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Current-Based Automated Design of Realizable
Metasurface Antennas with Arbitrary Pattern

Constraints
Marcello Zucchi, Graduate Student Member, IEEE, Francesco Vernı̀, Member, IEEE, Marco Righero,

and Giuseppe Vecchi, Fellow, IEEE

Abstract—We present a 3D method to numerically design
a realizable metasurface, which transforms a given incident
field into a radiated field that satisfies mask-type (inequality)
constraints. The method is based on an integral equation
formulation, with local impedance boundary condition (IBC)
approximation. The procedure yields the spatial distribution of
the impedance, yet the process involves the synthesis of the
equivalent current only. This current is constrained to correspond
to a realizable surface impedance, i.e., passive, lossless, and
with reactance values bounded by practical realizability limits.
The current-based design avoids any solution of the forward
problem, and the impedance is obtained from the synthesized
current only at the end of the process. The procedure is gradient-
based, with the gradient expressed in closed form. This allows
handling large metasurfaces, with full spatial variability of the
impedance in two dimensions. The method requires no a priori
information, and all relevant operations in the iterative process
can be evaluated with O(N logN) complexity. Application
examples concentrate on the case of on-surface excitation and
far-field pattern specifications; they show designs of circular and
rectangular metasurface antennas of 20 wavelengths in size, with
pencil- and shaped-beam patterns, and for both circular and
linear polarization.

Index Terms—Metasurfaces, antennas, integral equations,
method of moments, impedance boundary condition, optimiza-
tion.

I. INTRODUCTION

F IELD manipulation via metasurfaces is a topic of con-
tinuously expanding relevance. Example of applications

include low-profile antennas, (meta)lenses, polarizers, and
(meta)radomes; reflectarrays and transmitarrays have also seen
realization with metasurfaces. A recent addition to the list
are reconfigurable intelligent surfaces (RIS) [1] proposed for
5G and beyond-5G environments. In all these applications,
the metasurface interacts with an incident, assigned field and
the interaction generates the radiated field; the metasurface is
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engineered so that the radiated field has the desired properties.
Metasurfaces can be realized with a variety of technologies:
currently, the most popular one is the use of printed conductive
elements (e.g., patches, holes in a metalization, meanders) and
all-metal pillars. Within printed-type structures, the main dif-
ference between the various classes is in terms of the number
of metasurface layers: low-profile antennas are usually single-
layer, while trasmit-type structures require more than one layer
to ensure functionality and absence of reflection. Another
difference is in the nature of the incident (forcing) field: in
low-profile antennas it is generated by a feed embedded in the
surface (e.g., through a vertical pin), which launches a guided
surface wave in the grounded dielectric; in practically all other
cases the feed is external and illuminates the metasurface.

The conception and systematic design of spatially varying
metasurfaces has been initially based on wave physics and an-
alytical considerations, e.g., [2]–[5]. These analytically-based
approaches have made metasurface antennas a reality, but of
course they cannot accommodate for arbitrary design speci-
fications; this has prompted research into automated design
algorithms, the category to which the present work belongs.
Ideally, the process would be totally automatic, starting from
specification and ending with the metasurface layout, requiring
no extra information, assumptions, or user intervention.

In the current literature, the full design task is conve-
niently split into two subsequent phases via the (approximate)
representation of the metasurface in terms of an impedance
boundary condition. That is, the design aims at finding the
spatial distribution of a surface impedance; after that, the final
layout is achieved by finding the geometrical parameters of
the considered unit cell so that it produces the previously
determined impedance profile. This two-phase approach is the
one followed by virtually all published works; it is interesting
to note its robustness: in [6] it has been shown to be effective
even for a non-flat structure (a conical horn). The present work
deals with finding the spatial distribution of the metasurface
surface impedance; the realization of the unit cells is not
part of this work and can be done with a variety of existing
approaches, e.g., [4], [7].

A. State of the Art of Automated Metasurface Design

In the following, we will label “2D” the cases in which
one spatial coordinate is considered invariant or periodic in
the design—thus ignorable—and “3D” when that restriction
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is not present. We will also distinguish between two different
types of field specifications: pattern-matching and mask-type
inequalities. In pattern-matching, the objective is to obtain a
given field by minimizing the distance from it. Mask-type
specifications are more general (and more used in practice):
an “ideal” pattern is not known in advance, instead the field
amplitude is required to satisfy inequalities, i.e., to lie within
upper and lower bounds; the spatial variations of these bounds
are called “masks”. A practically relevant sub-class of this
problem is that in which one seeks to maximize the main
beam gain (in a prescribed direction, e.g., broadside).

Consistent with the scope of this work, we will review
only approaches aiming at the fully numerical design of the
metasurface; for the same reason, we will not review the large
body of literature on the design of unit cells.

2D methods: The approach in [8] employs a dual op-
timization considering equivalent currents and impedance at
the same time, with an alternating type of optimization; this
requires to solve the forward problem at each step. A method
based on optimizing the currents only would dispense from
the solution of the forward problem during the iterations: an
important step in this direction is in [9] where losslessness
is enforced directly; the resulting (non-convex) optimization
instance was approached with a global optimization. This
approach was further progressed in [10], employing a better
scaling gradient-based optimization. As in the previous works,
[11] considers explicitly a transmission-reflection problem
through the (stacked) metasurface layers, i.e., for an exciting
field not generated on-surface. For this problem, fields are rep-
resented in terms of traveling waves in each (sub-wavelength)
unit cell: this allows to formulate the problem directly in terms
of circuit parameters, with the currents expressed through
them; as a result, the circuit elements are the direct unknowns
of the inverse problem, with passivity and absence of losses au-
tomatically enforced. These important latter works address the
problem of (phaseless) pattern matching—as opposed to mask-
type (inequality) field specifications. A scattering approach to
synthesis is also presented in [12]. In [13] a multi-layer, dual-
band method is introduced for the design of reflective-type
metasurfaces with pattern-matching requirements; the method
builds upon the previous work in [14]. The design is done
in two steps: initially, equivalent currents are synthesized
without passivity requirements, and complex impedance values
are obtained from these. In a second step, reactance values
are optimized to match the field produced by the complex
impedance. Finally, [15] addresses the electromagnetically
consistent design of the surface impedance in RIS at a system
level.

3D methods: The work in [16], [17] appears the first to
employ equivalent currents solely, with the related numerical
advantage, and it allows design of both scalar and tensor
impedance. It formulates the problem as a field matching in
amplitude and phase, with the scaling of the radiated field with
respect to the incident one provided externally; increasingly
sophisticated estimates of this ratio have been developed
[18], [19]. In [20] equivalent currents are first found from
radiated field mask-type requirements (on the footprint); a
3D realizable metasurface layout is subsequently obtained via

optimization (also involving machine learning) and exploiting
the degrees of freedom of non-radiating currents (similar to
[21]). The work in [22] is in between 2D and 3D; it performs
the automated design of a 2D metamaterial (variable in (x, y))
with a cylindrical symmetry (TE along z) using a 2D FEM
forward problem with a constrained gradient-based method.
A similar approach is adopted in [23], where the forward
problem is dealt with in terms of a 2D circuit network solver
using reduced-order models of the metastructure’s unit cells to
reduce the computational load. Finally, the works in [24] and
[25] employ a global optimization, made possible by a drastic
reduction of the number of degrees of freedom of the surface,
via a physics-based parameterization deriving from previous
analytical works. At each iteration, a solution to the forward
problem is required; to reduce its cost, [24] exploits BOR
symmetry, while [25] uses specialized entire-domain basis
functions (introduced in [26]). Finally, global optimization of
unit cells and the design of limited size binary metasurface
apertures have also been reported [27].

