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ABSTRACT

Single-Image Super-Resolution can support robotic tasks in environments where a reliable visual
stream is required to monitor the mission, handle teleoperation or study relevant visual details. In this
work, we propose an efficient Generative Adversarial Network model for real-time Super-Resolution,
called EdgeSRGAN1. We adopt a tailored architecture of the original SRGAN and model quantization
to boost the execution on CPU and Edge TPU devices, achieving up to 200 fps inference. We further
optimize our model by distilling its knowledge to a smaller version of the network and obtain
remarkable improvements compared to the standard training approach. Our experiments show that
our fast and lightweight model preserves considerably satisfying image quality compared to heavier
state-of-the-art models. Finally, we conduct experiments on image transmission with bandwidth
degradation to highlight the advantages of the proposed system for mobile robotic applications.

1 Introduction

In the last decade, Deep Learning (DL) techniques have pervaded robotic systems and applications, drastically boosting
automation in both perception [14, 73], navigation and control [51, 62] tasks. The development of Machine Learning
driven algorithms is paving the way for advanced levels of autonomy for mobile robots, widely increasing the reliability
of both unmanned aerial vehicles (UAV) and unmanned ground vehicles (UGV) [14]. Nonetheless, the adoption
of mobile robots for mapping and exploration [38], search and rescue [16] or inspection [64, 63] missions in harsh
unseen environments can provide substantial advantages and reduce the risks for human operators. In this context, the
successful transmission of images acquired by the robot to the ground station often assumes a significant relevance
to the task at hand, allowing the human operators to get real-time information, monitor the state of the mission, take
critical planning decisions and analyze the scenario. Moreover, unknown outdoor environments may present unexpected
extreme characteristics which still hinder the release of unmanned mobile robots in the complete absence of human
supervision. Although novel DL-based autonomous navigation algorithms are currently under investigation in disparate
outdoor contexts such as tunnel exploration [50, 56, 17], row-crops navigation [42, 1] and underwater [31, 4], complete
or partial remote teleoperation remains the most reliable control strategy in uncertain scenarios. Indeed, irregular terrain,
lighting conditions, and the loss of localization signal can lead navigation algorithms to fail. As a direct consequence of
navigation errors, the robotic platform can get stuck in critical states where human intervention is required or preferred.

However, visual data transmission for robot teleoperation, monitoring, or online data processing requires a stable
continuous stream of images, which may be drastically affected by poor bandwidth conditions due to the long distance
of the robot or by constitutive factors of the specific environment. Besides this, UAVs and high-speed platforms require
the pilot to receive the image stream at a high framerate to follow the vehicle’s motion in non-line-of-sight situations. A
straightforward but effective solution to mitigate poor bandwidth conditions and meet high-frequency transmission
requirements is reducing the transmitted image’s resolution. On the other hand, heavy image compression with massive
loss of detail can compromise image usability.

To this end, we propose EdgeSRGAN, a novel deep learning model for Single-Image Super-Resolution (SISR) at
the edge to handle the problem of efficient image transmission. Our intuition relies on a lightweight neural network

1Code available at https://github.com/PIC4SeR/EdgeSRGAN.
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Figure 1: LPIPS [68] results (lower is better) on Set5 [7] vs framerate (80 × 60 input) of different visual-oriented SISR
methods for ×4 upsampling. Real-time (RT) and over-real-time (ORT) framerates are marked as references. Our models,
marked with ?, reach real-time performance with a competitive perceptual similarity index on the CPU. Edge TPU models can
further increase inference speed far beyond real-time, still outperforming the bicubic baseline.

allowing us to send low-resolution images at a high transmission rate with scarce bandwidth and then reconstruct the
high-resolution image on the pilot’s mobile device. Moreover, the successful spread of edge-AI in different engineering
applications [12, 5, 36] has shown encouraging results in moving the execution of DL models on ultra-low power
embedded devices. Hence, we propose an edge-AI computationally efficient Super Resolution neural network to
provide fast inference on CPUs and Edge TPU devices. To this aim, we adopt several optimization steps to boost the
performance of our model while minimizing the quality drop. We refine the architecture of the original SRGAN [30] to
speed up inference and perform model quantization. Nonetheless, we experiment with a teacher-student knowledge
distillation technique for SISR to further enhance the reconstructed image of our tiny model. We take inspiration from
the work of [21] and obtain a remarkable improvement for all the considered metrics.

We perform experiments to validate the proposed methodology under multiple perspectives: numerical and qualitative
analysis of our model reconstructed images and inference efficiency on both CPU and Edge TPU devices. As an
example, as shown in Fig. 1, EdgeSRGAN achieves real-time performance with a competitive perceptual similarity
index compared with other visual-oriented SISR methods. Moreover, we test the performance of our system for robotic
applications. In particular, we focus on image transmission for teleoperation in case of bandwidth degradation, also
performing tests with the popular robotic middleware ROS2.

The rest of the paper is organized as follows. In Section 2, we introduce the research landscape of Super-Resolution
(SR), starting from the general background and then deepening the discussion towards robotic applications of SR and
efficient SR methods presented in previous works. In Section 3, we describe the Super-Resolution problem and our
methodological steps to obtain an Edge AI implementation for real-time performances. In Section 4, we propose a
wide range of experiments to validate the proposed methodology, analyzing the results obtained for inference speed and
output image quality and characterizing the advantages of our approach for robotic applications in limited-bandwidth
conditions. Finally, in Section 5, we summarize the overall study with conclusive remarks and suggest some potential
future work directions.

