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Measurement-Based Identification of Lumped
Parameter Thermal Networks for sub-Kw

Outer Rotor PM Machines
Daniel Wöckinger , Gerd Bramerdorfer , Senior Member, IEEE, Stephan Drexler ,

Silvio Vaschetto , Senior Member, IEEE, Andrea Cavagnino , Fellow, IEEE,
Alberto Tenconi , Senior Member, IEEE, Wolfgang Amrhein , and Frank Jeske

Abstract—This work is on deriving precise lumped parameter
thermal networks for modeling the transient thermal characteris-
tics of electric machines under variable load conditions. The goal is
to facilitate an accurate estimation of the temperatures of critical
machines’ components and to allow for running the derived model
in real time to adapt the motor control based on the load history and
maximum permissible temperatures. Consequently, the machine’s
capabilities can be exhausted at best considering a highly-utilized
drive. The model shall be as simple as possible without sacrificing
the exactness of the predicted temperatures. Accordingly, a specific
lumped parameter thermal network topology was selected and
its characteristics are explained in detail. The measurement data
based optimization of its critical parameters through an evolution-
ary optimization strategy, and the therefore utilized experimental
setup will be described in detail here. Measurement cycles were
recorded for modeling and verification purposes including both
static and dynamic test cycles with changing load torque and speed
requirements. Applying the proposed hybrid approach for deter-
mining the model’s parameters through involving physics-based
equations as well as numerical optimization followed a significant
improvement of the preciseness of the predicted motor tempera-
tures compared to solely determining the networks’s coefficients
based on expert knowledge. Thereby, the validation included both
the original measurement data as well as extra measurement runs.
The proposed and applied strategy provides an excellent basis for
future thermal modeling of electric machines.
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I. INTRODUCTION

NOWADAYS, electric machines are particularly optimized
for any individual application. The variety of optimiza-

tion scenarios is manifold, as different machine types, problem
definitions, performance requirements, and methods for solving
those problems are considered [2], [3], [4], [5]. In the past, most
of the electric machine optimization scenarios focused on the
electromagnetic analysis, while other domains, e.g., the thermal
or mechanical characteristics, were neglected or only a rough
estimate was included. Now, evermore researchers focus on a
multi-physics- or driving cycle based approach, as for instance
presented in [6], [7], [8]. Besides, a system-level approach
is frequently considered to capture the interaction of electric
machine, power electronics, and control aspects [9].

It is essential to adapt the modeling approaches according
to new manufacturing or cooling techniques and to allow for
evermore detailed analyses. Accordingly, new techniques like
oil spray based cooling of hairpin windings were recently
treated [10]. New modeling approaches for specific compo-
nents were developed, e.g., to characterize ball bearings utilized
for electric machines [11]. Some authors further consider the
thermal characteristics of electric machines in the presence of
particular faults, like winding specific flaws [12], [13]. The
winding generally is the focus of the work of many authors.
For instance, there are also many activities regarding how to
find a simple homogenized model for the volume where the
winding is installed, including an equivalent representation of
this domain with regard to the particular share of conductive
material, insulation, and air [14], [15], [16].

To allow for fast evaluation of thermal characteristics, usually
the modeling is focused on most important temperatures and heat
flow paths. Research is done to minimize the thermal models’
complexity while guaranteeing acceptable accuracy [17] or to
automatize the (dynamic) model creation to some extent [18],
[19]. In terms of thermal modeling, different approaches were
introduced in the past. They can be categorized as follows:

1) Expert knowledge and physics-motivated based thermal
modeling,
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2) data based thermal modeling, e.g., by making use of
machine learning or artificial intelligence techniques, and

3) a combination of (1) and (2).
Category (1) consists of modeling approaches where the

model structure and respective coefficients, parameters, etc. are
solely determined based on expert knowledge regarding the
physical circumstances. Besides computing the quantities based
on machines’ dimensions and materials’ properties, auxiliary
measurements used for calibration are sometimes taken into ac-
count. Nevertheless, the applied modeling techniques are always
developed based on fundamentals from engineering science.
Some examples can be found in [20], [21], [22], [23], [24].