B. Innovation

We present an automatic 3D method to design a metasur-
face of practically relevant size, without any restriction on
the 2D spatial variation of the impedance profile, allowing
arbitrary mask-type (inequalities) specifications on the radiated
field, and including constraints on the values of the surface
reactance—so as to ensure practical technological realizability.

This goal is reached with a method that involves the opti-
mization of only the metasurface equivalent current, and a for-
mulation of the optimization instance that employs piecewise-
polynomial expressions of the current coefficients. To the best
of the authors’ knowledge, it is the first time this is presented.

The numerical challenges involved in the 3D problem, due
to the size of the structure, are addressed by a formulation that
is computationally efficient, in that all functional and gradient
evaluations require only a limited number of matrix-vector
products. A further manipulation allows to compute the cost
functional and its gradient with almost-linear complexity via
the so-called fast formulation of the forward problem. The
proposed approach, however, is applicable even when fast
methods are not available.

The incident field is arbitrary; special attention is given
here to the case of on-surface excitation, as necessary in
low-profile metasurface antennas. In this case, the scattering
representation of [11] would be more difficult to apply, due
to the interplay between a guided wave and the metasurface,
with the wave traversing multiple unit cells.

At a difference with literature on current-only design [16],
[17], field objectives, passivity and losslessness are obtained
without any a priori information on the ratio between incident
and radiated power, rendering the estimation of this ratio
unnecessary. Radiated power in the angular region of interest
is maximized for a given incident power: this minimizes
reflection from the metasurface as well as the amplitude of
the residual surface wave guided in the dielectric. Furthermore,
this method does not rely on a separation between radiative
and evanescent parts of the current spectrum.
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Finally, recent approaches to enforce passivity have em-
ployed surface-wave constructs and non-local schemes (e.g.,
[28]–[30]). These appear to be inherently part of the automatic
process proposed here, which operates on the surface globally.

II. BACKGROUND: FORWARD PROBLEM FORMULATION
AND NUMERICAL CONSIDERATIONS

The metasurface is modelled as a layer of Impedance
Boundary Condition (IBC) [31], which relates the tangential
electric field to the jump of the tangential magnetic field:

Etan = Z ·
[
n̂×(H+ −H−)

]
(1)

for each point on SIBC, where the space-dependent value of
the impedance, Z, is in general of tensorial nature. See Fig. 1
for a pictorial representation of a metasurface antenna.

In this work, we will restrict our attention to the case of a
scalar impedance boundary condition, i.e., Z = Z I (where
I is the identity tensor). The method to be presented in the
following sections is not restricted to the scalar case and can
be adapted to tensor impedance, but a) there are theoretical
issues to be discussed preliminarly, and b) this would obscure
the nature of this presentation; hence, it will be postponed to
a future communication.

By introducing the equivalent current density,

J = n̂×(H+ −H−), (2)

the electromagnetic problem is formulated as an Electric Field
Integral Equation (EFIE-IBC):

[Einc(r) + LJ(r)]tan = Z(r)J(r) ∀r ∈ SIBC (3)

where Einc is the incident field radiated by the source in
absence of the metasurface, and L is the Electric Field Integral
Operator (EFIO) defined as

LJ(r) =
¨

SIBC

GEJ(r, r′) · J(r′) dS(r′), (4)

where GEJ is the multilayer dyadic Green’s function for the
(grounded or ungrounded) substrate [32]. It is noted that here
the problem is formulated in terms of a transparent (two-
sided) IBC, which requires the Green’s function of the layered
background medium. This approach has been shown to be
significantly more stable than the one involving the opaque
(one-sided) version of the IBC, which would do without
the more complex mentioned Green’s function [33]. It also
allows for a better description of spatial dispersion (the effect
of the dielectric substrate is fully described), and eases the
passage from the impedance profile Z(r) to the design of
the individual unit cells (note that this step is not part of the
present contribution).

For the numerical discretization we adopt the usual Method
of Moments approach: we consider a mesh given by a tessel-
lation of the surface SIBC composed of Nc triangular patches
Si and we approximate the sought current J(r) as a linear
combination of Rao-Wilton-Glisson (RWG) basis functions
Λn [34] defined on the N internal mesh edges,

J(r) =

N∑
n=1

In Λn(r). (5)

We then test the integral equation (3) with the same set of
functions (Galerkin’s method) through the bilinear form

⟨a , b ⟩ =
¨

SIBC

a · b dS. (6)

The problem reduces to the linear system

Vinc + LI = ZI, (7)

where the array I collects the RWG basis coefficients In and
the remaining quantities are defined as

(L)mn = ⟨Λm ,LΛn ⟩, (8)
(Z)mn = ⟨Λm , ZΛn ⟩, (9)

(Vinc)m = ⟨Λm ,Einc ⟩ (10)

If radiated field specifications are given at arbitrary points,
radiation is obtained via application of the EFIO, LJ . Instead,
when field specifications are defined in the far-field (FF)
region, the corresponding radiation operator R is given by

RJ(r̂) = jk0
2π

GFF(r̂) ·
¨

SIBC

J(r′) e jk0r̂·r′
dS(r′) (11)

where the multilayer FF tensor is defined as

GFF(r̂) = −gTM(r̂) θ̂ρ̂− cos θ gTE(r̂) φ̂φ̂. (12)

Here, gTM and gTE are the longitudinal transmission line trans-
fer functions for the TE and TM components [35, p. 1182],
while θ and ϕ are the polar and azimuthal angles describing
the direction of radiation. The unit vectors r̂, θ̂ and φ̂ are
those of the spherical coordinate system, and

ρ̂ = cosϕ x̂+ sinϕ ŷ. (13)

We use the shorthand E(r̂, I) to indicate the field obtained
when (11) is applied to a current expressed in the form (5), to
emphasize the dependency on the coefficients collected in I.

Enforcement of radiated field specifications involves sam-
pling the field at a discrete set of points; for the case of far-field
specifications, the sampling points r̂j lie on the unit sphere,
and are identified by the spherical coordinates (θj , ϕj). For
each sampling point, two orthogonal polarizations tangential
to the sphere are defined along θ̂ and φ̂. The radiated field
samples at r̂j , j = 1, . . . , Nf are assembled in column vectors
Eθ,Eφ ∈ CNf and, considering the discretization of the current
(5), they may be expressed as:

Eθ = E0
θ + RθI, (14)

Eφ = E0
φ + RφI, (15)

where the fields E0
θ and E0

φ are those due to the incident field
(present in the absence of the metasurface), and the radiation
matrices Rθ,Rφ ∈ CNf×N are defined as follows:

(Rθ)jn = θ̂j · RΛn(r̂j), (16)
(Rφ)jn = φ̂j · RΛn(r̂j). (17)

We note that, in the above, the radiated far-field has been
normalized to exp(−jk0r)/r.
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(a)

εr

SIBC

h

J

Einc

(b)

Fig. 1. Geometry of the metasurface antenna: (a) 3D view, for the case in
which the source of the incident field is on-surface, (b) cross section with the
equivalent currents J .

In the design of electrically large antennas, it is necessary
to exploit fast numerical algorithms for feasibility reasons;
the optimization strategy must take this into account, as will
be detailed later. Fast factorizations (e.g., [36]) are related to
iterative solutions of the forward problem (7); they allow to
store only near-field interactions of the EFIO matrix L (with
O(N) storage requirement) and to perform matrix-vector prod-
ucts LI with O(N logN) complexity (i.e., with O(N logN)
operations per product). Fast factorizations are also required
to accelerate matrix-vector products in the computation of the
radiated fields (14)–(15), and to avoid the computation and
storage of the radiation matrices (16)–(17).