2 Related Works

2.1 Single-Image Super-Resolution

Single-Image Super-Resolution, also referred to as super-sampling or image restoration, aims at reconstructing a
high-resolution (HR) image starting from a single low-resolution (LR) input image, trying to preserve details and the
information conceived by the image. Therefore SISR, together with image denoising, is an ill-posed underdetermined
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inverse problem since a multiplicity of possible solutions exist given an input low-resolution image. Recently, learning-
based methods have rapidly reached state-of-the-art performance and are universally recognized as the most popular
approach for Super-Resolution. Such approaches rely on learning common patterns from multiple LR-HR pairs in a
supervised fashion. SRCNN [15] was the first example of a CNN applied to single-image super-resolution in literature.
It has been followed by multiple methods applying standard deep learning methodologies to SISR, such as residual
learning [29, 35], dense connections [71], residual feature distillation [37], attention [70, 13, 45], self-attention, and
transformers [9, 11, 34]. All these works focus on content-based SR, in which the objective is to reconstruct an image
with high pixel fidelity, and the training is based on a content loss, such as mean square error or mean absolute error.

In parallel, other works proposed Generative Adversarial Networks (GAN) [19] for SISR to aim at reconstructing
visually pleasing images. In this case, the focus is not on pixel values but perceptual indexes that try to reflect how
humans perceive image quality. This is usually implemented using perceptual losses and adversarial training and
is referred to as visual-based SR. SRGAN [30] first proposed adversarial training and was later followed by other
works [35, 18, 59]. With robotic image transmission as a target application in mind, in this work, we particularly
focus on visual-based SR, aiming to reconstruct visually pleasing images to be used by human operators for real-time
teleoperation and monitoring.

2.2 Efficient Methods for Single-Image Super-Resolution

In recent years, efficient deep neural networks for SR have been proposed to reduce the number of parameters while
keeping high-quality performances [33]. However, most of the proposed architectural solutions are designed for content-
based training, which aims to minimize the difference between the high-resolution image and the network output.
Among them, [52] proposed a thin, simple model which handles SR as a bilinear upsampling residual compensation.
Despite the high-quality images obtained, this approach has high inference latency due to the double prediction required.
Diversely, [44] entirely based their study to target Edge-AI chips, proposing an ultra-tiny model composed of one layer
only.

As already stated, we prefer GAN-based SR to enhance the visual appearance of produced images for robotic applications.
However, successful studies of efficient GANs are very rare in the literature. Recently, knowledge distillation (KD)
emerged as a promising option to compress deep models and GANs too [2, 20]. KD was originally born in 2015 with the
visionary work of [25], where a teacher-student framework was introduced as a knowledge transfer mechanism. More
recent works evolved such concept in disparate variants: FitNets [49] introduced the idea of involving also intermediate
representations in the distillation process, Attention Transfer (AT) [65] proposes an attention-based distillation, and
Activation Boundaries (AB) [24] interestingly focuses on the distilled transfer of activation boundaries formed by
hidden neurons, further advanced in [23]. Specifically considering KD application in SR, Feature Affinity KD (FAKD)
[21] uses intermediate features affinity distillation for PSNR-focused SR. We found this approach a good starting point
also for GAN-based SR. Diversely, [69] investigates a progressive knowledge distillation method for data-free training.
Besides KD, [18] recently proposed an Automated Machine Learning (Auto-ML) framework to search for optimal
neural model structure, and filter pruning has been used as another optimization technique [32].

Differently from previous works, our model optimization for edge-SR is composed of three main steps: first, an
edge-oriented architectural definition is performed; then, we leverage teacher-student knowledge distillation to further
reduce the dimension of our model; lastly, we perform TensorFlow Lite (TFLite) conversion and quantization to shift
the network execution to CPUs and Edge TPUs with maximum inference speed.

2.3 Super-Resolution for Robotic Applications

SISR has been recently proposed in a few robotic applications where a high level of detail is beneficial to support the
specific task. Research on the indoor teleoperation of mobile robots mainly focuses on improving user experience,
combining Deep Learning methods with Virtual Reality [66, 22, 55], but neglecting the potential bottleneck caused by
connectivity degradation in harsh conditions. Differently, a great effort has been devoted to SISR for underwater robotics
perception [47, 27], effectively tackling the problem of high-quality image acquisition under the sea for accurate object
and species detection. Besides autonomous navigation applications, interesting contexts are robotic surgery [58, 8] and
medical robots research [41], where SISR can provide substantial advantages improving the visibility and increasing the
level of detail required for delicate high-precision movements of the surgeon. Similarly, a detailed image acquired by a
robot is needed for monitoring and inspection purposes. For example, [6] uses a Super-Resolution model to enhance
the online crack detection and in-situ analysis of bridge weaknesses. Nonetheless, no relevant works proposed so far
have identified Super-Resolution as an efficient solution for image transmission to support robot teleoperation and
exploration of unknown environments in bandwidth-degraded conditions.
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Figure 2: EdgeSRGAN Generator Architecture.

3 Methodology

In this section, we introduce all the components of the proposed methodology. As explained in Section 1, we choose to
use an adversarial approach to obtain an optimal balance between pixel-wise fidelity and perceptual quality. For this
reason, we take inspiration from three of the most popular GAN-based solutions for SISR: SRGAN [30], ESRGAN
[61], and AGD [18]. The proposed method aims to obtain a real-time SISR model (EdgeSRGAN) with minimal
performance drop compared to state-of-the-art solutions. For this reason, we mix successful literature practices
with computationally-efficient elements to obtain a lightweight architecture. Then, we design the network training
procedure to leverage a combination of pixel-wise loss, perceptual loss, and adversarial loss. To further optimize the
inference time, we apply knowledge distillation to transfer the performance of EdgeSRGAN to an even smaller model
(EdgeSRGAN-tiny). Furthermore, we study the effect of quantization on the network’s latency and accuracy. Finally,
we propose an additional inference-time network interpolation feature to allow real-time balancing between pixel-wise
precision and photo-realistic textures.