Category (2) refers to approaches where the modeling is done
without taking into account the physical circumstances in detail.
In [25], [26], [27], [28], [29], corresponding recent activities
are presented. The approaches allow for a higher flexibility
in the model definition. For instance, by contrast to the first
category, an indirect modeling of the temperatures, e.g., with
regard to the machine’s torque and speed, can be accomplished.
Thus, no direct physical relation of model inputs and outputs
is required. The derived models are often of black-box type,
which can be unfavorable, because there is limited possibility
for obtaining particular machine-specific information to gain
insights. Thus, while for group (1), similar machine designs can
be modeled with limited additional effort, for group (2), usually
the modeling has to be started from scratch for any new design
under consideration. Besides, it is very hard or even impossible
to proof general stability of black-box models.

Category (3): this category finally embraces approaches
where both, physical expertise, as well as new techniques from
mathematics regarding modeling and optimization, as well as
data-based information are taken into account. Some examples
can be found in [30], [31].

Obviously, there are fluid boundaries among the categories.
Throughout this work, the authors focus on category (3). A
lumped parameter thermal network (LPTN) is selected based
on expert knowledge for the outer rotor surface permanent
magnet (SPM) machine under test. Afterwards, an optimiza-
tion of critical parameters of the network is done using an
evolutionary algorithm. The goal is to find the lowest possible
temperature modeling errors. In order to minimize the runtime,
the design space regarding the thermal network’s parameters
of the optimization problem is constrained based on engineer-
ing knowledge. The data for the model evaluation is obtained
through measurements conducted by using an experimental
setup.

This manuscript provides an extension of results initially pub-
lished in [1]. The remaining content is organized as follows: in
the next Section II, the motor under test is introduced. Section III
presents the selected LPTN and discusses critical parameters
and the residual settings for the applied modeling approach.
Consequently, Section IV is about the experimental setup used
for this work. Sample data obtained by measurements are pre-
sented for all considered machine components’ temperatures.
Expert-based calibration and optimization of parameters that are
difficult to predict are presented in Section V. This is completed
by a detailed comparison of modeling results versus additional

Fig. 1. Motor under test.

TABLE I
CHARACTERISTIC MOTOR DATA

measurements, which is extended to further measurement cy-
cles not available at modeling stage in Section V-D. Finally, a
summary and an outlook about future activities is illustrated in
Section VI.

II. MOTOR UNDER TEST

In this paper, the thermal characteristics of a 3-phase, brush-
less SPM machine with outer rotor topology are studied. The
motor with disassembled rotor is shown in Fig. 1. It has a rated
power of 110W at 150mNm and 7100 rpm. Its most important
data, as well as its electrical characteristics are summarized
in Table I. One big challenge of creating a thermal model for
this type of machine is the rotating rotor bell involving speed-
dependent heat dissipation that leads to complex overall heat
fluxes. Additionally, an air gap between rotor bell and mounting
flange allows air- and heat-exchange, which makes the modeling
even more challenging.

III. LUMPED PARAMETER THERMAL NETWORK

The selected lumped parameter thermal network to model the
outer rotor SPM machine under test is depicted in Fig. 2. The
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Fig. 2. Sketch of the circumferential cross section of the considered SPM outer rotor machine (a), the reduced motor cross section regarding thermal characteristics
of the individual structures (b), and the correspondingly proposed lumped parameter thermal network - LPTN (c).

