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ABSTRACT

Motivated by the recent discovery of a dispersive-to-nondispersive transition for linear waves in shear flows, we accurately explored the
wavenumber-Reynolds number parameter map of the plane Poiseuille flow in the limit of least-damped waves. We have discovered the exis-
tence of regions of the map where the dispersion and propagation features vary significantly from their surroundings. These regions are
nested in the dispersive, low-wavenumber part of the map. This complex dispersion scenario demonstrates the existence of linear dispersive
focusing in wave envelopes evolving out of an initial, spatially localized, three-dimensional perturbation. An asymptotic wave packet’s repre-
sentation, based on the saddle-point method, allows to enlighten the nature of the packet’s morphology, in particular, the arrow-shaped
structure and spatial spreading rates. A correlation is also highlighted between the regions of largest dispersive focusing and the regions
which are most subject to strong nonlinear coupling in observations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037825

I. INTRODUCTION

Dispersion is a fundamental property of traveling waves, and its
terminology stems from types of solutions rather than types of govern-
ing equations, as well explained in the 1974 monography by
Whitham1 dedicated both to linear and nonlinear waves. It is com-
monplace to talk about dispersive equations: well-known examples of
linear and nonlinear dispersive partial differential equations are the
Airy, Euler–Bernoulli beam, Klein–Gordon, Schr€odinger, Korteweg–
de Vries, and Boussinesq equations. The reader can find general infor-
mation in Refs. 2–4.

Dispersive wave focusing, i.e., the time-space localization of
wave-train energy, is frequently encountered in physical sciences in
very diversified areas. This mechanism relies on the phase modulation
of perturbation wave-trains and produces regions in which disturban-
ces can “focus” and reach finite amplitudes. Mention can be made of
two examples: surface waves on water of finite depth, where dispersive
focusing was suggested as a giant wave generation mechanism,5–9 and
wave-guides in integrated optical circuits.10 In particular, in the field of
water surface waves, the new knowledge of propagation pairing of
long waves with short waves, and the interplay of their angle of incli-
nation, introduces a new interpretation tool into the analysis of both

linear and nonlinear wave interactions. This dynamical aspect has not
been considered in great detail in the study of turbulence transition.
To date, dispersive focusing has not yet been reported in the field of
perturbation waves traveling in nonstratified bounded flows within the
framework of the Navier–Stokes equations.

In these flows, propagating waves are at the root of fluid flow insta-
bility and transition to turbulence. In particular, the growth of wave
packets or localized spots is of great interest in the subcritical route to
turbulence, also known as bypass transition.11 In the past literature, the
propagation and dispersion features of such internal waves have attracted
less attention than the transient mechanisms responsible for their poten-
tial amplification, a process which was hitherto considered as the cause
of transition to turbulence and, in the last few decades, has been framed
within theories based on non-normal growth (see, e.g., Refs. 12 and 13).

In the past, many authors have devoted attention to such pertur-
bation waves in shear flows, while no accurate characterization of their
dispersion properties has been conducted so far. Linear and nonlinear
wave dispersive focusing may be a potential agent of the catastrophic
transition to turbulence observed for larger Reynolds numbers than
the transitional thresholds beyond which uniform turbulence is
observed, instead of the coexistence of laminar and turbulent patches.
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In fact, the morphology of wave packets in shear flows has been
mainly described through information concerning the global structure,
deduced either from laboratory experiments14–21 or from
Navier–Stokes direct numerical simulations (DNSs),22–24 where it is
not easy to pick out the dynamics of the individual wave component.

The present study deals with a recently discovered instance of the
complexity of dispersion properties for linear waves traveling within
viscous, incompressible fluid flows governed by the Navier–Stokes
equations under linearized dynamics. We intend to show that this
uneven scenario in wave dispersion features allows to gather signifi-
cant information about the morphology and propagation of localized,
three-dimensional (3D) disturbances in bounded flows. In particular,
the system we consider is the planar Poiseuille flow (PPF) between
two infinitely long, parallel plates at a fixed distance 2h apart, as
sketched in Fig. 1. This flow is driven by a pressure gradient in the
flow direction and is retarded by viscous drag along both plates, so
that these forces are balanced.

Previously, we demonstrated the existence of a sharp dispersive-
to-nondispersive transition in PPF and wake flows for (normalized)
wave number values near unity.25–27 This was done by numerically
computing the long-term dispersion relation of the Orr–Sommerfeld
(OS) and Squire eigenvalue problem28,29 within a four-decade range of
the Reynolds number (R) and a three-decade range of wavenumbers
(k). Here, a detailed computation has been carried out for the phase
velocity and the local group velocity of least-damped OS modes,
extending the previous analyses in the limit of small wavenumbers.
We adopt the generalization of the concept of the group velocity given
by Whitham1 for wave packets in purely dispersive homogeneous
media to the case of dispersive and dissipative media.30–32

We will first present newly discovered properties of wave dispersion
in PPF. These features appear as transitions of the dispersion nature of
the least-damped OS mode in the R� k map (hereinafter also referred
to as dispersion map). In particular, we show the existence of several
regions in the small-wavenumber portion of this map where wave dis-
persion characteristics change significantly from the surroundings, and
the nature of the least-damped OSmode changes as well.