3.1 Network Architecture

As previously done by [61], we take the original design of SRGAN and propose some changes to both the architecture
and training procedure. However, in our case, the modifications seek efficiency as well as performance. To obtain a
lighter architecture, we reduce the depth of the model by using only N = 8 Residual Blocks instead of the original
16. In particular, we use simple residuals instead of the Residual-in-Residual Dense Blocks (RRDB) proposed by [61]
as they are less computationally demanding. For the same reason, we change PReLU activation functions into basic
ReLU. We also remove Batch Normalization to allow the model for better convergence without generating artifacts
[61]. Finally, we use Transpose Convolution for the upsampling head instead of Sub-pixel Convolution [53]. Despite its
popularity and effectiveness, Sub-pixel Convolution is computationally demanding due to the Pixel Shuffling operation,
which rearranges feature channels spatially. We choose instead to trade some performance for efficiency and apply
Transpose Convolutions taking precautions to avoid problems such as checkerboard artifacts [46]. The complete
EdgeSRGAN architecture is described in Fig. 2. The adopted discriminator model is the same used in [30, 61], as it
serves only training purposes and is not needed at inference time. Its architecture is described in Fig. 3.

3.2 Training Methodology

The training procedure is divided into two sections, as it is common practice in generative adversarial SISR. The first
part consists of classic supervised training using pixel-wise loss. In this way, we help the generator to avoid local
minima and generate visually pleasing results in the subsequent adversarial training. We use the mean absolute error
(MAE) loss for the optimization as it has recently proven to bring better convergence than mean squared error (MSE)
[72, 35, 70, 61].

LMSE =

B∑
i=1

||yHR
i − ySR

i ||1 (1)
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LeakyReLU FlattenConv2D BatchNormInput Dense Sigmoid

Figure 3: EdgeSRGAN Discriminator Architecture. The model progressively reduces the spatial dimensions of the image by
alternating blocks with strides 1 (B1) and 2 (B2). The first block (marked with *) does not apply batch normalization.

where yHR is the ground-truth high resolution image, ySR is the output of the generator, and B is the batch size. We use
the Peak Signal-to-Noise Ratio (PSNR) metric to validate the model.

In the second phase, the resulting model is fine-tuned in an adversarial fashion, optimizing a loss that takes into account
adversarial loss and perceptual loss. As presented in [30], the generator G training loss can be formulated as

LG = LPG + ξLAG + ηLMSE. (2)

LPG is the perceptual VGG54 as the euclidean distance between the feature representations of a reconstructed image SR
and the reference image HR. The features are extracted using the VGG19 network [54] pre-trained on ImageNet:

LPG =

B∑
i=1

||φ(yHR
i )− φ(ySR

i )||2 (3)

where φ is the perceptual model VGG. LAG is the adversarial generator loss, defined as

LAG = − log(D(ySR)) (4)

where D is the discriminator. Using this loss, the generator tries to fool the discriminator by generating images that
are indistinguishable from the real HR ones. ξ and η are used to balance the weight of different loss components. The
weights of the discriminator D are optimized using a symmetrical adversarial loss, which tends to correctly discriminate
HR and SR images.

LD = log(D(ySR))− log(D(yHR)) (5)
We optimize both models simultaneously, without alternating weight updates like in most seminal works on GANs. The
overall training methodology is summarized in Fig. 4 summarizes the overall training methodology.

3.3 Knowledge Distillation

As mentioned in Section 2, Knowledge Distillation (KD) has gained increasing interest in deep learning for its ability to
transfer knowledge from bigger models to simpler ones efficiently. In particular, KD has been applied in some SISR
works to compress the texture reconstruction capability of cumbersome models and obtain efficient real-time networks.
However, to the best of our knowledge, KD has never been applied to GAN SISR models. For this reason, we adapt
an existing technique developed for SISR called Feature Affinity-based Knowledge Distillation (FAKD) [21] to the
GAN training approach. The FAKD methodology transfers second-order statistical info to the student by aligning
feature affinity matrices at different layers of the networks. This constraint helps to tackle the fact that regression
problems generate unbounded solution spaces. Indeed, most of the KD methods so far have only tackled classification
tasks. Given a layer l of the network, the feature map Fl extracted from that layer (after the activation function) has the
following shape:

Fl ∈ RB×C×W×H (6)
where B is the batch size, C is the number of channels, W and H are the width and the height of the tensor. We first
flatten the tensor along the last two components obtaining the three-dimensional feature map

Fl ∈ RB×C×WH (7)

which now holds all the spatial information along a single axis. We define the affinity matrix Al as the product

Al = F̃l
> · F̃l (8)
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Figure 4: EdgeSRGAN Training Methodology.

where · is the matrix multiplication operator and the transposition > swaps the last two dimensions of the tensor. F̃l is
the normalized feature map, obtained as

F̃l =
Fl
||Fl||2

(9)

Differently from [21], the norm is calculated for the whole tensor and not only along the channel axis. Moreover, we
find better convergence using the euclidean norm instead of its square. In this way, the affinity matrix has a shape

Al ∈ RB×WH×WH (10)

and the total distillation loss LDist becomes

LDist =
1

NL

(
NL∑
l=1

||ATl −ASl ||1

)
+ λ||yTSR − ySSR||1 (11)

where NL is the number of distilled layers. Differently from [21], we sum the loss along all the tensor dimensions and
average the result obtained for different layers. These modifications experimentally lead to better training convergence.
We also add another loss component, weighted by λ, which optimizes the model to generate outputs close to the teacher’s
ones. In our experimentation, the distillation loss is added to the overall training loss weighted by the parameter γ. The
overall distillation scheme is summarized in Fig. 5.

3.4 Model Interpolation

Following the procedure proposed in [61], we adopt a flexible and effective strategy to obtain a tunable trade-off
between a content-oriented and GAN-trained model. This feature can be very useful for real-time applications, as it
allows the SISR network to adapt to the user’s needs promptly. Indeed, some real scenarios may need better perceptual
quality, for example, when the remote control of a robot has to be performed by a human pilot. On the other hand, when
images are used to directly feed perception, autonomous navigation, and mapping algorithms, higher pixel fidelity might
be beneficial. To achieve this goal, we linearly interpolate model weights layer-by-layer, according to the following
formula:

θInt
G = αθPSNR

G + (1− α)θGAN
G (12)

where θInterp
G , θPSNR

G , and θGAN
G are the weights of the interpolated model, the PSNR model, and the GAN fine-tuned

model, respectively. α ∈ [0, 1] is the interpolation weight. We report both qualitative and quantitative interpolation
results for EdgeSRGAN in Section 4.3.1. We avoid the alternative technique of directly interpolating network outputs:
applying this method in real time would require running two models simultaneously. Moreover, Wang et al.[61] report
that this approach does not guarantee an optimal trade-off between noise and blur.
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Figure 5: EdgeSRGAN Distillation Process.