illustrated cross section in Fig. 2(a) highlights the outer rotor
bell structure that includes the rotor yoke and the permanent
magnets, and the inner part of the machine that consists of the
stator core and the windings, and the hollow stator fixture that
connects the stator yoke to the mounting flange. The machine’s
shaft, which is connected to the rotor bell, is supported by ball
bearings that are mounted in the inner part of the stator fixture.
Preliminary analysis of the main heat flows allows reducing the
cross section of the machine to simple geometric shapes and
removing structures that can be neglected with respect to their
thermal properties. This simplified geometry, shown in Fig. 2(b),
represents the basis of all further thermal modeling steps. Con-
sidering the axisymmetric geometry of the machine, Fig. 2(c)
represents the five-node LPTN proposed for the thermal analysis
of this outer rotor SPM machine. Considering a defined ambient
temperature (Tamb), this thermal network allows evaluating the
average temperatures of the rotor (Tr), the air gap (Tair), the
stator winding (Tw), the stator yoke (Ts), and the stator fixture
(Tf ).

The current sources represent the heat sources related to
the machine losses, i.e., the stator Joule (Pj) and iron (Piron)
losses, and the cumulative rotor losses (Pr). In order to limit
the number of nodes and the complexity of the network, all the
loss components in the machine can be reasonably linked to
one of this three heat sources that are considered as uniformly
distributed within their particularly associated component. For
example, in the conducted analysis, Pr includes the magnets’
and the rotor back iron losses. Accordingly, the heat source Piron

combines the iron losses in the stator lamination and friction
losses in the bearings.

The thermal resistances constitute the different heat flow paths
inside the machine and thus allow for computing the steady-state
temperatures, while the thermal capacitances facilitate to further
modeling the thermal transient behavior. If the machine’s geo-
metrical dimensions and the material properties are known, these

network parameters can be reasonably approximated through
using equations reported in literature [21]. In particular, the
thermal capacitances of the stator teeth (Cteeth), stator yoke
(Cs), stator fixture (Csfix) and of the rotor bell plus magnets
(Cr) can be obtained by multiplying each the component’s
weight with the specific heat capacity of the applied materials,
while the thermal resistances are usually computed considering
the different machine parts as hollow cylinders. It has to be
emphasized that the entire machine arrangement features no
symmetry the stator’s axial center. Therefore, the adoption of
the hollow cylinder theory for simplifying the thermal paths
through teeth and stator yoke represents a rough approximation.
In addition, the studied machine features a pancake shape where
the end effects may result in non-negligible axial heat paths
that affect the heat flows in radial direction. Nevertheless, the
well-known hollow cylinder theory has been assumed as both a
simple and practical approach for deriving start values for the
thermal network parameters.

Looking at Fig. 2(c), the thermal resistances Rteeth, Rsy1, and
Rsy2 define the thermal flux across the teeth and the stator yoke.
In particular, the stator yoke has been subdivided into two parts,
such that the stator iron losses are considered as impressed to
the centre of the stator yoke. Through these elements, the heat
transfer is mainly due to conduction, and the thermal resistances
can thus be easily computed by using

Rcond =
1

2 π kir Ls pir
ln

(
rout

rin

)
. (1)

In (1), kir is the thermal conductivity coefficient of iron, Ls is
the core length, and rin and rout are the inner and outer radii
of the hollow cylinder that represents the considered machine
part. The coefficient pir is the volume ratio between the stator
teeth iron and the total teeth plus slot volume. For calculating
the thermal resistance of a hollow cylinder without slots, e.g.
Rsy1 or Rsy2, the volume ratio pir is equal to one. In contrast,
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for an estimation of the thermal resistance of the teeth, Rteeth,
values smaller 1 has to be used.

However, applying the knowledge of the geometrical or phys-
ical characteristics is not always straightforward as considered
in Section III-A. For some LPTN parameters, e.g. the thermal
resistance between winding and statorRws reliable values can be
obtained by means of accurate calibrations, based on DC tests or
convection heat transfer and flow calculations [20], [21], [32].

