-assessment is not on the positivity or negativity of the
emotions but on their intensity and the perception that workers have about the capability
to dominate and control them.

However, the perceived stress indicators are also affected by weakness due to a missing
definitive definition of the stress phenomenon from the psychological perspective. Indeed,
some indicators refer specifically to physical stress, others to mental stress, and others in
general to perceived stress, without specification.

Moreover, the methods adopted for both emotional-state and perceived-stress evalua-
tion are mostly questionnaires and rating scales. The great variety of questionnaires and
self-assessment tests revealed that in this case there are also no standards; however, it is
possible to point out some strengths and weaknesses of these methods.

For example, NAS is a simple technique to adopt for a quick assessment of perceived
stress in industrial contexts. Moreover, by administering the questionnaire before, during,
and after the execution of a task, it is possible to compare perceived stress levels under
highly stressful conditions and under resting conditions [12]. The STAI questionnaire can be
posed while performing the experimental task, during resting intervals, and on subsequent
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days to assess perceived-stress levels to verify that the tendency to provide the same
responses is very limited a few days after the effort [55]. However, the Perceived Stress
Scale is particularly sensitive to respondents’ perceptions [64]. In general, on a statistical
level, it is difficult to obtain particularly reliable results if the sample of respondents is small.
As a consequence, questionnaires and tests require the involvement of larger samples of
participants to resolve this type of complication [61].

Overall, there seems to be some evidence to indicate that the combination of mea-
surements of different types, such as physiological measurements and self-assessment
techniques, is the most suitable method to measure workers’ stress, as evidenced in almost
all the contributions included in this review. The cross-analysis of data collected through
different methods allows for a complete and more reliable interpretation of stress indicators.
Indeed, physiological signals are complex to interpret individually since they are influ-
enced by other psychological and physical processes [53], and emotions and perceptions
on a psychological level may also have a particular influence on vital parameters at the
physiological level [74]. Therefore, the comparison of data collected through different
methods enables the truthfulness of results to be tested. Moreover, objective measurements
combined with subjective assessments, repeated before, during, and after the performance
of the activity, provide the most consistent outcomes since the workers’ perceptions be-
fore the tasks, under resting conditions, support researchers while calibrating biomedical
devices and reducing the possibility of interpretation and measurement errors.

Currently, there are no standards for both objective and subjective indicators. Objective
indicators, especially the physiological ones, lack homogeneity not only in the mathematical
formulas but also in their nomenclature. Each physiological signal is associated with a great
variety of algorithms to calculate stress levels or the same indicators to which different
labels and acronyms are attached, complicating the comparison of results among different
studies. Moreover, the variety of devices for biometric-data collection represents a gap.
Although the type of sensors adopted depends above all on the context in which the
experimental activities are carried out, small wearable devices are the most appropriate
for measuring the physiological and physical activities of workers in in-field experimental
activities but do not allow the integral signal to be captured or the original and continuous
vital processes of the workers to be carried out since they provide a direct measure of the
indicators, limiting the potential detailed analysis of data. On the other hand, the most
sensitive sensors and devices are difficult to integrate into real manufacturing systems,
comporting a high percentage of artefacts and level of noise in the data collected, and
their setup may cause discomfort to the participants and workers. Consequently, the
literature lacks a compromise that justifies and standardises the large adoption of either
type of device.

8.3. Other Factors

The analysis of the experimental protocols showed no correlation between the type of
stress measurements and the experimental tasks and environment in which the activities
were carried out.

Although the assembly processes were widely proposed, new investigations are
required to compare the stress levels in relation to the execution of other typical production
tasks, such as push and pull, quality monitoring, etc. Moreover, the tasks may be adapted
through the interaction with smart and intelligent devices from manufacturing systems
in order to provide reliable results and suggestions for workers’ stress and well-being
in advanced, automated work contexts. New experimental tasks should not involve
manual work phases for the worker but may adapt to the new role of supervisor of
production processes.

Regarding the experimental contexts, laboratory experiments fail to consider some
potential factors typical of real manufacturing systems, such as temperature, noise, and the
worker’s sense of responsibility for the success of the production process or for unexpected
breakdowns, which may influence stress. As a benefit, laboratory and virtual-/augmented-
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reality simulations allow the most sensitive measurements to be adopted that would not
be suitable for measurement in a working environment, as their high sensitivity would
lead to the recording and collection of data particularly affected by artefacts and not
accurate for reliable analyses. On the other hand, measurements in real manufacturing
contexts are extremely constrained by the production process of the company. Some
variables related to the production process that may influence workers’ stress levels, such
as production-line speed or time constraints, cannot be analysed since their variation can
significantly influence the real production flow, damaging the efficiency and productivity
of the companies. Hence, the measurements in real contexts may be less exact and detailed
than in the laboratory.

The evidence presented in this section suggests that while designing experimental
protocols, researchers may consider the adoption of tools and methods for stress measure-
ments that do not limit the movements and normal execution of the tasks of the workers or
participants both in the laboratory and in in-field experimental activities.

The main gap in the literature is represented by the conducting of stress measure-
ments under different experimental conditions. Moreover, the absence of homogeneity
and guidelines for selecting the proper type of stress measurements on the basis of experi-
mental tasks and contexts leads to the adoption of a great variability of methods and new
experimental approaches.