3.5 Model Quantization

To make EdgeSRGAN achieve even lower inference latency, we apply optimization methods to the model to reduce the
computational effort at the cost of a loss in performance. Several techniques have been developed to increase model
efficiency in the past few years [28], from which the employed method is chosen. We reduce the number of bits used to
represent network parameters and activation functions with TFLite2. This strategy strongly increases efficiency with
some impact on performance. We quantize weights, activations, and math operations through scale and zero-point
parameters following the methodology presented by Jacob et al.[28]:

r = S(q − Z) (13)

where r is the original floating-point value, q is the quantized integer value, and S and Z are the quantization parameters
(scale and zero point). A fixed-point multiplication approach is adopted to cope with the non-integer scale of S. This
strategy drastically reduces memory and computational demands due to the high efficiency of integer computations
on microcontrollers. For our experimentation, we deploy the quantized model on a Google Coral Edge TPU USB
Accelerator3.

4 Experiments

4.1 Experimental Setting

In this section, we define our method’s implementation details and the procedure we followed to train and validate the
efficiency of EdgeSRGAN optimally. As previously done by most GAN-based SISR works, we train the network on the
high-quality DIV2K dataset [3] with a scaling factor of 4. The dataset contains 800 training samples and 100 validation
samples. We train our model with input images of size 24x24 pixels, selecting random patches from the training set. We
apply data augmentation by randomly flipping or rotating the images by multiples of 90◦. We adopt a batch size of 16.

For the standard EdgeSRGAN implementation, we choose N = 8, F = 64, K = 3, and D = 1024, obtaining
a generator with around 660k parameters and a discriminator of over 23M (due to the fully-connected head). The
discriminator is built with F = 64, K = 3, D = 512, and with a coefficient for LeakyReLU α = 0.2. We first train
EdgeSRGAN pixel-wise for 5× 105 steps with Adam optimizer and a constant learning rate of 1× 10−4. Then, the
model is fine-tuned in the adversarial setting described in Section 3 for 1× 105 steps. Adam optimizer is used for the

2https://www.tensorflow.org/lite/
3https://coral.ai/
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Framerate (80× 60) [fps] Framerate (160× 120) [fps]

Method Scale Params CPU EdgeTPU CPU EdgeTPU
SwinIR [34]

×4

11.9M 0.25 ± 0.01 - 0.06 ± 0.01 -
ESRGAN [61] 16.7M 0.40 ± 0.01 - 0.10 ± 0.01 -
Real-ESRGAN [59] 16.7M 0.44 ± 0.01 - 0.11 ± 0.01 -
SRGAN [30] 1.5M 2.70 ± 0.08 - 0.95 ± 0.02 -
AGD [18] 0.42M 3.17 ± 0.12 - 0.88 ± 0.01 -
EdgeSRGAN 0.66M 10.26 ± 0.11 140.23 ± 1.50 2.66 ± 0.02 10.63 ± 0.03
EdgeSRGAN-tiny 0.09M 37.99 ± 1.42 203.16 ± 3.03 11.76 ± 0.20 20.57 ± 0.05

SwinIR [34]
×8

12.0M 0.23 ± 0.01 - 0.06 ± 0.01 -
EdgeSRGAN 0.71M 7.70 ± 0.31 14.26 ± 0.06 1.81 ± 0.04 -
EdgeSRGAN-tiny 0.11M 24.53 ± 1.28 41.55 ± 0.38 5.81 ± 0.29 -

Table 1: Framerate comparison of different methods for ×4 and ×8 upsampling, with two different input resolutions (80× 60
and 160× 120). The results are provided as mean and standard deviation of 10 independent experiments of 100 predictions
each. Current content-oriented SISR state-of-art method SwinIR [34] is reported as a reference. Real-time and over-real-time
framerates are in blue and red, respectively. The proposed solution is the only one compatible with EdgeTPU devices and
allows reaching real-time performance in both conditions.

generator and the discriminator with a learning rate of 1× 10−5, further divided by 10 after 5× 104 steps. For the loss
function, we set ξ = 1× 10−3 and η = 0.

To obtain an even smaller model for our distillation experiments, we build EdgeSRGAN-tiny by choosing N = 4,
F = 32, and D = 256. We further shrink the size of the discriminator by eliminating the first compression stage
(B1) from each block (see Fig. 3). In this configuration, we also remove the batch normalization layer from the first
B2 block to be coherent with the larger version. The obtained generator and discriminator contain around 90k and
2.75M parameters. The pre-training procedure is the one described for EdgeSRGAN, while the adversarial training
is performed with the additional distillation loss (γ = 1× 10−2, λ = 1× 10−1) of Eq. 11. EdgeSRGAN is used
as a teacher model, distilling its layers 2, 5, and 8 into EdgeSRGAN-tiny’s layers 1, 2, and 4. The model is trained
with a learning rate of 1× 10−4, which is further divided by 10 after 5× 104 steps. For the loss function, we set
ξ = 1× 10−3 and η = 0.

Finally, we create a third version of our model to upscale images with a factor of 8. To do so, we change the first
transpose convolution layer of EdgeSRGAN and EdgeSRGAN-tiny to have a stride of 4 instead of 2 and leave the rest
of the architecture unchanged. The training procedure for these models is analogous to the ones used for the x4 models,
with the main difference of adding a pixel-based component to the adversarial loss by posing η = 1× 102.

The optimal training hyperparameters are found by running a random search and choosing the best-performing models
on DIV2K validation. During GAN training, we use PSNR to validate the models during content-based loss optimization
and LPIPS [68] (with AlexNet backbone).