A. Expert-Based Calibration of Model Parameters

The thermal resistance and capacitance of the stator winding
cannot be easily computed because of the presence of air and
non-uniformly distributed insulation layers between copper and
iron, including resins and enamels. However, an equivalent
thermal resistance (Rws) and capacitance (Cw) between stator
copper and stator iron can be obtained through a short-time
DC thermal test according to the procedure described in [33].
Since the machine under test is delta-connected, the test has
been executed supplying the current at two stator terminals.
Hence, one phase is connected in parallel to the two remaining
ones.

Additionally, the determination of the air gap thermal re-
sistance is not trivial. The heat exchange between stator and
rotor through the air gap can either be due to convection or
radiation phenomena. Nevertheless, in previous activities related
to induction motors, the authors verified that for thin air gap the
thermal exchange can be equivalently modeled as a conductive
thermal path in stationary air [21]. Since the machine under test
features a small air gap thickness (0.5mm) and the magnet is
ring-shaped, also for this case the initial value for the air gap
thermal resistance has been computed by using (1).

The heat exchange between the machine and external ambient
is modeled through the thermal resistances Rsa and Rra. Despite
these parameters can be obtained by dedicated DC thermal tests
as well, it is possible to approximate their values by analytical
equations, as done by the authors for this research activity. Rsa

embraces both the heat conduction along the stator fixture and
the flange, as well as the convective heat exchange between the
flange and the ambient. For the initial definition of the network
parameters, the authors computed the conduction thermal resis-
tance for the stator fixture indicated in Fig. 2(a) and properly
increased this value based on author’s experiences in order to
consider the presence of the flange.

The thermal resistance Rra that represents the heat exchange
between the rotor bell and the ambient is rotor speed dependent.
Considering standstill conditions, the heat flow is due to natural
convection only, while during the rotation both natural and
forced convection phenomena are present. The initial values for
the network have been computed by the authors using well-
known and proven empirical heat transfer correlations reported
in literature [20], [32].

Regarding the interface gap thermal resistanceRig, it could be
estimated by either approximating the equivalent length of the
interface gaps between stator yoke and stator fixture or, again,
by means of a dedicated DC test. For the considered machine,
the interface gap has been estimated to be approximately 30μm,

TABLE II
MAIN SPECIFICATIONS FOR THE TORQUE-SPEED SENSOR AND THE HYSTERESIS

BRAKE USED FOR THE EXPERIMENTAL MEASUREMENTS

TABLE III
COMPARISON OF THE ANALYTICALLY DETERMINED AND THE OPTIMIZED

PARAMETER SET

which corresponds to a typical value for interference fit assem-
blies according to authors experience.

All values of the computed or calibrated parameters in Sec-
tion III-A of the assumed thermal network are summarized in
Table III in Section V-D.

IV. EXPERIMENTAL SETUP AND MEASUREMENT DATA

In order to verify the analytically derived thermal model, a
test setup featuring an accurate measurement of the machine’s
temperatures is essential. In general, the transient temperature
characteristics depend on the dynamic load profile that the
machine is exposed to. Consequently, the experimental setup
shown in Fig. 3(a) was designed for both the operation of
the machine at different load points by controlling speed and
torque, and a simultaneous acquisition of different temperatures
within the machine. Its main components include the device
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Fig. 3. (a) The test bench with the temperature measuring point Tr including the motor under test (A), the hysteresis brake (B), the speed-torque sensor (C) and
the power electronics (D). (b) The stator front view and the considered temperature measuring points Tuv, Tvw, Twu, Tbi, and Tair. (c) The flange back plate view
with the positions of Tf and Tbo.

under test (A), a hysteresis brake to apply various load points
(B), a sensor to acquire speed and torque (C), and the power
electronics including the inverter and a microcontroller (D) to
apply a field-oriented control strategy of the machine under test
to properly adjust the load point operation. Table II summarizes
the key figures of the utilized torque-speed sensor and hysteresis
brake.

