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A first-order stabilization-free Virtual Element

Method

Stefano Berrone, Andrea Borio, Francesca Marcon, Gioana Teora ∗

Abstract

In this paper, we introduce a new Virtual Element Method (VEM)
not requiring any stabilization term based on the usual enhanced first-
order VEM space. The new method relies on a modified formulation
of the discrete diffusion operator that ensures stability preserving all
the properties of the differential operator.

1 Introduction

Recently, in the context of Virtual Element Methods (VEM), a growing in-
terest has been devoted to the definition of bilinear forms not requiring a
stabilization term. In [4], a lowest-order stabilization-free scheme was pro-
posed and analysed, proving that it is possible to define coercive bilinear
forms based on polynomial projections of virtual basis functions of suitable
high-degree polynomial spaces. In [5], the proposed scheme was compared to
standard VEM, and results showed that the absence of a stabilization opera-
tor can reduce the error and help convergence in case of strongly anisotropic
problems.

In this paper, we propose a variation of the scheme introduced in [4],
strongly exploiting the theory developed in that paper to choose the smallest
possible polynomial space that guarantees coercivity.

We consider an open bounded domain Ω ⊂ R2 and the following standard
advection-diffusion-reaction problem: find u ∈ H1

0(Ω) such that

(K∇u,∇v)Ω + (β · ∇u, v)Ω + (γu, v)Ω = (f, v)Ω ∀v ∈ H1
0(Ω) , (1)
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where (·, ·)Ω denotes the L2(Ω) scalar product. We make standard assump-
tions on the coefficients in order to guarantee the well-posedness of the prob-
lem, namely, all coefficients are L∞(Ω), K is a symmetric uniformly positive
definite tensor, divβ = 0, and infx∈Ω γ(x) ≥ 0. Here we consider homoge-
neous Dirichlet boundary conditions, but more general boundary conditions
can be considered.

2 Local spaces and projections

We consider a family of polygonal tessellations Mh of Ω, satisfying the
following standard mesh assumptions: ∃κ > 0 such that ∀E ∈ Mh, E is
star-shaped with respect to a ball of radius ρ ≥ κhE , and ∀e ∈ EE , where
EE is the set of edges of E, |e| ≥ κhE , where hE denotes the diameter of E.
For any given E ∈ Mh, we define the following standard Virtual Element
space [1]:

VEh =
{
v ∈ H1(E) : ∆v ∈ P1(E) , γ∂E(v) ∈ C0(∂E) , γe(v) ∈ P1(e) ∀e ∈ EE ,(

v −Π∇,E1 v, p
)
E

= 0 ∀p ∈ P1(E)
}
,

where γω(v) denotes the trace of v on ω and Π∇,E1 v ∈ P1(E) is defined such

that
(
∇v −∇Π∇,E1 v,∇p

)
E

= 0 ∀p ∈ P1(E) and
∫
∂E v =

∫
∂E Π∇,E1 v. The

degrees of freedom of VEh are the values of functions at the vertices of the
polygon E.

For any given ` ∈ N, we define the following spaces of harmonic polyno-
mials of degree `+ 1:

H`+1 (E) =

{
p ∈ P`+1(E) : ∆p = 0,

∫
E
p = 0

}
.

Let ∇H`+1 (E) be the space of gradients of functions in H`+1 (E). We define

the projector Π
H,E
` :

[
L2(E)

]2 → ∇H`+1 (E) such that, ∀v ∈
[
L2(E)

]2
,(

Π
H,E
` v,∇p`+1

)
E

= (v,∇p`+1)E ∀p`+1 ∈ H`+1 (E) . (2)

Notice that, since H`+1 (E) does not contain constants by definition, ∇p`+1

is never zero in (2) and dim∇H`+1 (E) = dimH`+1 (E) = 2`+ 2. Moreover,

notice that [P0(E)]2 ⊆ ∇H`+1 (E), and in particular [P0(E)]2 = ∇H1 (E).

Now, given a function vh ∈ VEh , consider the problem of computing

Π
H,E
` ∇vh. Let {hi, i = 1, . . . , 2`+ 2} be a set of basis functions of H`+1 (E).