Then, we show that this picture produces linear dispersive focus-
ing. In fact, when a wave packet is assembled via superposition of
monochromatic waves ranging from the smallest to the largest wave-
number considered here, both the following occur, that is, components
having similar wavenumbers can propagate with different speeds,
which yields dispersion, and, on the other hand, waves with distinct
wavelength can show very similar propagation features. Via a simple
propagation scheme,33 we highlight the existence of multiple loci for
dispersive focusing in the physical space where the packet propagates.
Since dispersive effects are known to play a leading role in pattern for-
mation and wave dynamics (see, e.g., Ref. 34), this new propagation
scenario can help to understand the morphology of perturbation clus-
ters and wave packets, at least in their early evolution before nonlinear
effects occur, triggering secondary flow bifurcations that are not pre-
dicted by the linear approach. In fact, we show that the described
focusing explains the major features of the morphology and propaga-
tion of localized, 3D disturbances (or spots) in channel flows, such as
the arrow-shaped structure, the leading streaks, and the trailing waves
at the spot’s wingtips. The comparison of our results with laboratory
experiments also suggests that wave focusing in the early linear phase
may play an important role in the onset of nonlinear coupling and
consequent transition to turbulence in shear flows. This topic will
need to be further investigated in a future study.

The paper is organized as follows. In Sec. II, we recall the physical
problem and the mathematical model. The results concerning the dis-
persion relation of PPF are discussed in Sec. III. The unsteady evolu-
tion of localized wave packets and their asymptotic representation are
presented in Sec. IV, and conclusions are drawn in Sec. V. Appendix is
devoted to the technical details about our numerical simulations.

II. PHYSICAL PROBLEM AND MATHEMATICAL
FRAMEWORK

We consider the plane Poiseuille flow (PPF), where inertia and
molecular diffusion are the two only players. Figure 1 presents a longi-
tudinal cut of the channel and reports the coordinate system and the
reference quantities used for normalization. We consider as character-
istic length and velocity scales the half height of the channel h and the
centerline velocity UC, respectively. As we address incompressible
buoyancy-free flows, the governing equations are the Navier–Stokes
equations which read in dimensionless form

$ � u ¼ 0; (1)

Dtu ¼ �$pþ 1
RDu; (2)

where Dt ¼ @t þ ðu � $Þ denotes the material derivative and
R ¼ hUC=� is the Reynolds number with � the fluid kinematic vis-
cosity. No-slip boundary conditions are imposed at the walls (u ¼ 0 at
y ¼ 61). The parallel basic flow U ¼ UðyÞex consists of the well-
known parabolic profile of Poiseuille, stationary solution of Eqs. (1)
and (2),

UðyÞ ¼ 1� y2: (3)

The governing equations for a small perturbation, ~u ¼ u� U ; ~p
¼ p� P, are obtained by linearizing Eqs. (1) and (2) about the basic
flow (3),

$ � ~u ¼ 0; (4)

FIG. 1. Sketch of the plane Poiseuille flow, coordinate system, and 3D wave pertur-
bation. The reference velocity is the centerline velocity UC, and the reference length
is the half thickness of the channel, h. The Reynolds number is then R ¼ hUC=�,
where � is the kinematic viscosity of the fluid. The planar wavenumber vector and
the wave angle of the perturbation are respectively k ¼ aex þ bez and
/ ¼ tan�1ðb=aÞ.
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@t~u þ U � $~u þ ~u � $U ¼ �$~p þ 1
RD~u: (5)

We resort to both a modal and nonmodal approach in order to deter-
mine linear wave disturbances that are likely to grow over the
Poiseuille’s profile. Taking into account the streamwise and spanwise
homogeneity of the base flow (3), a general perturbation ~q ¼ ½~u; ~p�
¼ ½~u;~v; ~w; ~p� can be expressed as a Fourier integral,

~qðx; tÞ ¼
ðþ1
�1

q̂ðk; y; tÞeik�xdk; (6)

where k ¼ aex þ bez is the planar wavenumber vector of streamwise
and spanwise components, a and b, respectively. The wave angle is
defined as / ¼ tan�1ðb=aÞ (see Fig. 1).