We employ TensorFlow 2 and a workstation with 64 GB of RAM, an Intel i9-12900K CPU, and an Nvidia 3090 RTX
GPU to perform all the training experiments.

4.2 Real-time Performance

Since the main focus of the proposed methodology is to train an optimized SISR model to be efficiently run at the
edge in real time, we first report an inference speed comparison between the proposed method and other literature
methodologies. All the results are shown in Tab. 1 as the mean and standard deviation of 10 independent experiments
of 100 predictions each. We compare the proposed methodology with other GAN-based methods [30, 61, 59, 18]
and with the current state-of-the-art in content-oriented SISR SwinIR [34]. Since the original implementations of the
GAN-based solutions consider ×4 upsampling only, for the ×8 comparison, we only report SwinIR. We select two
different input resolutions for the experimentation, (80 × 60) and (160 × 120), in order to target (320 × 240) and
(640× 480) resolutions for ×4 upsampling and (640× 480) and (1280× 960) for ×8 upsampling, respectively. This
choice is justified because (640× 480) is a standard resolution provided by most cameras’ native video stream. We
also report the number of parameters for all the models.

For all the considered methods, we measure the CPU timings with the model format of the original implementation
(PyTorch or TensorFlow) on a MacBook Pro with an Intel i5-8257U processor. The concept of real-time performance
strongly depends on the downstream task. For robotic monitoring and teleoperation, we consider 10 fps as the minimum
real-time framerate, considering over-real-time everything above 30 fps, which is the standard framerate for most
commercial cameras. The proposed methodology outperforms all the other methods in inference speed and achieves
real-time performance on the CPU in almost all the testing conditions. It is worth noting that AGD is specifically
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Set5 [7] Set14 [67] BSD100 [40] Manga109 [43] Urban100 [26]

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic 28.632 0.814 0.340 26.212 0.709 0.441 26.043 0.672 0.529 25.071 0.790 0.318 23.236 0.661 0.473
SwinIR [34] 32.719 0.902 0.168 28.939 0.791 0.268 27.834 0.746 0.358 31.678 0.923 0.094 27.072 0.816 0.193

SRGAN [30] 32.013 0.893 0.191 28.534 0.781 0.294 27.534 0.735 0.396 30.292 0.906 0.111 25.959 0.782 0.244
ESRGAN [61]† 32.730 0.901 0.181 28.997 0.792 0.275 27.838 0.745 0.371 31.644 0.920 0.097 27.028 0.815 0.201
AGD [18] 31.708 0.889 0.178 28.311 0.775 0.291 27.374 0.729 0.385 29.413 0.897 0.118 25.506 0.767 0.250

EdgeSRGAN 31.729 0.889 0.191 28.303 0.774 0.301 27.359 0.728 0.405 29.611 0.897 0.120 25.469 0.764 0.266
EdgeSRGAN-tiny 30.875 0.873 0.204 27.796 0.761 0.320 26.999 0.717 0.418 28.233 0.871 0.163 24.695 0.733 0.325

Table 2: Quantitative comparison of different methods for content-oriented ×4 upsampling. Current SISR state-of-art method
SwinIR [34] and bicubic baseline are reported as reference.
↑: higher is better, ↓: lower is better, †: trained on DIV2K [3] + Flickr2K [57] + OST [60]

Set5 [7] Set14 [67] BSD100 [40] Manga109 [43] Urban100 [26]

Model PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic 28.632 0.814 0.340 26.212 0.709 0.441 26.043 0.672 0.529 25.071 0.790 0.318 23.236 0.661 0.473
SwinIR [34] 32.719 0.902 0.168 28.939 0.791 0.268 27.834 0.746 0.358 31.678 0.923 0.094 27.072 0.816 0.193

SRGAN [30] 29.182 0.842 0.094 26.171 0.701 0.172 25.447 0.648 0.206 27.346 0.860 0.076 24.393 0.728 0.158
ESRGAN[61]† 30.459 0.852 0.083 26.283 0.698 0.139 25.288 0.649 0.168 28.478 0.860 0.065 24.350 0.733 0.125
Real-ESRGAN [59]† 26.617 0.807 0.169 25.421 0.696 0.234 25.089 0.653 0.282 25.985 0.836 0.149 22.671 0.686 0.214
AGD [18] 30.432 0.861 0.097 27.276 0.739 0.160 26.219 0.688 0.214 28.163 0.870 0.076 24.732 0.743 0.170

EdgeSRGAN 29.487 0.837 0.095 26.814 0.715 0.176 25.543 0.644 0.210 27.679 0.855 0.081 24.268 0.716 0.170
EdgeSRGAN-tiny 28.074 0.803 0.146 26.001 0.702 0.242 25.526 0.658 0.292 25.655 0.804 0.140 23.332 0.672 0.269
EdgeSRGAN-tiny⚗ 29.513 0.841 0.132 26.950 0.727 0.220 26.174 0.673 0.282 27.106 0.845 0.130 24.117 0.704 0.249

Table 3: Quantitative comparison of different methods for visual-oriented ×4 upsampling. Current SISR state-of-art method
SwinIR [34] and bicubic baseline are reported as reference. ↑: higher is better, ↓: lower is better. †: trained on DIV2K [3] +
Flickr2K [57] + OST [60].

designed to reduce latency for GAN-based SR and has fewer parameters than EdgeSRGAN, but it still fails at achieving
real-time without a GPU.

In addition, we report the framerate of the EdgeSRGAN int8-quantized models on an EdgeTPU Coral USB Accelerator.
The proposed solution is the only one compatible with such devices and allows reaching over-real-time performance for
(80× 60) input resolution. It must be underlined how the ×8 models with (160× 120) input resolution cannot target
the EdgeTPU device due to memory limitations.