Then Π
H,E
` ∇vh =

∑2l+2
j=1 dj∇hj , where the values dj can be computed by

solving the following system of equations:

2l+2∑
j=1

(∇hj ,∇hi)E dj = (∇vh,∇hi)E ∀i = 1, . . . , 2`+ 2 . (3)
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The right-hand side can be computed since we know vh analitically on the
boundary, recalling that ∆hi = 0 and applying Green’s theorem: (∇vh,∇hi)E =(
vh,

∂hi
∂n

)
∂E
, ∀i = 1, . . . , 2` + 2 . On each edge, the right-hand side is the

integral of a polynomial of degree `+ 1, that can be computed exactly using
d `+2

2 e Gauss quadrature nodes. Concerning the left-hand side of (3), a way
to reduce the computational cost, with respect to 2D quadrature rules, is

to observe that (∇hj ,∇hi)E =
(
hj ,

∂hi
∂n

)
∂E

, that is the integral of a piece-

wise polynomial of degree 2` + 1. Then, the integral can be computed by
`+1 Gauss quadrature nodes on each edge, reducing the number of function
evaluations to ∼ NE`.

3 Discrete variational formulation

Let Vh = {vh ∈ H1
0(Ω): vh ∈ VEh ∀E ∈ Mh} and let `E ≥ 0 be given

∀E ∈ Mh, possibly different from one polygon to another. Then, we look
for uh ∈ Vh such that∑

E∈Mh

(
KΠ

H,E
`E
∇uh,Π

H,E
`E
∇vh

)
E

+
(
β ·ΠH,E

`E
∇uh,Π0,E

0 vh

)
E

+
(
γΠ0,E

0 uh,Π
0,E
0 vh

)
E

=
∑

E∈Mh

(
f,Π0,E

0 vh

)
E
∀vh ∈ Vh ,

(4)

where Π0,E
0 is the L2 projection operator onto constants. The following

result provides the crucial ingredient for the well-posedness of (4).

Theorem 1. Assume that, ∀E ∈ Mh, 2`E + 2 ≥ NE − 1, NE being the
number of vertices of E. Then there exist α∗, α∗ > 0, depend on the mesh
regularity parameter κ and on local variations of K, such that, ∀uh ∈ Vh,
∀E ∈Mh,

α∗

∥∥∥√K∇uh∥∥∥
E
≤
∥∥∥√KΠ

H,E
`E
∇uh

∥∥∥
E
≤ α∗

∥∥∥√K∇uh∥∥∥
E
.

Proof. The result follows from the theory developed in [4].

Theorem 1 provides us a sufficient condition for the coercivity of the
diffusivity term of (4). The well-posedness of the discrete problem is then
obtained by the same arguments as in [1]. Optimal order a priori error
estimates can be proved using the techniques in [1, 4]. In particular, we get∥∥∥√K∇(u− uh)

∥∥∥
Ω

= O(h) , ‖u− uh‖Ω = O(h2) .

Remark 1. A basis of the space of harmonic polynomials of degree ` + 1
is known in closed form and is given by the recurrence relation (see [6]).
Notice that the requirement of zero integral in H`+1 (E) can be disregarded in
practice, since enforcing zero integral into basis functions would not change
the results of the required computations.
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4 Numerical Results

In this section, we propose some numerical experiments to validate our
method. We first give numerical evidence of the coercivity of our local bilin-
ear form, then we present some convergence tests that asses the theoretical
estimates and compare the errors

e0 =

√∑
E∈Th

∥∥∥u−Π∇,E
1 uh

∥∥∥2

E

‖u‖Ω
, e1 =

√∑
E∈Th

∥∥∥∥√K (∇u−∇Π∇,E
1 uh

)2
∥∥∥∥
E∥∥∥√K∇u∥∥∥

Ω

, (5)

with respect to the one made by the standard Virtual Element Method [2].