In this work, the matrix-vector products involving the EFIO
operator are performed by means of a GIFFT algorithm [37],
[38], while far-field radiation is computed by an upward pass
of the multilevel fast multipole algorithm (MLFMA) with FFT
interpolation on a regular grid of far-field points in the u-v
space [36, Sec. 3.5.5].

III. PROBLEM STATEMENT

The design of metasurface antennas starts with the definition
of the surface geometry and of the source, the latter resulting
in the specification of the incident field. The aim is to obtain an
impedance profile that is physically and technologically realiz-
able, and that radiates a field pattern obeying the specifications
when it interacts with the source field.

a) Realizability: To obtain a physically realizable
impedance we need to impose specific constraints: the meta-
surface must be locally passive and lossless, meaning that for
each point on the surface, the active power should neither be
dissipated, nor provided, i.e.,

ReZ(r) = 0, ∀r ∈ SIBC. (18)

Moreover, the range of realizable reactance values depends
on the chosen unit cell type, the employed technology and

practical (e.g., size) limits; these bounds must be enforced in
the design process,

XL ≤ ImZ(r) ≤ XU, ∀r ∈ SIBC. (19)

These two requirements ensure that the metasurface can be
implemented by means of the chosen unit cells.

b) Field specifications: The radiated field specifications
may be both in the far-field region or closer; here we concen-
trate on far-field specifications, expressed in terms of the field
amplitude (power density); we consider both the co- (“co”)
and cross-polarized (“cx”) components, as well as the total
(“tot”) amplitude:

F co(r̂, I) = |E(r̂, I) · p̂∗(r̂)|2 (20)

F cx(r̂, I) = |E(r̂, I) · q̂∗(r̂)|2 (21)

F tot(r̂, I) = |E(r̂, I)|2 (22)

where p̂ and q̂ = r̂× p̂∗ are the co- and cross-polarization
unit vectors, respectively.

Field specifications are of the mask type, i.e., defined via
inequalities of the kind

ML(r̂, I) ≤ F (r̂, I) ≤MU(r̂, I) (23)

for each considered far-field direction r̂. Mask values must
typically be defined in terms of directivity or gain. We observe
that pattern-matching, i.e., fitting a specific (amplitude) field
pattern, is a special case of the above (with ML = MU), that
is easier to address as it does not require inequalities.

Specification of an absolute lower bound to the main lobe
(co-polarization) may be a requirement in some designs; on
the other hand, sidelobe and cross-polarization levels have to
be defined relative to the actual level in the main beam. In
this way, the relative levels comply with the specifications even
when the main lobe requirement is not met by the solution.
This can be made specific as follows: let r̂0 be the specified
beam pointing direction; we introduce a reference main-lobe
level as the average over a small angular region Ω0 around
the maximum radiation direction r̂0,

Fref(I) =
1

Ω0

¨

Ω0

F co(r̂, I) dΩ(r̂). (24)

The above is a generalization of the amplitude in the specified
beam direction, F co(r̂0), to which it reduces in a trivial
manner; use of this averaged level typically makes the op-
timization instance more robust, especially in shaped-beam
design instances (e.g., flat-top). Given a lower bound M0 for
the reference level, the only absolute requirement will thus be

Fref(I) ≥M0, (25)

with all others becoming relative to Fref .
Regarding the relative specifications, it is convenient to

divide them into those for the main lobe (ML) region ΩML,
and those for the side-lobe (SL) region ΩSL, as they are
functionally different. Overall, this results in the following set
of specifications:

M co
L (r̂, I) ≤ F co(r̂, I) ≤M co

U (r̂, I), r̂ ∈ ΩML (26)
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Fig. 2. Example of far-field specifications: objective level M0, reference level
Fref , main lobe co-pol mask Mco

L , Mco
U , cross-pol mask Mcx

U and side lobes
mask Mtot

U . Vertical arrows indicate relative levels.

where
M co

U/L(r̂, I) = µco
U/L(r̂)Fref(I) (27)

with the upper requirement being absent in pencil-beam type
specifications, and

F cx(r̂, I) ≤M cx(r̂, I), r̂ ∈ ΩML (28)
F tot(r̂, I) ≤M tot(r̂, I), r̂ ∈ ΩSL (29)

where

M cx(r̂, I) = µcx(r̂)Fref(I) (30)
M tot(r̂, I) = µSL(r̂)Fref(I) (31)

All these requirements are summarized graphically in Fig. 2.

IV. CURRENT-BASED DESIGN

A. Strategy

The outcome of the design must be the spatial distribution
of the surface impedance; however, we formulate the problem
in such a way that it involves only the equivalent current—
not the impedance. On exit, the process yields the “right”
current, from which a corresponding impedance is obtained.
The complete procedure is detailed in Alg. 1.

This current-based design process avoids the solution of the
forward problem (7) at each step, with obvious advantages
in terms of numerical complexity. Of course, this is possible
only if the current being sought-for can be constrained to
correspond to a passive and lossless surface, in addition
to radiating a field that satisfies the related requirements.
Moreover, we want the reactance associated to the current to
be bounded by practical realizability limits—again, without
computing this reactance explicitly during the process.

We formulate the design as an unconstrained optimization
problem, where the fitness is expressed in terms of cost
functionals to be minimized. The synthesized current is the
solution of the following problem:

I⋆ = argmin
I∈CN

f(I) (32)

Algorithm 1 Algorithm for the design of the surface
impedance profile Z(r).
Input: I0, XL, XU,Ω0,ΩML,ΩSL,M0, µ

co
L , µ

co
U , µ

cx, µtot

Output: z
I← I0
k ← 0
while k ≤ Kmax do

Compute P , Q, J , E ▷ (49)–(52)
Compute ρact, ρrct, ρscal ▷ (46)–(48)
Compute frlz ▷ (45)

Compute Fref , F co, F cx, F tot ▷ (60), (70)–(72)
Compute M co

L , M co
U , M cx, M tot ▷ (63)–(65)

Compute ρref , ρco, ρcx, ρtot ▷ (62), (67)–(69)
Compute frad ▷ (66)

f ← frlz + frad

Compute ∇̃ρact, ∇̃ρrct, ∇̃ρscal ▷ (74)–(77), (80), (82)
Compute ∇̃frlz
Compute ∇̃ρref , ∇̃ρco, ∇̃ρcx, ∇̃ρtot ▷ (83)–(85), (87)
Compute ∇̃frad
∇̃f ← ∇̃frlz + ∇̃frad
Set βk ▷ (90)
Set pk ▷ (89)
Compute αk ▷ (91)
Ik+1 ← Ik + αkpk
k ← k + 1

end while
Compute z ▷ (103), (105)

where the overall functional f is the sum of a term frlz that
expresses the compliance with realizability constraints, and of
a term frad that quantifies the fitness of the radiated field,

f(I) = frlz(I) + frad(I) (33)

As explained above, it is crucial to express these terms as
functions of the current only; this point will be addressed in
Secs. IV-B and IV-C.