A. Selected Spots for the Temperature Monitoring

The transient temperatures of the individual motor compo-
nents are determined via sensors at specific positions of interest.
The internal structure of the motor, as well as the back side
of the attached mounting flange are illustrated in Fig. 3(b) and
3(c), respectively. For characterizing and monitoring the major
thermal heat flow originated from different heat sources inside
the device and towards the ambient, the following temperatures
are acquired by thermal sensors:
� Tuv, Tvw, Twu at the surface of one coil per phase;
� Tair at the tip of one pole shoe of the stator yoke;
� Tbi on the outer (static) ring of the inner ball bearing;
� Tbo on the outer (static) ring of the outer ball bearing;
� Tf on the mounting flange made of aluminum;
� Tr on the outer side of the rotor.
Their spatial positions inside the motor are illustrated in

Fig. 3(a)–3(c). All temperatures except Tr can be measured with
conventional thermocouples of type K, which are connected to
the relevant surface by using a thermally conductive adhesive. In
contrast, the outer rotor temperature has to be measured by a con-
tactless measuring method. For this purpose, a thermographic
camera is used. Considering the given topology, the magnet’s
temperature cannot be directly measured.

B. Measurement Results

In Fig. 4, sample data of one exemplary measurement cycle are
presented. A stepwise random but reasonably bounded change
of the load characterized by the respective torque and speed is
considered. The transient characteristics of all eight acquired
temperatures are recorded and are illustrated here. As can be

observed, the winding temperatures are highest followed by the
stator lamination. This is due to the fact that the Joule losses
are the major loss component, especially if the load torque is
high. Because of the surrounding air inside the bell following
relatively low thermal heat exchange, the main heat flow applies
from winding to the lamination. Nevertheless, especially for
low load torques and high speeds, the amount of iron losses
in the stator and the friction losses in the ball bearings cannot
be neglected. For this reason, it would be an unreasonable
oversimplification if the entire power loss is introduced through
a single heat source, e.g. at the winding node Pj, for the whole
speed and torque range. In general, the losses are generated at
different positions in the motor. Consequently, a loss separation
is discussed in the upcoming Section V-A, which facilitates
subdividing the total losses into different heat sources in the
network.

Generally, the thermocouple-based measurements show neg-
ligible measurement noise. This is different for the rotor temper-
ature Tr, which is due to the measurement of said temperature
along a rotating cylindrical device. Thus, any manufacturing
tolerance affecting the rotor’s true running accuracy, as well
as a slightly different temperature distribution along the rotor
housing’s outer perimeter might cause this effect. Additionally,
the thermographic camera has an auto-calibration feature that
leads to a peak in the data approximately every three minutes.

V. PARAMETER OPTIMIZATION AND RESULTS

It was observed during modeling that the parameters Rteeth,
Rsy1, Rsy2, and Rig, that physically correspond to thermal
conduction, can be determined with high accuracy based on
expert knowledge. Furthermore, an individual weighting of all
machine components and the manufacturer’s information about
their material properties allow a precise estimation of the heat
capacities Cr, Cteeth, Cs, and Csfix. The parameters Rws and Cw

are calibrated by separate measurements described in Section III
that particularly focus on the present winding configuration. By
contrast, the quantitiesRair,Rsa andRra are sensitive to the exact
machine’s manufacturing and their heat transport phenomena
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Fig. 4. A typical data set for transient load changes including the temperatures of all individual motor components, the speed and torque signals for applied
transient load characteristics, and the total power loss of the motor.

are usually a combination of natural and forced convection, as
well as heat conduction. Thus, in the following they are selected
as design parameters for a dedicated optimization problem. The
parameter range is constrained based on expert knowledge to
avoid potentially accurate solutions that are meaningless from a
physical point of view.