Irregular Concave Regular
Irregular

with hanging nodes
Regular Star

NE = 3, `E = 0 NE = 4, `E = 1 NE = 5, `E = 1 NE = 6, `E = 2 NE = 7, `E = 2 NE = 8, `E = 3
σr = 3.8227e-01 σr = 1.9207-01 σr = 7.1889e-01 σr = 1.6542e-01 σr = 6.6611e-01 σr = 2.0525e-01

Irregular
with hanging nodes

Regular Concave Star
Irregular

with hanging nodes
Irregular

NE = 9, `E = 3 NE = 10, `E = 4 NE = 11, `E = 4 NE = 12, `E = 5 NE = 13, `E = 5 NE = 14, `E = 6
σr = 2.4452e-01 σr = 5.8778e-01 σr = 1.1917e-01 σr = 1.0911e-01 σr = 1.5378e-01 σr = 4.8291e-02

Regular
Irregular

with hanging nodes
Concave

Irregular
with a collapsing edge

Regular Star

NE = 15, `E = 6 NE = 16, `E = 7 NE = 17, `E = 7 NE = 18, `E = 8 NE = 19, `E = 9 NE = 20, `E = 10
σr = 4.0674e-01 σr = 1.3047e-04 σr = 1.1031e-02 σr = 2.3334e-02 σr = 3.2470e-01 σr = 3.6314e-02

Table 1: σr of the elemental stiffness matrices related to different kinds of
polygons.

In the first test, we consider a set of different polygons, with different
geometrical features, such as concavities, symmetries, and aligned edges.
For each polygon, choosing `E according to Theorem 1, we asses the local
stability of the discrete diffusion operator (4) (K = 1, β = 0, and γ = 0),
evaluating the second smallest singular value of the stiffness matrix denoted
by σr. The results, reported in Table 1, confirm the stability of the method
and good robustness with respect to the geometrical complexity being σr
always well detached from zero (the smallest singular value of the stiffness
matrix is always vanishing).

In the second test, we compare the stabilization-free Virtual Element
Method (SFVEM in short) with the standard VEM with the dofi-dofi stabi-
lization term (VEM in short) [1] by plotting the relative errors e0 and e1 (5),
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(a) (b) (c)

Figure 1: Meshes used in the numerical experiments. Left: Distorted
squared mesh. Center: Distorted Voronoi mesh. Right: Highly-distorted
Voronoi mesh.

and computing their rates of convergence on three families of distorted and
highly-distorted meshes. The fourth refinement of each family of meshes is
shown in Figure 1. In order to show the advantages of SFVEM with re-
spect to the standard VEM, as suggested in [5], we consider an anisotropic
diffusion tensor K. Let Ω be the unit square, we consider the advection-
diffusion-reaction problem (1) with coefficients

K = G

[
1 0
0 1.0e-09

]
GT , G =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, β(x, y) =

[
β1(x, y)
β2(x, y)

]
,

and γ(x, y) = x(1− x)y(1− y), where G is the Givens rotation matrix with
θ ∈ R. For R1, R2 ∈ [0, 1], we define [3]

β1(x, y;R1) = 250000x4y3(R1 − x)(1− x)4[
4R2

(
1− 5y + 9y2 − 7y3 + 2y4

)
− 5y + 24y2 − 42y3 + 32y4 − 9y5

]
,

β2(x, y;R2) = −β1(y, x;R2),

and we fix R1 = 0.9, R2 = 0.3 and θ = π
6 . We choose f(x, y) in such a way

the exact solution is u(x, y) = β1(x, y).
In Figure 2, we plot the convergence curves of errors e0 and e1 (5) and

the ratio between their values for VEM and SFVEM (right axis of each
figure). The legends report the rates of convergence of the errors (α0 and α1,
respectively). The performances of the two methods are almost equivalent
concerning the e1 error, see Figures 2(d)-2(f). Whereas in Figures 2(a)-2(c)
SFVEM easily reaches the asymptotic rates of convergence on all the meshes
and displays a smaller e0 error, whereas VEM is still in a pre-asymptotic
regime on highly-distorted Voronoi meshes and displays an error between
two and three times w.r.t. SFVEM.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Behaviour of errors e0 and e1 (5) w.r.t. h. Left: Distorted squared
mesh. Center: Distorted Voronoi mesh. Right: Highly-distorted Voronoi
mesh.
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5 Conclusion

We propose a new first-order stabilization-free VEM that exploits projec-
tions on harmonic polynomials to build a self-stabilized bilinear form. Nu-
merical results show good stability of the method and optimal rates of con-
vergence.
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