4.3 Super-Resolution Results

To present quantitative results on image super-resolution, we refer to content-oriented SR for models trained with
content-based loss only and visual-oriented SR for models trained with adversarial and perceptual losses. Content-based
loss (mean absolute error or mean squared error) aims to maximize PSNR and SSIM, while adversarial and perceptual
losses aim to maximize visual quality. We test EdgeSRGAN models on five benchmark datasets (Set5 [7], Set14
[67], BSD100 [40], Manga109 [43], and Urban100 [26]) measuring PSNR, SSIM, and LPIPS. We follow the standard
procedure for SISR adopted in [34], where the metrics are computed on the luminance channel Y of the YCbCr
converted images. Also, S pixels are cropped from each image border, where S is the model scale factor.

Tab. 2 and Tab. 3 show the comparison with other methods for content-oriented and visual-oriented ×4 SR, respectively.
We report results of other GAN-based methodologies [30, 61, 59, 18] as well as the current content-oriented SOTA
SwinIR [34] and bicubic baseline, as reference. Unlike what is usually found in literature, we refer to the OpenCV4

bicubic resize implementation instead of the one present in MATLAB. For visual-oriented SR, we also report the results
of the distilled tiny model EdgeSRGAN-tiny⚗. The proposed method reaches competitive results in all the metrics,
even with some degradation for tiny models due to the considerable weight reduction. The distillation method helps
EdgeSRGAN-tiny training by transferring knowledge from the standard model and decreasing the degradation due
to the reduced number of parameters. Note that ESRGAN and RealESRGAN are trained on Flickr2K [57], and OST
[60] datasets in addition to DIV2K. Tab. 4 reports results of the ×8 models, together with SwinIR and bicubic. Also,
in this case, the proposed models reach competitive results, and knowledge distillation helps to reduce performance
degradation in the tiny model. As a final qualitative evaluation, Fig. 6 compares the super-resolved images obtained by
EdgeSRGAN with the considered state-of-the-art solutions. Our model shows comparable results, highlighting more
texture and details than networks trained with pixel loss (LMSE) while remaining true to the ground truth image.

4https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#resize
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Urban100 (×4): img_003

LR HR SRGAN [30] ESRGAN [61]

RealESRGAN [10] AGD [18] SwinIR [34] EdgeSRGAN (ours)

Manga109 (×4): ParaisoRoad

LR HR SRGAN [30] ESRGAN [61]

RealESRGAN [10] AGD [18] SwinIR [34] EdgeSRGAN (ours)

BSD100 (×4): 108070

LR HR SRGAN [30] ESRGAN [61]

RealESRGAN [10] AGD [18] SwinIR [34] EdgeSRGAN (ours)

Set5 (×4): butterfly

LR HR SRGAN [30] ESRGAN [61]

RealESRGAN [10] AGD [18] SwinIR [34] EdgeSRGAN (ours)

Set14 (×4): baboon

LR HR SRGAN [30] ESRGAN [61]

RealESRGAN [10] AGD [18] SwinIR [34] EdgeSRGAN (ours)

Figure 6: Visual comparison of bicubic image SR (×4) methods on random samples from the considered datasets. EdgeSRGAN
achieves results that are comparable to state-of-the-art solutions with ∼ 10% of the weights.
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Set5 [7] Set14 [67] BSD100 [40] Manga109 [43] Urban100 [26]

Model PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic 24.526 0.659 0.533 23.279 0.568 0.628 23.727 0.546 0.713 21.550 0.646 0.535 20.804 0.515 0.686
SwinIR [34] 27.363 0.787 0.284 25.265 0.652 0.428 24.984 0.606 0.537 25.246 0.800 0.229 23.023 0.646 0.375

EdgeSRGAN content 26.462 0.755 0.321 24.507 0.626 0.460 24.590 0.587 0.567 23.840 0.753 0.294 22.001 0.592 0.463
EdgeSRGAN-tiny 26.025 0.732 0.359 24.286 0.615 0.488 24.383 0.577 0.591 23.154 0.723 0.353 21.680 0.570 0.520

EdgeSRGAN visual 25.307 0.680 0.228 23.585 0.558 0.348 23.547 0.514 0.386 22.719 0.680 0.257 21.102 0.522 0.374
EdgeSRGAN-tiny 25.523 0.693 0.280 23.976 0.589 0.399 24.163 0.557 0.475 22.874 0.695 0.317 21.477 0.546 0.459

Table 4: Quantitative performance of the proposed method for ×8 upsampling. Current SISR state-of-art method SwinIR [34],
and bicubic are reported as references. ↑: higher is better, ↓: lower is better.

Set5 (×4): baby

α = 0 α = 0.2 α = 0.4

α = 0.6 α = 0.8 α = 1

Figure 7: Visual comparison of interpolated EdgeSRGAN for different values of α. Values closer to 1 generate outputs focused
on content fidelity, while small values go towards visually pleasing results.

4.3.1 Model Interpolation

We report the results of network interpolation on the benchmark datasets in Fig. 8. We consider α values between 0 and
1 with a step of 0.1, with 0 implying a full visual-oriented model and 1 a full content-oriented one. All results refer to
the standard EdgeSRGAN model for ×4 upsampling. This procedure effectively shows how it is possible to choose the
desired trade-off between content-oriented and visual-oriented SR simply by changing the interpolation weight α. An
increase in the weight value causes an improvement of the content-related metrics PSNR and SSIM and a worsening
of the perceptual index LPIPS. This behavior holds for all the test datasets, validating the proposed approach. This
procedure can be easily carried out in a real-time application and only requires computing the interpolated weights once.
Thus, it does not affect any way the inference speed. For an additional visual evaluation, Fig. 7 reports the outputs
obtained for increasing values of α on a random dataset sample.