An important observation is that requirements involving
inequalities, like those of field masks in (23) or reactance
bounds (19), are conveniently expressed as quantities to be
minimized by means of the ramp function

r(x) = max(x, 0) (34)

with which a condition of the type a ≤ b becomes r(a−b) = 0.
For the class of constraints of relevance here, the associated

minimization instance is non-convex. Hence, strategies to
overcome the non-convexity shortcomings, and in particular
local trappings, are very important. Inspired by [9], our choice
is to resort to functionals that are of polynomial type in the
current coefficients, in particular fourth-degree polynomials,
with added rectification (via the ramp function) where needed.
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The most general expression for the functional takes the form

f(I) =

Nd∑
d=1

qd(I) sd(I) +
Ne∑
e=1

r2(te(I))

= qTs+ r (t)T r (t)

(35)

where r2(x) = max(x, 0)
2 is a C1 function (continuous with

continuous derivative); Nd and Ne are the total number of
terms in the two functionals. We have defined the arrays

q = [q1(I), . . . , qd(I), . . . , qNd
(I)]T (36)

s = [s1(I), . . . , sd(I), . . . , sNd
(I)]T (37)

t = [t1(I), . . . , te(I), . . . , tNe(I)]
T (38)

where qd, sd and te are multivariable quadratic functions of
the current coefficients, i.e., of the form

qd or sd or td = Re (IHAdI+ IHbd + cd) (39)

where Ad ∈ CN×N are positive definite matrices, bd ∈ CN

are column vectors and cd ∈ C are constants. The advantage
of this choice is apparent: for even-degree polynomials, the
functional is bounded below, and goes to +∞ as ∥I∥ −→ +∞.
Moreover, a polynomial of degree four limits the number of
possible local minima, while still allowing enough flexibility in
the definition of the functional. Finally, the problem is formu-
lated so that the matrices Ad are such that the computation of
each term of (35) can be accelerated to quasi-linear complexity
(either Ad is sparse or the matrix-vector product AdI can be
computed with fast algorithms).

For the minimization of (32) we employ a non-linear
conjugate gradient algorithm [39, p. 121]. Given the large size
of the problem, the numerical cost of computing the functional
and its gradient at each iteration is an issue of paramount
importance; as will be seen in Sec. IV-D, this impacts on
the way the gradient is expressed. In particular, all operations
involved in the computation of the near- or far-field radiated by
a given current can be performed with the fast factorizations
mentioned in Sec. II, with O(N) memory requirements and
O(N logN) complexity. Hence, all operations in the compu-
tation of the functional and of its gradient will be cast in such
a way to be expressible in this form.

The other relevant step is the line search that must be
carried out at each step of the iterative process. This is a
deceivingly simple task, as it involves only a one-dimensional
minimization along the search direction, which in principle can
be performed with a variety of standard approaches. However,
as is well known in the literature, the difficult part is finding
the interval in which this search must be carried out. Our
polynomial approach will allow to perform this in an analytical
(possibly iterative), definite manner.

Finally, we have chosen not to enforce any smoothing
of the current in the optimization; this could be done in
different ways (see, e.g., [11]), but our choice avoids additional
parameters to set, and will allow to check the intrinsic degree
of regularity of the solution.

B. Enforcement of realizability constraints

As discussed, realizability requires local passivity and ab-
sence of losses, as well as bounds on the impedance values.
Passivity and losslessness can be expressed directly in terms
of the (local) active power density; moreover, we observe that
the magnitude of the reactance can be linked to the (local)
reactive power density. Hence, all realizability constraints can
be cast in terms of power densities. This allows to express
them in terms of the current only, in such a way that they also
satisfy our requirement of being of polynomial nature.

We therefore start from the basic power density across a
surface (see App. A),

p̃(r) = E · J∗ = P + jQ (40)

that is related to the local impedance via the IBC as

p̃(r) = Z |J |2 = ReZ |J |2 + j ImZ |J |2 . (41)

The requirement for passivity and losslessness imposes that
P = 0, i.e.,

Re (E · J∗) = 0. (42)

In order to preserve passivity, one needs to enforce this
condition locally in an explicit manner [9] (otherwise, one
could have zero global dissipated power, but with active terms
with P < 0 compensating losses).

The requirement (19) are related to the reactive power
density via (41), resulting in

XL |J |2 ≤ Im (E · J∗) ≤ XU |J |2 . (43)

Finally, we note that, as the impedance does not appear in
the conditions above, there is no guarantee that the obtained
current is such as to correspond to a scalar impedance; hence,
here we will enforce the scalarity condition explicitly. A
necessary condition for the impedance to be scalar is that:

|E · J∗| = |E| |J | (44)

All the above conditions must hold locally everywhere; in
accordance with our cell-based spatial discretization scheme,
we will enforce these conditions in the average sense over
each cell.

We recall here the important observation that inequality
conditions like (43) can be expressed in terms of the ramp
function; however, this function does not have a continuous
derivative. For this reason, we employ the squared ramp
function, r2(x) = max(x, 0)

2, which is a continuous function
with continuous derivative. This allows the use of inequalities
in the functional definition at the only expense of having
piecewise polynomial functions, but everywhere continuous
and differentiable.

With the above stipulations, the conditions of passivity and
losslessness (“act”), of the reactance bounds (“rct”), and of
scalarity (“scal”) result in a cost function that is the sum of
three contribution:

frlz = wact

Nc∑
i=1

ρacti + wrct

Nc∑
i=1

ρrcti + wscal

Nc∑
i=1

ρscali (45)
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The weights wact, wrct and wscal have to be assigned a priori,
like in all optimization problems of multi-objective nature. The
cell-wise terms are defined as follows:

ρacti = Pi
2 (46)

ρrcti = r2(XLJi −Qi) + r2(Qi −XUJi) (47)

ρscali = Ei Ji −
(
Pi

2 +Qi
2
)

(48)

where

Pi = Re

¨
Si

E · J∗ dS = Re (IHΓiV)

= Re
(
IH(ΓiK)I+ IH(ΓiV

′
inc)

) (49)

Qi = Im

¨
Si

E · J∗ dS = Im (IHΓiV)

= Im
(
IH(ΓiK)I+ IH(ΓiV

′
inc)

) (50)

Ji =
¨

Si

|J |2 dS = IHΓiI (51)

Ei =
¨

Si

|E|2 dS = VHΓiV = IH(KHΓiK)I

+ 2Re
(
IH(KHΓiV

′
inc)

)
+ V′H

incΓiV
′
inc.

(52)

For convenience, we have introduced the following quantities:

V = G−1(Vinc + LI) = V′
inc +KI (53)

K = G−1L, V′
inc = G−1Vinc, (54)

where G ∈ RN×N is the Gram matrix of the RWG basis
functions, defined as

(G)mn =

¨

SIBC

Λm(r) ·Λn(r) dr (55)

and Γi ∈ RN×N is the local Gram matrix for the i-th cell,
defined as

(Γi)mn =

¨

Si

Λm(r) ·Λn(r) dr. (56)

At most three RWG basis have their support on a single cell,
therefore each matrix Γi is extremely sparse, with O(1) non-
zero entries.

C. Enforcement of field specifications

We solve for a current associated to a given incident field,
and thus with a known source power; this allows to define
bounds on the maximum achievable radiated power. In turns,
this permits to transform the maximization of the radiated
power into the minimization of the difference with respect
to its theoretical maximum.

We indicate by Pinc the power associated to the (given)
incident field Einc; it is then natural and practically relevant
to express the radiated field in terms of the realized gain [40],

Gr(r̂, I) =
|E(r̂, I)|2 /η0
Pinc/4π

(57)

where η0 is the free-space impedance, and E(r̂, I) is the far-
field radiated by a given current, with the normalization of
Sec. II. Hence, the specification mask in (23) will be given by

M(r̂, I) =
η0
4π
PincGr(r̂, I). (58)

We observe that—neglecting losses—the difference between
the incident power Pinc (associated to the incident field) and
the radiated power Prad is due the power trapped in the surface
wave guided by the infinite dielectric. The latter is the sum of
the power due to metasurface reflection Prefl and the (residual)
power traveling outwards Pout that is diffracted by the antenna
rim (diffraction is not accounted for in all methods employing
an infinite dielectric),

Pinc = Prad + Prefl + Pout. (59)

As a result, maximizing the radiated power for a given incident
power allows to directly account for possible anomalous
reflection due to bandgap (typical in 1D leaky wave structures)
in this automatic process; otherwise said, the present approach
also optimizes the reflection of the incident field by the
metasurface toward the source. In addition, it also minimizes
the power of the outward traveling surface wave, and hence
the effect of its rim diffraction.