A. Loss Separation

As mentioned before, it is physically not correct to assign the
entire amount of losses to the current source Pj in the network.
For this reason, the measured total power losses Ploss presented
in Fig. 4 have to be separated into Joule lossesPj associated with
the ohmic resistance of the windings and residual lossesPres. The
latter includes mechanical power loss induced by friction in the
ball bearings and the iron losses in the laminated stator, the rotor
iron, and the magnets, respectively. Assuming that the motor is
symmetrical, Ruv = Rvw = Rwu and Is = IU = IV = IW, the
Joule losses can be estimated by

Pj =
3 I2

s

2
Rt,20

(
1 + αcu,20

(
T̄w − 20 ◦C

))
, (2)

where Is is the effective current measured by a power analyzer,
Rt,20 is the terminal resistance at 20 °C given in Table I, αcu,20

is the linear temperature coefficient of copper, and T̄w is the av-
eraged winding temperature, as shown in Fig. 5. Consequently,
the residual losses can be determined by Pres = Ploss − Pj. The
subdivision of the residual losses Pres into the remaining power
sources Piron and Pr is very complex and generally depends
on the current load point. To minimize the number of pa-
rameters to be optimized for the present analysis, a constant
loss ratio Pr = kp,rot Pres and Piron = (1 − kp,rot)Pres, with the

Fig. 5. Necessary measurements for loss separation including the currents, the
electrical parameters of the machine and the recorded winding temperatures.

dimensionless parameter kp,rot = 0.1 is chosen based on pre-
liminary numerical simulations of the motor under test.

B. Speed Dependent Thermal Resistances

All parameters analytically treated in Section III are derived
on basic and simplified theories, e.g., by applying the hollow
cylinder theory and general knowledge regarding convection on
static cylinders and plates. However, measurements presented in
Section IV show speed-dependent heating and cooling effects
that cannot be covered by this simplified modeling approach.
Hence, the speed-dependent behavior should be calibrated by
using an optimization algorithm. In this analysis, a general linear
speed dependency for a thermal resistance is considered by using

Ri(n) = Ri,0

(
1 − |n|

nmax
(1 − ki,s)

)
+ΔRi,0 δ(n), (3)

where n is the rotational speed of the rotor bell, Ri,0 = Ri(0) is
the additive thermal resistance at zero speed, nmax = 7500 rpm
is the maximum rotor speed, ki,s is the parameter to be
optimized, and δ(n) is the delta-distribution. Within the
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Fig. 6. Proposed function of a thermal resistance Ri(n) depending on the
speed of the rotor bell n.

subsequently presented optimization problem, the resistances
representing the heat flow in the air gap, from rotor to ambient,
and from stator to ambient are modeled as speed-dependent,
thus i = {air, ra, sa}. The characteristics proposed in (3) are
generally illustrated in Fig. 6. For this approach, only two
parameters are required to be determined, which keeps the total
parameter count reasonable. Nevertheless, both the high thermal
resistance at standstill due to natural convection, as well as the
decrease of thermal resistance because of forced convection at
higher speeds can be represented with decent accuracy [20].

C. Applied Optimizing Technique

As a consequence, the uncertain parameters to be optimized
are Rsa, Rig, Rra,0, Rair,0, kra,s, kairgap,s, ΔRra,0, ΔRair,0, and
ΔRsa,0. Thanks to the analytical approximations, a limitation
of the design space is possible, but, nevertheless, the considered
domain is high-dimensional. In order to find the global minimum
and the corresponding best parameter setting, a genetic algo-
rithm (GA) from the Java-based multi-objective optimization
framework jmetal is applied [34]. This type of algorithm is
inspired by evolutionary principles from nature and can facilitate
solving highly non-linear and multi-dimensional problems with
regard to the number of design parameters and objectives [35].
Furthermore, the difficulty of selecting a collection of initial
parameters sets is tackled by considering a Latin hypercube
sampling (LHS) based approach. Hence, an initial set of pa-
rameter combinations fairly distributed within the design space
is generated. In turn, it is utilized as start population for the
genetic algorithm. A suitable cost function, i.e. the averaged
RMS temperature error over all measured temperatures,

c =

√
1
M

∑M

m=1

1
N

∑N

s=1
(Tm,mod[s]− Tm,meas[s])

2 (4)

has been applied, where Tm,mod[s] is the m-th temperature
calculated by the model at time instant s, Tm,meas[s] is the
equivalent temperature measured using the experimental setup,
N is the total number of samples, and M is the total number of
considered temperatures within the optimization. This definition
of the cost value can be interpreted as an averaged effective
temperature error between calculated and measured tempera-
tures. Consequently, a single-objective optimization problem
was specified.