4.3.2 Model Quantization

To target Edge TPU devices and reach over-real-time inference results, we follow the quantization scheme of Eq. 13 for
both weights and activations to obtain a full-integer model. Since quantized models must have a fixed input shape, we
generate a full-integer network for each input shape of the testing samples. We use the 100 images from the DIV2K
validation set as a representative dataset to calibrate the quantization algorithm. We refer to the int8-quantized standard
model as EdgeSRGANi8. As for the tiny model, we optimize the distilled network EdgeSRGANi8-tiny⚗. Results for
the visual-oriented optimized models are shown in Tab. 5. Due to the full-integer models’ reduced activation and weight,
we experience a great increase in inference speed up to over-real-time at the cost of degradation in SR performance.
All the proposed quantized models still outperform the bicubic baseline on the perceptual index LPIPS and therefore
represent a good option for applications in which really fast inference is needed. A comparison of different models for
visual-oriented ×4 upsampling is shown in Fig. 1. We consider LPIPS performance on the Set5 dataset compared to
framerate.

Set5 [7] Set14 [67] BSD100 [40] Manga109 [43] Urban100 [26]

Model Scale PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

EdgeSRGANi8 ×4 27.186 0.721 0.209 24.714 0.475 0.342 23.675 0.484 0.438 25.601 0.712 0.221 22.802 0.580 0.341
EdgeSRGANi8-tiny⚗ 27.330 0.710 0.257 24.807 0.562 0.390 23.837 0.485 0.481 25.299 0.696 0.286 22.580 0.538 0.454

EdgeSRGANi8 ×8 24.433 0.602 0.312 22.846 0.477 0.440 22.609 0.422 0.492 22.227 0.603 0.342 20.525 0.433 0.499
EdgeSRGANi8-tiny 24.956 0.642 0.333 23.487 0.532 0.461 23.591 0.494 0.544 22.445 0.632 0.386 21.125 0.489 0.548

Table 5: Quantitative performance of the full-integer quantized models for ×4 and ×8 visual-based SR. ↑: higher is better, ↓:
lower is better.
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Figure 8: EdgeSRGAN network interpolation results on the benchmark datasets for ×4 upsampling. Changing the network
interpolation weight α, it is possible to select the desired trade-off between content-oriented and visual-oriented SR.
↑: higher is better, ↓: lower is better.

4.4 Ablation Study

To further verify the effectiveness of our model for real-time super-resolution, we conduct an ablation study to analyze
the effect of our architectural design choices. In particular, we benchmark EdgeSRGAN at four progressive steps,
reporting fidelity, perceptual performance, and inference speed. The steps we consider are the following:

1. Reducing the number of residual blocks N ;
2. Replacing the Pixel Shuffle upsampling stage with Transpose Convolutions;
3. Removing Batch Normalization;
4. Replacing PReLU activations with ReLU.

The last step corresponds to the final version of EdgeSRGAN. For each step of the model, we use the same training
procedure described in 3.2 and measure the inference speed on the CPU at (80x60) and (160x120) input resolutions. All
the results are reported in Tab. 6. The experimentation confirms that each compression step gains substantial inference
speed by trading minimal perceptual quality. Overall, we observe -3.7% LPIPS perceptual quality and +280% inference
speed.

Model Params Set5 Set14 BSD100 Manga100 Urban100 Inference Speed (fps)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ 80x60 160x120

SRGAN 1.5M 29,18 0,842 0,094 26,17 0,701 0,172 25,45 0,648 0,206 27,35 0,860 0,076 24,39 0,728 0,158 2.00 ± 0.03 0.48 ± 0.01
N = 8 956k 29,38 0,839 0,088 26,55 0,703 0,170 25,08 0,628 0,207 27,49 0,852 0,085 24,21 0,718 0,168 2.47 ± 0.01 0.62 ± 0.01

TransposeConv 663k 28,98 0,829 0,113 26,46 0,706 0,204 25,25 0,641 0,243 26,72 0,833 0,116 23,66 0,689 0,214 9.16 ± 0.31 2.52 ± 0.03
No BatchNorm 661k 29,40 0,838 0,105 26,65 0,709 0,194 25,09 0,630 0,236 27,54 0,851 0,091 24,01 0,707 0,191 9.91 ± 0.16 2.56 ± 0.06

ReLU 661k 29,49 0,837 0,095 26,81 0,715 0,176 25,54 0,644 0,210 27,68 0,855 0,081 24,27 0,716 0,170 10.26 ± 0.11 2.66 ± 0.02

Table 6: Results of the ablation study conducted on EdgeSRGAN for four different steps. The last step corresponds to the final
model. Overall, we observe -3.7% LPIPS perceptual quality and +280% inference speed. ↑: higher is better, ↓: lower is better.

4.5 Application: Image Transmission for Mobile Robotics

Our real-time SISR can provide competitive advantages in a wide variety of practical engineering applications. In
this section, we target a specific use case of mobile robotics, proposing our EdgeSRGAN system as an efficient deep
learning-based solution for real-time image transmission. Indeed, robot remote control in unknown terrains needs
a reliable transmission of visual data at a satisfying framerate, preserving robustness even in bandwidth-degraded
conditions. This requirement is particularly relevant for high-speed platforms and UAVs. Dangerous or delicate
tasks such as tunnel exploration, inspection, or open space missions all require an available visual stream for human
supervision, regardless of the autonomy level of the platform. In the last few years, the robotics community has
focused on developing globally shared solutions for robot software and architectures and handling data communications
between multiple platforms and devices. ROS2 [39] is the standard operative system for robotic platforms. It is a
middleware based on a Data Distribution System (DDS) protocol where application nodes communicate with each
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Figure 9: Efficient image transmission system with EdgeSRGAN for mobile robotic applications in outdoor environments.

other through a topic with a publisher/subscriber mechanism. However, despite the most recent attempts to improve the
reliability and efficiency of message and data packet communications between different nodes and platforms, heavier
data transmission, such as image streaming, is not yet optimized and reliable.

The typical practical setting used for robot teleoperation and exploration in unknown environments is composed of a
ground station and a rover connected to the same wireless network. As shown in Fig. 9, we adopted this ground station
configuration to test the transmission of images through a ROS2 topic, as should be done in any robotic application
to stream what the robot sees or to receive visual data and feed perception and control algorithms for autonomous
navigation and mapping. For this experiment, we use both an Intel RealSense D435i camera5 and a Logitech C920
webcam6 mounted on a Clearpath Jackal robot7, together with a Microhard BulletPlus8 router for image transmission.
The available image resolutions with RealSense cameras, the standard RGBD sensors for visual perception in robotics,
are (320× 240) and (640× 480), whereas the framerate typically varies between 15 and 30 fps.