Finally, in the above considerations—for the sake of
clarity—we have referred to the total radiated power Prad

instead of the power radiated in the main beam Prad,Ω0 ;
since the unwanted power radiated outside the main beam
is controlled by side-lobe minimization, there is no practical
difference to the discussion above.

The radiated field requirements in (26), (28)–(29) are all
expressed as inequalities; using the approach described above,
they can be cast directly in terms of functionals to be min-
imized employing the sampling and the expression of the
radiation operator described in Sec. III.

We begin with the reference level Fref in (24), which is now
made explicit as

Fref(I) =
1

Ω0

∑
j∈Ω0

F co
j ∆Ωj ≈

1

N0

∑
j∈Ω0

F co
j , (60)

where we use the shorthand F co
j = F co(r̂j , I). With reference

to (25), the maximization of Fref can be equivalently expressed
as the minimization of its difference with respect to the desired
lower bound M0,

M0 − Fref(I) ≤ 0 (61)

and the related functional is immediately found to be

ρref = r2
(
M0 − Fref(I)

)
. (62)

With the above expressions, the mask bounding values result
in

M co
U/L,j(I) = µco

U/L(r̂j)Fref(I), (63)

M cx
j (I) = µcx(r̂j)Fref(I), (64)

M tot
j (I) = µSL(r̂j)Fref(I) (65)
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With these, the inequality constraints result in the following
functional:

frad = ρref + wML

∑
j∈ML

(ρcoj + ρcxj ) + wSL

∑
j∈SL

ρtotj (66)

where

ρcoj = r2(M co
L,j − F co

j ) + r2(F co
j −M co

U,j) (67)

ρcxj = r2(F cx
j −M cx

U,j) (68)

ρtotj = r2(F tot
j −M tot

U,j ) (69)

with the shorthand notation F
cx/tot
j = F cx/tot(r̂j , I). Field

amplitudes are computed according to (20)–(22) and the
employed discretization:

F co
j =

∣∣Eco
j

∣∣2 , Eco
j = Eθ

j p̂
θ∗
j + Eφ

j p̂
φ∗
j , (70)

F cx
j =

∣∣Ecx
j

∣∣2 , Ecx
j = Eθ

j q̂
θ∗
j + Eφ

j q̂
φ∗
j , (71)

F tot
j =

∣∣Eθ
j

∣∣2 + ∣∣Eφ
j

∣∣2 , (72)

where p̂j = p̂(r̂j), q̂j = q̂(r̂j), and the elements Eθ
j and

Eϕ
j may be evaluated exploiting fast matrix-vector product

routines through (14)–(15).
We observe that one often seeks to maximize the gain in the

main lobe, i.e., without a specification of an absolute lower
bound for it. This is simply obtained by setting the lower
bound M0 to a theoretical maximum for the antenna under
consideration, e.g., the value that would be obtained by a
constant current and assuming the radiated power equal to
the incident one. We also observe that in a pencil beam type
of design the upper bound M co

U is not present, with related
simplification of the ML functional ρco. In addition, for this
case a sensible choice of the averaging ML region Ω0 allows
to use only the functional ρref .

D. Fast Computation of Gradient

Our formulation allows to effectively make use of fast
algorithms also for the gradient computation. In particular,
the quadratic form of the terms result in linear gradients, and
the sum over all terms allows to isolate the computationally
intensive parts and drastically reduce the number of matrix-
vector products required.

Matrices and vectors introduced in the previous sections are
complex. On the other hand, optimization algorithms usually
deal with real vectors: we strive to keep all computations
in the complex domain for numerical convenience, using
the approach proposed in [41]. To this end, we define the
complex gradient operator as follows. Consider a complex
vector z = x + jy ∈ CN . The complex gradient is defined
as

∇̃ ≡ 1

2

(
∇x + j∇y

)
. (73)

For a real-valued function f : CN → R, it can be proven [41]
that: i) the complex gradient ∇̃f corresponds to the direction
of maximum increase of the function; ii) the condition ∇̃f = 0
is necessary and sufficient to determine a stationary point for

f . The required gradients are expressed in complex format by
using the properties reported in App. B, yielding

∇̃Pi =
1

2
(ΓiV +KHΓiI) (74)

∇̃Qi =
1

2j
(ΓiV −KHΓiI) (75)

∇̃Ji =
1

2
(Γi + ΓH

i ) I = ΓiI (76)

∇̃Ei = KHΓiV, (77)

where the matrix K was defined in (54), and the products
involving it are computed in the following way:

KHz = (G−1L)Hz = LHG−1z, (78)

having exploited the symmetry of G−1. We observe that the
EFIO matrix L is symmetric, i.e., LT = L, but not self-adjoint.
Thus, matrix-vector products involving its complex transpose
are computed as

LHz = (LTz∗)∗ = (Lz∗)∗ (79)

which allows to leverage fast algorithms to multiply L by a
vector. The total gradient is obtained by linearity as a sum of
all individual gradients. As an example, the gradient of the
ρact functional is given by

∇̃
[∑

i Pi
2
]
= 2

∑
i Pi∇̃Pi

= 2
∑

i Pi
1
2

(
ΓiV +KHΓiI

)
=

[∑
i PiΓiV

]
+KH

[∑
i PiΓiI

] (80)

The interchange of the summation with the operator KH is
key as it allows to compute the total gradient by requiring
only one computationally intensive matrix-vector product.
The remaining products, involving extremely sparse matrices
Γi, are computed individually, as their complexity remains
negligible with respect to the total one.

The same is true for the inequality terms; in the case of ρrct,
by defining Ψi = Qi−XJi and noting that d

dx r
2(x) = 2 r(x),

we have

∇̃Ψi = ∇̃Qi −X∇̃Ji

=
1

2j
(ΓiV −KHΓiI)−XΓiI

=
1

2

(
− jΓiV + (jKH − 2X)ΓiI

) (81)

and so

∇̃
[∑

i r
2(Ψi)

]
= 2

∑
i r(Ψi)∇̃Ψi

= −j
[∑

i r(Ψi)ΓiV
]
+ (jKH − 2X)

[∑
i r(Ψi)ΓiI

]
.

(82)

Regarding the functional for the field specifications, the
gradients of the field magnitude samples read

∇̃F co
j = Eco

j (p̂θjR
H

θej + p̂ϕjR
H

ϕej) (83)

∇̃F cx
j = Ecx

j (q̂θjR
H

θej + q̂ϕjR
H

ϕej) (84)

∇̃F tot
j = Eθ

j R
H

θej + Eφ
j RH

φej (85)
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where (ej)k = δjk. The gradient for the total field component
in (66) is found in a way similar to what has been shown
before. By defining Φj = F tot

j −M tot
U,j , we get

∇̃Φj = ∇̃F tot
j − ∇̃M tot

U,j

= ∇̃F tot
j = Eθ

j R
H

θej + Eφ
j RH

φej
(86)

where the simplifying assumption of absolute masks, i.e.,
∇̃M tot

U,j = 0, has been made. Then

∇̃
[∑

j r
2(Φj)

]
= 2

∑
j r(Φj)∇̃Φj

= 2
∑

j r(Φj)
[
Eθ

j R
H

θej + Eφ
j RH

φej
]

= RH

θ

[
2
∑

j r(Φj)E
θ
j ej

]
+ RH

φ

[
2
∑

j r(Φj)E
φ
j ej

] (87)

where again, by rearranging the summation, the computation-
ally heavy matrix-vector products are done only once per
gradient evaluation.