D. Optimization Results and Discussion

The LHS is used to randomly generate 4000 design variants
before the GA is applied to minimize the cost functional (4),

Fig. 7. Evolution of the cost function, i.e., the global effective temperature
modeling error, with the number of evaluated parameter combinations.

where at most 4000 more parameter settings are evaluated by
utilizing a population size of 50 individuals. The presented
optimization requires approximately 60 h on a desktop computer
with 3.42GHz clock frequency. Fig. 7 illustrates the evolution
of the cost functional over evaluated samples for both the initial
design of experiments and the subsequent optimization phase.

Figs. 8 and 9 show the measured temperature curves used for
optimization compared with the modeling results. A combina-
tion of two different types of measurement runs, static ones with
regard to eight different load points, and a dynamic load profile
with 49 load steps, were considered. If the initial values are used
without any adjustment, the cost function value, i.e. the average
RMS temperature error, is cinital = 2.93 °C.

According to Fig. 8, the initial network can model the dynamic
variation of load points with high accuracy. As shown in the
second diagram of Fig. 8, the residual of the temperatures varies
in a range of −6 °C and +8 °C.

As presented in Fig. 9, the thermal network with optimized
parameters models the static and the dynamic behavior of the
motor more accurately. For this reason, the value of cost function
is reduced to copt = 1.28 °C, which is about 2.3 times smaller
compared to the initial setting. Additionally, the maximum
error for both the static and the dynamic load variations is
always within ±4 °C, and most of the time even smaller than
±2.5 °C.

Table III compares the initial values found by analytical ap-
proaches and the optimal parameters estimated through solving
the particularly defined optimization problem. Looking at the
table it is possible to appreciate that the initial values computed
as described in Section III are a reliable starting point for solv-
ing the optimization problem. However, the bigger differences
between initial and optimized values have been noted for the
convective thermal resistances Rair,0 and Rsa parameters that
are prone to large deviation by the assumptions of the hollow
cylinder theory, in particular for machines characterized by a
small axial length / diameter ratio.

Additionally, a general modeling theorem is that it is essential
to validate any modeling approach by additional data not avail-
able at the modeling stage, i.e., so called data for validation.
Accordingly, further measurement cycles were run, featuring
random dynamic load profiles. In addition, a very long cooling
phase was introduced at the end of the load cycle, as previous
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Fig. 8. Comparison of the measured temperature curves with those calculated by the thermal model using the initial parameter set solely determined by analytical
approaches in Section III.

Fig. 9. Comparison of the measured temperature curves with those calculated by the thermal model using the optimized parameter set derived in Section V.

experience showed that such periods often are hard to predict,
especially if they are not present within the modeling data. In
Fig. 10, the achieved results are presented. As can be seen, the
model’s fidelity is excellent, revealing a very low absolute error
in temperature prediction, which is smaller than 2.5 °C for any of
the investigated temperature spots. This further holds for nearly
all time instants within the 134 hours of recorded data sets.

Regarding Fig. 9, the modeling error is larger at higher temper-
atures, e.g., cf. winding temperature for the time between minute
240 and 300. On the one hand, this could either be related to the
limited data available in this temperature range. Consequently,
such load points would be underrepresented in the optimization
scenario, leaving the error in this range unconsidered. On the
other hand, it could be a fundamental error due to the assump-
tions made for modeling thermal resistances or a wrong network
topology.