In addition, environmental factors are significant for stress evaluation. Indeed, it has
been observed that both too-high and too-low temperatures are causes of a phenomenon
for workers known as thermal discomfort, which represents a new potential source of
stress [75]. Thermal discomfort, in combination with typical noise levels of real industrial
environments, alters not only the physiological processes of workers but also their sub-
jective perceptions of stress [76,77]. Moreover, the combination of noise and inadequate
lighting conditions also causes errors in the perception of information while executing
tasks [78]. The evaluation of these factors may help in the prevention of health problems for
workers and physical damage to workers; on the other hand, this may also have positive
consequences on the productivity of the company [79].

Finally, worker-specific factors such as gender, age, expertise, experience, or back-
ground may be considered for a more comprehensive analysis. Cases in which demographic
factors were correlated with the specific stress indicators are limited. This shows that there
is therefore a gap in the literature that needs to be filled.

Collectively, these contributions outline that the environmental conditions and the
demographic data of the participants in the experiment may be useful first to investigate
how these influence stress levels of the participants and workers and then to cross-analyse
different experimental-condition results in order to generalise the relationship between
these factors and stress indicators. The other factor analysis also demonstrated the presence
of profound gaps in the literature, on the one hand, due to the fact that only a very small
percentage of studies considered these variables in stress investigations, and on the other
hand, because there are currently no standards for environmental and demographic factors.
As far as the former is concerned, apart from temperature, the other factors are often
reported with different units of measurement that are not compatible with those of the
other studies or are simply measured with incompatible methods, which complicates the
comparison with the results of the other studies. In addition, even the demographic data
requested of the participants are not homogeneous, especially with regard to the data on
background, expertise, or experience.

9. Conclusions

This review aimed to investigate stress indicators adopted in smart and intelligent
manufacturing contexts and to explore the potential other factors that may affect the evalu-
ations. The results revealed three main categories of measurements: physical, physiological,
and cognitive. The first includes postural and behavioural indicators based on the worker’s
body movements and language. The physiological category consists of indicators of cardiac,
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electrodermal, breathing, and brain activity. Then, psychological measurements track the
workers’ perceptions and emotional states through questionnaires and tests. The main
finding from the literature highlights that the most appropriate measurements for stress
evaluation in smart and intelligent manufacturing systems are obtained from a combination
of indicators of different categories, since it enables more reliable analysis and consistent
results, reducing the probability of misinterpretation. In addition, stress indicators, espe-
cially physiological ones, can be selected in accordance with the experimental protocols
since specific biomedical devices, such as wearables, are more likely to be adopted in
laboratory experiments but lead to a limited analysis of the physiological and physical data.
On the other hand, it may be complicated to integrate the most sensitive devices into the
manufacturing contexts for in-field experiments. Moreover, other factors, such as environ-
mental and demographic ones, may affect stress evaluations since critical temperatures,
noise levels, lighting conditions, and worker characteristics such as age may increase the
probability of errors while executing tasks and levels of stress.

Finally, this review contributes to the research by proposing a theorical summary of
the specific methods adopted in the literature to measure stress in advanced manufacturing
systems and related indicators. On the other hand, this study provides practical guidelines
to select the most appropriate measurement methods in relation to other factors that may
influence the results of future studies. Moreover, pointing out the gaps in the literature,
this article aims to highlight the directions that still need to be deepened and focused on,
providing inspiration for future studies.

From the analysis of the literature, no standards with respect to stress measurements
and indicators emerged.

Conducting stress measurements under different experimental conditions represents
the main gap in the literature nowadays. This is due to the lack of standards in stress
measurements since for the same physiological indicators different formulas are adopted
and an official nomenclature is still missing in the indicator acronym. Moreover, the gap
is also in the non-conformity in the selection of ad hoc stress measurements for specific
experimental tasks and contexts. In addition, the environmental and demographical
factors are rarely specified in contributions and neglected or measured with no standard
methods, compromising the comparison of experimental conditions and results from
different studies.

Finally, the major limitation of this review lies in the number of studies included on
the stress-measurement methods in advanced manufacturing systems. Since this study
was focused on smart and intelligent manufacturing systems, a limited number of specific
keywords related to this context were included in the research query adopted. Additional
keywords can be added in order to broaden the research field and explore whether the
stress methods cited in this review are also adopted for the investigation of other human
factors in advanced manufacturing contexts. Moreover, it is expected that with the repeti-
tion of this research with an identical query in the coming months, the number of resulting
contributions will grow exponentially, given the interest of researchers and academia on
this topic and the urgency of solving this significant social issue. In the end, as advanced
manufacturing systems are continuously improving and updated, there are no standard
terms for their identification. The number of potential alternative keywords for manu-
facturing systems will probably also increase over time, as more and more distinct and
varied ways of defining these contexts are emerging, and thus will be added to the original
research query adopted in order to find a higher number of the final resulting contributions.

10. Future Directions

Future studies on the current topic are therefore recommended. In future investiga-
tions, it might be possible to deepen the phenomenon of stress in smart and intelligent
manufacturing systems by implementing more detailed measurements, taking into account
additional aspects that may influence the emotional state of the worker. Among the de-
mographic variables, gender and background/expertise/experience could significantly
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contribute to a comprehensive stress investigation. Furthermore, workers’ disabilities may
be considered as an additional factor in the analysis in order to improve the inclusiveness
of the research and the manufacturing industry.

Additional research should be undertaken to investigate other measurement tech-
niques for stress assessment, e.g., facial and speech recognition, as well as investigations of
workers’ body language and how it changes in particularly stressful situations.

Finally, to develop a full picture of the stress phenomenon in smart and intelligent
manufacturing systems, additional studies will be needed about other parameters con-
cerning the working environment, such as the layout of the production system and time
constraints, which may prove to be particularly influential on the worker’s state of stress.
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