E. Iteration update

As anticipated, for the minimization of the functional f(I)
described in previous sections we employ a non-linear con-
jugate gradient algorithm [39, p. 121]; this means that the
update is of the type

Ik+1 = Ik + αk pk (88)

with k = 0, . . . ,Kmax, where αk ∈ R is to be found so that the
functional is minimized along the direction pk ∈ CN , which
incorporates gradient information,

pk =

{
−∇̃fk if k = 0

−∇̃fk + βk pk−1 if k > 0
(89)

The parameter β ∈ R is defined according to the Polak-Ribière
formula (adapted for complex gradients),

βk =
Re

(
∇̃fH

k(∇̃fk − ∇̃fk−1)
)

∥∥∇̃fk−1

∥∥2 (90)

As seen above, at each iteration of the algorithm, one
updates the solution by looking for the optimum along the
chosen direction; this step is known as line search, and is
formally indicated as the process of finding the optimum step
length α⋆ such that:

α⋆ = argmin
α∈R

f(I+ α p) (91)

where I indicates the solution at the previous step (i.e., I = Ik)
and p = pk is the search direction as in (89). As the line
search is performed at each iteration, its computational cost
is of paramount importance. Both the evaluation of the cost
function along the search direction,

g(α) = f(I+ α p) (92)

and the minimization process are greatly expedited by our
choice to employ only polynomial functionals (see Sec. IV-A).
First of all, we make explicit the polynomial structure of each
term in (35) when evaluated in (92):

qd(I+α p) = q0d + α q1d + α2q2d (93)

with

q0d = Re(IHAdI+ IHbd + cd) (94)
q1d = Re(IHAdp+ pHAdI+ pHbd) (95)
q2d = Re(pHAdp) (96)

where Ad indicate the matrices appearing in the definition
of the objective function terms. The same applies to the
imaginary part. By defining the arrays of coefficients q0 =
[· · · q0d · · · ]T, q1 = [· · · q1d · · · ]T and q2 = [· · · q2d · · · ]T
(and, accordingly, for the polynomials sd and td), we can
conveniently evaluate (92) as

g(α) = (q0 + α q1 + α2q2)
T(s0 + α s1 + α2s2)

+ r(t0 + α t1 + α2t2)
Tr(t0 + α t1 + α2t2).

(97)

This formulation allows to evaluate the objective function (92)
for any value of α at the cost of computing the matrix-vector
products involving Ad only once to evaluate Adp, as terms
AdI were computed and stored at the previous step.

Moreover, an analytical solution for the minimization of
g(α) is important to avoid scaling issues of the step length,
which is known to be a critical problem of line search
procedures [39]. We discuss this by starting with the simplest
case of functionals without inequalities (i.e., without ramp
functions); in our setting, that would correspond to a phaseless
pattern fitting with no bounds on the reactance values. In
this case, the objective function g(α) reduces to a fourth-
order polynomial and the line search procedure is direct: the
derivative dg

dα is a third-order polynomial, and its roots may
be found in closed form. Once again, we stress that this is not
important to reduce the cost of finding the stationary point.
Instead, a closed form solution avoids the need to determine
the interval in which to look for the optimum step length.

In the presence of inequalities, the objective g(α) is still a
fourth-order polynomial, but it is piecewise so; because of the
continuity of the derivative of r2(x), the derivative dg

dα is also
a piecewise continuous polynomial. The piecewise polynomial
(97) can be minimized with an iterative algorithm, that can be
explained as follows: note that, for a generic function ϕ(x),
we have

r(ϕ(x)) = u(ϕ(x))ϕ(x), (98)

where u(x) is the unit step function; hence, the non-linear
(rectifying) behavior of a ramp can be represented as an on/off
switch. Then, we consider the ramp-less “switched” version
gs(α; u) of (97) in which all terms of the kind r(sd(α)) are
replaced by ud sd(α), with ud = u(sd(α)) ∈ {0, 1} and where
u = [u1, ..., uNs

] is the switch pattern vector (Ns is the number
of switches, i.e., of ramp terms). For any given pattern of
switch states, the function gs(α; u) is always a fourth-order
polynomial whose minimum point is computed in closed form
as described above.

One starts by computing the switch pattern for α = 0, which
yields u0, and finds the minimum α⋆

0 of gs(α; u0) as above.
With this new value of α, one now evaluates the switches
again, which results in the pattern u1, and the determination of
the minimum point is repeated for gs(α; u1), yielding α⋆

1. The
process is iterated until the switch pattern remains unchanged,
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TABLE I
COMPUTATIONAL COMPLEXITY OF REQUIRED MATRIX-VECTOR
OPERATIONS, WITH THE TOTAL NUMBER OF OCCURRENCES PER

ITERATION.

Operation Complexity Count
LI O(N logN) 3

RI O(Nf logN) 3

G−1I O(N) 3

Γi I O(1) 4Nc

i.e., un = un−1: at that point, gs(α; un) = g(α), and α⋆
n =

α⋆ is the sought-for minimum point. The algorithm usually
converges in much less than Ns iterations.

F. Computational complexity

The computation of the objective function and of its gra-
dient consists of operations that are amenable to at most
O(N logN) complexity and O(N) memory occupation. In
particular, the matrix-vector products LI and RI can be com-
puted with fast factorizations as described in Sec. II, while
terms of the kind y = G−1x are evaluated directly as solutions
of the linear system G y = x. The Gram matrix is O(N)
sparse, positive-definite and with O(1) condition number,
therefore the above system can be solved iteratively (e.g.,
with a conjugate gradient algorithm) in O(1) iterations, thus
resulting in O(N) total operations.

Table I summarizes the complexity of all matrix-vector
operations; the total count includes all operations needed
for the evaluation of the objective function, of its gradient,
and for the line-search. Given that the number of sampling
points in the far field, Nf , is independent of the number of
unknowns N , and the number of cells Nc is approximately
proportional to N , the total asymptotic complexity (neglecting
multiplicative constants) is O(N logN). In this estimation,
element-wise vector operations have been omitted since their
cost is negligible with respect to matrix-vector ones.

G. From current to impedance

Once the optimum current coefficients I⋆ have been ob-
tained, the corresponding total electric field Vinc + LI⋆ is also
known, and the sought-for impedance profile can be obtained
via (7) and the definition of Z (9).

In order to find an equation for the impedance spatial
distribution Z(r) we must start with its representation in terms
of L assigned basis functions ψℓ(r),

Z(r) =
L∑

ℓ=1

zℓ ψℓ(r), (99)

where the array z ∈ CL collects the expansion coefficients. We
observe that this step—including the choice of the impedance
basis functions—is completely independent from the solution
of the optimization process described above, and any post-
processing to it. Indeed, more than one representations of

Z(r) and ensuing impedance reconstructions could be done
for ensuring a stable result. Inserting (99) into (9), one has

(Z)mn =

L∑
ℓ=1

zℓ g
ℓ
mn, gℓmn = ⟨Λm , ψℓΛn ⟩, (100)

and after some manipulations, one finds

ZI = Cz, C(I) ∈ CN×L, (C)mℓ =

N∑
n=1

gℓmnIn (101)

Consistency with the discretized EFIE-IBC (7) (with known
current I = I⋆) requires

C⋆z = Vinc + LI⋆ (102)

with C⋆ = C(I⋆), so that

z⋆ = argmin
z∈CL

∥C⋆z− Vinc − LI⋆∥2 (103)

which corresponds to a linear, least-squares minimization
problem that can be solved with standard techniques. We
observe that this process bears similarities with the impedance
computation in [16]. In what follows, we expand the sought
impedance profile with piecewise constant basis functions

ψℓ(r) =

{
1 for r ∈ Sℓ
0 elsewhere

ℓ = 1, . . . , L (104)

where Sℓ, in general, is given by the union of a certain number
of adjacent triangular cells. This can help in smoothing out fast
variations of the impedance profile, or to more closely match
the unit cell shape.