Thus, a more detailed analysis was performed, that is reported
in the following: Therefore, the trajectory of load points was

recorded, which are specified by their speed and torque. It
is illustrated in Fig. 11. Besides some boundaries regarding
minimum values for speed and torque given by dashed lines, the
permissible area for the motor operation is further constrained
by the black solid lines, characterizing a speed-dependent maxi-
mally possible load torque. Thanks to an increase in the cooling
effect, the permitted torque even increases with speed up to
nearly 6000 rpm, while subsequently it must be reduced for
even higher rotational velocities. As can be seen, particularly
the high speed region and, to some extent, the higher torque
region is underrepresented within the available data.

In order to evaluate the regions of most significant modeling
errors, a corresponding heat map was derived. It is presented
in Fig. 12. While the two axes, again, represent the speed and
torque, the color within certain speed-/torque-regions illustrates
the associated modeling error, which ranges from blue (0 K) up
to dark red (4 K). A Gaussian burring filter was used to reduce
measurement noise and smooth transitions between neighboring
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Fig. 10. Evaluation of the thermal model with measured temperature curves not used for the parameter optimization.

Fig. 11. Trajectory for sampling the speed-/torque-domain - all recorded
measurement cycles are plotted.

Fig. 12. Heat map of the speed-/torque-dependent modeling error, according
to the definition provided in (4).

regions. From this visualization, it becomes evident that es-
pecially the underrepresented areas regarding the trajectory in
Fig. 11 show the most significant modeling errors. This can
mainly be due to two reasons, (i): the modeling generally does

not allow more accurate results for this region, or (ii): due to the
under-representation of the respective speed-/torque-domains,
the other regions are more pronounced and thus a small modeling
error for that regions is more beneficial for reducing the cost
function. Most likely, (ii) applies here. Future analyses shall
be about investigating and comparing different cost functionals,
and focusing on the data selection to evenly represent all rele-
vant domains. Besides, investigating multi-objective problems
regarding the different machine components’ temperatures and
their respective errors can provide further insight to limitations
and potential improvements for the structure of the proposed
network and the speed- and temperature dependency of the heat
transfer [36].

Generally, it can be concluded that the proposed modeling
approach is highly suited for observing the thermal state of the
machine components during operation without any temperature
sensors needed. Besides, a very high modeling fidelity was
achieved, while the model’s complexity is still low. Thus, it could
be implemented either for real time temperature evaluation using
a desktop computer, or by running it on a digital signal processor
(DSP). Potential applications can be temperature monitoring in
general, predictive maintenance, or an active derating based on
the load history the electric machine was exposed to. Running
the model on the DSP is the future goal of the authors in order to
further highlight the applicability and usefulness of the proposed
modeling.

VI. CONCLUSION

This paper gives an overview about measurement-based opti-
mization of a thermal model for an outer rotor PM machine. First,
an initial physics-based lumped parameter thermal network
featuring resistances and capacitances is introduced. The initial
parameters of the network are determined based on analytical
approaches, or, in the case of convective heat transfer, roughly
estimated. Consequently, the more uncertain parameters are
optimized by using a genetic algorithm with a Latin hypercube
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sampling-based start-up phase based on experimentally acquired
data. Additionally, a loss separation and a speed-dependent
modeling of convective heat transitions are introduced. Through
the optimization process, the mean effective temperature error
is reduced by a factor of 2.3. This practically follows maximum
temperature errors of about 2.5 K for almost any time instant
within the 134 hours of recorded data. In future works, the aim
is to further improve the modeling accuracy by considering a
speed- and temperature-dependent loss separation, as well as
to implement the derived model on a digital signal processor
to apply it for condition monitoring, predictive maintenance, or
active de- or uprating. Additionally, the generality of the pro-
posed approach regarding the thermal modeling of larger outer-
rotor machines for higher output power will be investigated,
taking into account that these machines generally adopt different
materials, manufacturing techniques and cooling solutions with
respect to sub-kW machines.
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