Despite the absence of strong bandwidth limitations, transmission delays, or partial loss of packets, the maximum
resolution and framerate allowed by ROS2 communication are extremely low: we find that at 30 fps, the maximum
transmissible resolution for RGB is (120× 120) with a bandwidth of 20 Mb/s while reducing the framerate to 5 fps the
limit is (320× 240). This strict trade-off between framerate and resolution hinders the high-speed motion of a robotic
platform in a mission, increasing the risk of collision due to reduced scene supervision. Even selecting best effort in the
Quality of Service (QoS) settings, which manage the reception of packages through topics, the detected performances
are always scarce.

Adopting our real-time Super-Resolution system ensures the timely arrival of RGB and depth images via ROS2. Thanks
to the fast-inference performance of EdgeSRGAN, we can stream low-resolution images (80× 60) at a high framerate
(30 fps) and receive a high-resolution output: (320 × 240) with a x4 image upsampling and (640 × 480) with a x8
upsampling, showing a clear improvement on standard performance. Our system allows the ground station to access the
streaming data through a simple ROS topic. Hence, it provides multiple competitive advantages in robotic teleoperation
and autonomous navigation: high-resolution images can be directly exploited by the human operator for remote control.
Moreover, they can be used to feed computationally hungry algorithms like sensorimotor agents, visual-odometry, or
visual-SLAM, which we may prefer to run on the ground station to save the constrained power resources of the robot
and significantly boost the autonomy level of the mission. In Fig. 10, we report a qualitative comparison to highlight the
effectiveness of EdgeSRGAN for real-world robotic scenarios. In particular, we consider apple monitoring, navigation
in vineyards, drone surveillance for autonomous rovers, and tunnel inspection.

We also test video transmission performance in a more general framework to reproduce all the potential bandwidth
conditions. We use the well-known video streaming library GStreamer9 to transmit video samples changing the available
bandwidth. We progressively reduce the bandwidth from 10 Mbps to 10 kbps using the Wondershaper library10 and
measure the framerate at the receiver side. We use 10 seconds of the standard video sample smtpe natively provided

5https://www.intelrealsense.com/depth-camera-d435i/
6https://www.logitech.com/it-it/products/webcams/c920-pro-hd-webcam.960-001055.html
7https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
8https://www.microhardcorp.com/BulletPlus-NA2.php
9https://gstreamer.freedesktop.org/

10https://github.com/magnific0/wondershaper
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HR LR Bicubic EdgeSRGAN (ours)

HR LR Bicubic EdgeSRGAN (ours)

HR LR Bicubic EdgeSRGAN (ours)

HR LR Bicubic EdgeSRGAN (ours)

Figure 10: Qualitative demonstration of applying EdgeSRGAN (×4) on real scenarios (zoom for more detail). From top to
bottom: apple monitoring, navigation in vineyards, drone surveillance for autonomous rovers, and tunnel inspection.

by GStreamer videotestsrc video source at 30 fps, and we encode it for transmission using MJPEG and H264 video
compression standards. The encoding is performed offline to ensure that all the available resources are reserved
for transmission only. Indeed, most cameras provide hardware-encoded video sources without requiring software
compression. To be consistent with the other experiments, we keep using (640 × 480) and (320 × 240) as high
resolutions and (160× 120) and (80× 60) as low resolutions. Each experiment is performed 10 times to check the
consistency in results. Fig. 11 presents the average framerate achieved with different bandwidths. Streaming video
directly without any middleware, such as ROS2, ensures a higher transmission performance. However, as expected,
streaming high-resolution images is impossible in the case of low bandwidth and the framerate quickly drops to very
low values, resulting unsuitable for real-time applications. On the other hand, lower resolutions can be streamed with
minimal frame drop, even with lower available bandwidths. H264 compression shows the same behavior as MJPEG but
shifts to lower bandwidths. Indeed, H264 is more sophisticated and efficient, as it uses temporal frame correlation in
addition to spatial compression. In a practical application with a certain bandwidth constraint, a proper combination
of a low-resolution video source and an SR model can be selected to meet the desired framerate requirements on the
available platform (CPU or Edge TPU). This mechanism can also be dynamically and automatically activated and
deactivated depending on the current connectivity to avoid framerate drops and ensure a smooth image transmission.
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Figure 11: Framerate results vs. bandwidth for video transmission at different input resolutions with MJPEG and H264
compression. Bandwidth is in log scale.

5 Conclusions and Future Works

In this paper, we proposed a novel Edge AI model for SISR exploiting the Generative Adversarial approach. Inspired
by popular state-of-the-art solutions, we design EdgeSRGAN, which obtains comparable results, being an order of
magnitude smaller in terms of the number of parameters. Our model is 3 times faster than SRGAN, 30 times faster
than ESRGAN, and 50 times faster than SwinIR while retaining similar or even better LPIPS performance. To gain
additional inference speed, we applied knowledge distillation to EdgeSRGAN and obtained an even smaller network
(EdgeSRGAN-tiny) which gains an additional 4x speed with limited performance loss. Moreover, model quantization is
used to optimize the model for execution on an Edge TPU. At the same time, network interpolation was implemented
to allow potential users to balance the model output between pixel-wise fidelity and perceptual quality. Extensive
experimentation on several datasets confirms the effectiveness of our model regarding both performance and latency.
Finally, we considered the application of our solution for robot teleoperation, highlighting the validity and robustness of
EdgeSRGAN in many practical scenarios in which the transmission bandwidth is limited. Future work may investigate
the effect of additional optimization techniques, such as pruning [32] and neural architecture search [48]. Moreover,
developing optimized Edge AI versions of more recent architectures like transformers [34] might bring advantages in
tackling real-time SISR.
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