In the particular case in which the impedance is expanded
with constant basis functions on each triangle separately, L =
Nc, Si = Si, and problem (103) has a closed form solution
for the impedance coefficients (derived in App. C), given by

z⋆i =
IHΓiV

IHΓiI
. (105)

Extension to the case of clusters of cells is straightforward.
We observe that two relevant limiting cases can be encoun-

tered. When the total field E in (3) is zero and the current J is
not, the surface is a PEC (equivalent to Z = 0). Instead, when
the current J is zero and the field E is not, this corresponds
to an infinite impedance value, which implies that there is no
IBC there (i.e., only the dielectric substrate), a condition that
can be easily implemented in the solution by removing the
corresponding degrees of freedom from the discretization. In
practice, thresholds are set for the current and field values,
defining how small the quantities must be in order to be
considered negligible.

Finally, we note that sensitivity may arise due to the current
at the denominator, or more generally because current and
impedance appear as a product in (7). Handling the above
limiting cases avoids most of the problems, but further regular-
ization processes may be necessary to yield smoother profiles;
in this sense, we note that smoothing the current would not
necessarily solve the above sensitivity issues, which may still
happen even for a very smooth current profile.
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V. APPLICATION EXAMPLES

In this section, the proposed algorithm is applied to the
design of metasurface antennas with different shapes. This pa-
per is devoted to the design of the impedance surface. The
design of the feed, or inclusion of a realistic feed model are
beyond the present scope. Hence, as in similar works (e.g.,
[16]) we will consider excitation by (one or more) vertical
pins. This is not a limitation, as more realistic feeds may be
incorporated via their incident field Einc (e.g., [42]).

The first case is a circular metasurface radiating a broadside
pencil beam with circular and linear polarization, while the
second case involves a rectangular metasurface that radiates a
cosecant squared pattern.

In all cases we required a capacitive-only reactance (which
greatly simplifies unit cell design), with values in the range
from −600Ω to −100Ω (which are typical for patch-type unit
cells with the employed substrate and frequency).

All reported examples incorporated the requirement of re-
alized gain maximization (for fixed unit incident power). We
recall that the optimization process avoids the solution of
the forward problem (7); this fact will be used to verify the
consistency and stability of the obtained impedance profile. We
proceed as follows: from the optimum current I⋆, we determine
the impedance profile Z(r) as indicated in Sec. IV-G, keeping
only its imaginary part. Next, we compute the actual solution
by solving the forward problem (7) for this impedance profile
and the specified source field.

All the radiation patterns shown have been obtained this
way; hence, the results take into account a possible effi-
ciency reduction due to the impedance reconstruction process.
Losses in the conductors and the dielectric substrate are not
considered. In obtaining the impedance, as described in Sec.
IV-G, currents below the threshold were neglected. In all the
examples, this threshold corresponds to 2% of the average
current magnitude.

Employed mask specifications will be graphically reported
along with results. In surface impedance plots, white areas are
used to represent an open circuit condition, i.e., where only
the bare dielectric substrate is present.

The design instances ran on a Desktop PC with Intel Core
i7 processor and 16GB RAM.

A. Circular Metasurface with Broadside Pencil Beam

The first application considers a circular structure, given the
practical relevance of this configuration in the literature. The
antenna has a diameter D = 130mm ≈ 20λ0 (λ0 = c/f ), it
features Nc = 61 594 degrees of freedom for the impedance,
and is discretized with N = 92 096 RWG basis functions.
The substrate is a single-layer grounded dielectric slab with
εr = 3.34 and height h = 0.508mm; the operation frequency
is 23GHz. The incident field is generated by a (short) centered
vertical dipole, and approximated with its asymptotic form
as a TM0 cylindrical surface wave (as in, e.g., [26]); its
associated power (i.e., the incident power) can be computed in
a straightforward manner [43], and setting it to a given value
(e.g., unitary) yields the amplitude of this surface wave.

0 1 2
|J | (A/m)

(a)

-400 -300 -200 -100
ImZ (Ω)

(b)

Fig. 3. Pencil beam with circular polarization: (a) optimized surface current
magnitude, (b) resulting surface reactance (white areas correspond to the
absence of IBC, i.e., bare dielectric).
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Fig. 4. Pencil beam pattern with circular polarization: mask requirements and
directivity in the plane cut φ = 90◦.

The current is initialized to an everywhere ŷ-directed cur-
rent with a raised-cosine radial profile with roll-off toward the
inner and outer edges, which radiates broadside with linear
polarization. This current is (obviously) not realizable with a
passive lossless metasurface, and this will allow to assess the
robustness of the algorithm with respect to the starting point.

The optimization of the circular metasurface took 500
iterations, each requiring ≈ 50 s to complete, for a total
running time of about 7 h for each presented case.

1) Circular polarization: We begin with a pencil beam
design with circular polarization. The output of the optimiza-
tion is the surface current in Fig. 3a, with the corresponding
impedance shown in Fig. 3b.

Figures 4 shows the requirement masks (with azimuthal
symmetry) along with the obtained patterns. A view of the
pattern in the u-v plane is also given in Fig. 7a. The maximum
directivity is 30.3 dB, with a corresponding aperture efficiency
of 28%; this value is in line with those reported in the literature
for scalar impedances, which range between 15% and 20% [2].

It is remarkable that the proposed optimization algorithm
reaches the same spiral shape that was devised in [2] based
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Fig. 5. Pencil beam with linear polarization: (a) optimized surface current
magnitude, (b) resulting surface reactance (white areas correspond to the
absence of IBC, i.e., bare dielectric).

on analytical considerations, and the one obtained with the
current-only method [16] employing entire-domain basis func-
tions; the proposed algorithm employs no assumption, and
actually reaches this spiral profile and circular polarization
starting from a constant current with linear polarization.

2) Linear polarization: We now address the case of linear
polarization, which is less usual for the considered type of
antenna. As the antenna has a circular symmetry, and our
focus is on broad-side radiation, there is no difference in
design between the vertical and horizontal polarizations. The
optimized current and surface reactance are shown in Fig. 5a
and 5b.

The (axi-symmetric) mask specifications for this case are
in Fig. 6 along with the obtained radiated field. A plot of the
pattern in the u-v plane is given in Fig. 7b. The directivity
reaches a maximum of 28.8 dB, achieving a 20% aperture
efficiency. Side-lobe performance appear different in the E-
and H-plane, and worse in the E-plane with respect to the
circular polarization case. This difference can be attributed to
the scalar impedance employed here.

The resulting impedance distribution shows clear simi-
larities with that of [44], obtained as the superposition of
two spiral modulation patterns that radiate opposite circularly
polarized beams. The work in [3], [45] include broadside-
radiation cases, albeit for tensor impedance. Hence, analogous
to the circular polarization case, it is remarkable that our
automated design recovers a shape determined on the basis
of analytical wave-based considerations.

Further application examples, notably for smaller sized an-
tennas and flat-top patterns, can be found in [46]; as for the
aperture efficiency, a 10λ0 circular antenna radiating a circu-
larly polarized broadside beam showed an aperture efficiency
of 35%, while for the linearly polarized case this efficiency
reached 40%.

B. Rectangular Metasurface with Cosecant Squared Pattern

The second application features a rectangular metasurface
at 32GHz, with a length L = 93.7mm ≈ 20λ0 and a width
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Fig. 6. Pencil beam pattern with linear polarization: mask requirements and
directivity in the plane cut φ = 90◦.
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Fig. 7. Comparison of the co-polarization patterns in the u-v plane for (a)
circular polarization and (b) linear polarization broadside pencil beam.

W = 65.6mm ≈ 7λ0. The impedance is discretized with
Nc = 24 288 degrees of freedom and the number of RWG
basis functions for the current is N = 36 136. A grounded
dielectric slab with εr = 3.0 and height h = 0.76mm serves as
the substrate. The antenna is excited by a row of pins placed in
a rectangular quiet zone at the center of antenna with a cosine
tapering, which produces a surface wave with an almost plane
wavefront along the width of the metasurface.

The target specification is a cosecant squared pattern, tipi-
cally encountered in applications that need a constant radiated
angular power density over a defined range of elevation angles
θ, and null outside [40]. The power pattern D(θ) is defined
as

D(θ) =
sin2(θmin)

sin2(θ)
, θmin ≤ θ ≤ θmax. (106)

In the following, we will consider a case with θmin = 5◦,
θmax = 50◦ and linear polarization along θ̂. The principal
plane here is ϕ = 0◦, and radiation constraints are imposed
in this plane. The admissible ripple is set at ±2 dB from the
target mask (106), and the transition zone is 5◦ on both sides
of the main beam. Unsymmetrical sidelobe requirements are
set on the two sides.
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Fig. 8. Cosecant squared pattern: (a) optimized surface current magnitude,
(b) resulting surface reactance (white areas correspond to the absence of IBC,
i.e., bare dielectric).
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Fig. 9. Cosecant squared pattern: mask requirements and directivity in the
plane cut φ = 0◦. Inset: co-polarization directivity pattern in the u-v plane.

Figure 8a shows the optimized current, and the correspond-
ing surface impedance is given in Fig. 8b. The optimized
radiated pattern is displayed in Fig. 9, together with the
specification mask.

To obtain the final design, 2000 iterations were carried out,
with an average of ≈ 10 s per iteration, and a total runtime of
around 5 h 30min.

VI. CONCLUSIONS

We have presented a 3D method to numerically design
metasurfaces antennas which transform a given incident field
into a radiated one with arbitrary mask-type (inequality) ampli-
tude specifications, and with bounds on the surface reactance
values. The method employs only the (equivalent) electric
current, not requiring the solution of the forward problem
at each iteration, thus allowing for a reduced computational
cost. The problem is further cast so as to allow the use of

fast matrix-vector product routines, reaching an almost-linear
complexity.

Inclusion of realistic feed models is currently underway,
and preliminary results are reported in [42]. Generalization to
tensor impedance and dual-polarization will be the first natural
extensions of this work. Current and impedance smoothing
will also be considered in the future.

APPENDIX A
ENERGY BALANCE ACROSS THE METASURFACE

In order to define the energetic properties of a metasurface,
we need to find the expression of the absorbed power density
for a surface S. To this aim, we apply Poynting’s theorem to
an arbitrary volume V that crosses this surface, giving

P̃ = Pdiss + j2ω(Wm −We)

=

˚

V

p̃ dV =

‹

∂V

S · n̂dS (107)

where Pdiss is the total dissipated power, Wm and We are
the magnetic and electric stored energies, respectively, and p̃
is the absorbed (volume) power density. The surface integral
involves the Poynting vector S = E×H∗ and the normal
unit vector n̂ is directed inside the volume, as dictated by the
“load” convention. The boundary ∂V is given by the union of
three disjoint surfaces: S+ and S− are on the opposite sides of
S, while Sside is the surface that joins the two sides across S.
With this partition of the bounding surface, the surface integral
can be written as

P̃ =

¨

S+

S · n̂dS +

¨

S−

S · n̂dS +

¨

Sside

S · n̂dS (108)

In the limit where S+ and S− tend to S from the two sides,
the volume integral collapses into a surface integral over S
and the contribution of the integral over Sside vanishes. The
normal unit vectors on both sides have opposite directions, i.e.,
n̂|S− = −n̂|S+ ≡ n̂, and the expression for the total surface
power (107) reduces to

lim
S+→S
S−→S

P̃ =

¨

S

p̃ dS = −
¨

S

(S+ − S−) · n̂ dS. (109)

By restricting the analysis to the case where the surface
introduces discontinuities in the magnetic field only (as is the
case for a metasurface that is modelled by (1)), it follows that
E+ = E− = E and the final expression reads

P̃ =

¨

S

p̃ dS = −
¨

S

E×(H+ −H−)
∗ · n̂dS

=

¨

S

E · [n̂×(H+ −H−)
∗] dS =

¨

S

E · J∗ dS

(110)

where we have used definition (2) for the equivalent surface
current. Since the surface S is arbitrary, the equality of the
integrands in (110) must hold point-wise. The definition of
the surface absorbed power density is therefore given by

p̃ = E · [n̂×(H+ −H−)
∗] = E · J∗. (111)
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APPENDIX B
PROPERTIES OF THE COMPLEX GRADIENT

We list a few properties useful when deriving the complex
gradient of real-valued functions of complex variables z ∈ CN :

∇̃(c f(z)) = c ∇̃f(z) (112a)

∇̃(f(z)g(z)) = f(z)∇̃g(z) + g(z)∇̃f(z) (112b)

∇̃h(f(z)) = ∂h

∂f
∇̃f(z) + ∂h

∂f∗
∇̃f∗(z) (112c)

where c ∈ C, f, g : CN → C, and h : C→ C.
By using the definition (73) and properties (112a)—(112c),

one can derive the complex gradient for terms that are encoun-
tered in the expression of cost functions,

∇̃(zHa) = ∇̃(aTz∗) = a (113a)

∇̃(aHz) = ∇̃(zTa) = 0 (113b)

∇̃ (zHMz) = Mz (113c)

∇̃ |f(z)|2 = f∗(z)∇̃f(z) + f(z)∇̃f∗(z) (113d)

∇̃Re f(z) =
1

2

(
∇̃f(z) + ∇̃f∗(z)

)
(113e)

∇̃ Im f(z) =
1

2j

(
∇̃f(z)− ∇̃f∗(z)

)
(113f)

where a ∈ CN and M ∈ CN×N .

APPENDIX C
STATIONARY EXPRESSION OF IMPEDANCE

Here, we determine the impedance coefficients zi via a
stationary (variational) expression. We directly minimize the
norm of the error in the defining EFIE-IBC equation,

z⋆ = argmin
z∈CL

∥Etan − Z(z)J∥2 , (114)

where
Etan(I) = [Einc + LJ ]tan . (115)

We observe that the cells Si have non overlapping support, so
that

∥·∥2 =

Nc∑
i=1

∥·∥2Si
(116)

where ∥·∥2Si
indicates integration over the support of cell i. We

further note that with the choice of pulse basis functions (104)
for Z(r), a single zi is involved in each cell, which simplifies
the minimization instance (114) into a system of decoupled
cell-wise minimization problems:

z⋆i = argmin
zi ∈C

∥Etan − ziJ∥2Si
, ∀i = 1, ..., Nc (117)

The optimum is found by setting to zero the derivative of the
norm in (117) with respect to zi, which yields

z⋆i =
⟨Etan ,J

∗ ⟩Si

∥J∥2
=

IHΓiV

IHΓiI
(118)

where ⟨ · , · ⟩Si
indicates integration over Si, and Γi ∈ RN×N

is the local Gram matrix (56) for the i-th cell. It is seen from
the second derivative that this stationary point corresponds to
a minimum.
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