We denote k the magnitude of the planar wavenumber vector
and this convention will be used throughout the paper. By using the
wall-normal velocity–vorticity formulation,35 the linearized nonmodal
equations in the wavenumber space read:

ð@t þ iaUÞð@2y � k2Þ � iaU 00 � 1
Rð@

2
y � k2Þ2

� �
v̂ ¼ 0; (7)

ð@t þ iaUÞ � 1
Rð@

2
y � k2Þ

� �
x̂y ¼ �ibU 0v̂; (8)

where ~v and ~xy are, respectively, the wall normal velocity and vorticity
and the prime symbol stands for a derivation with respect to the wall-
normal direction, y. The streamwise and spanwise velocity compo-
nents can be easily recovered a posteriori from v̂ and x̂y . The follow-
ing expressions are obtained from the continuity equation (4) and
from the definition of the velocity curl:

û ¼ i
k2

a@yv̂ � bx̂y
� �

; (9)

ŵ ¼ i
k2

b@yv̂ þ ax̂y
� �

: (10)

The boundary conditions associated with the linearized system [Eqs.
(7) and (8)] are homogeneous and correspond to the no-slip
condition:

v̂ð61Þ ¼ @yv̂ð61Þ ¼ x̂yð61Þ ¼ 0: (11)

These boundary conditions are exactly satisfied by the
Chandrasekhar–Reid functions used by our numerical method. Note
that different basic flow profiles, such as boundary layers, wakes, or
jets, may accept different boundary conditions (e.g., the exponential
decay can be imposed at jyj ! 1). The Fourier representation of Eq.
(6) implies periodic boundary conditions at the x and z axes. In our
numerical simulations described below, the domain is large enough to
prevent boundary effects on the solution.

III. LONG-TERM ASYMPTOTICS OF SMALL-AMPLITUDE
WAVES
A. Modal analysis approach

The long-term asymptotic limit (t !1) is obtained by impos-
ing to Eqs. (7) and (8) the harmonic structure for the perturbations,
i.e., @t ! �ir, where rðk;RÞ ¼ rrðk;RÞ þ iriðk;RÞ is a complex
OS eigenvalue, defining the dispersion relation for the corresponding

eigenmode. Let us recall that for bounded flows, the OS spectrum has
infinitely many discrete eigenvalues. The dispersion relation
rðk;RÞ � xðk;RÞ ¼ xr þ ixi is computed by solving numerically
the eigenvalue problem associated with Eqs. (7) and (8). We adopt a
fifth-order accurate Gal€erkin method based on Chandrasekhar–Reid
functions,36 described in detail in Refs. 25 and 27. The modal analysis
approach yields the complex angular frequency whose real part xr

allows to define the phase velocity

c � xr

k
ek; (12)

where ek ¼ cos ð/Þex þ sin ð/Þez stands for the direction cosine of
planar wavenumber vector k. The real group velocity is computed via
numerical derivative from the kinematic definition

vg � $kxr ; (13)

where ð$kÞi � @=@ki is the gradient in the wavenumber space. The
corresponding imaginary part $kxi was also computed, and the dis-
cussion on its role will be resumed later in Sec. IV. A dispersion factor,
f d , can be defined as the difference between the group and the phase
speeds

f dðkÞ � vgðkÞ � cðkÞ: (14)

In general, for a linear dispersion relation, the group velocity vg coin-
cides with the phase velocity c and a wave envelope with the central
wavenumber k is said to be nondispersive. In this case, f d ¼ 0. For
quadratic dispersion relations instead, f dðkÞ represents exactly the
directional spreading rate of the wave envelope. In the general case
of higher order nonlinear dispersion relations, the wave packet
undergoes both a spatial spreading and a distortion, and jf dj is an
increasing function of these processes. In the following, the sign of
f d will be kept in order to retain information about whether the
packet travels faster (f d > 0) or slower (f d < 0) with respect to the
central wavenumber.

B. Dispersion maps

We focus on the dispersion relation of least-damped OS mode,
i.e., the mode that experiences the largest exponential growth. These
results will be used in Sec. IV to model the asymptotic dynamics of
wave packets in the PPF. Results are presented in Fig. 2. The three
panels in Fig. 2 show the magnitude of the phase velocity c (a), the
group velocity vg (b), and the dispersion factor fd (c), respectively, for
longitudinal waves (/ ¼ 0) seen in their long-term evolution. In
the maps shown in Fig. 2, the longitudinal wavenumber (k � a) and
the Reynolds number are uniformly distributed in the log-space, over
a grid of 100� 240 points, respectively, with R 2 ½10; 105� and
k 2 ½10�2; 10�.

The existence of several sub-regions is highlighted in Fig. 2
(labeled with letters A to F). The net separation between such regions
is due to the change of identity of the leading OS mode. Note that the
boundary of each sub-region has been enhanced for the clarity of visu-
alization. In panel (a), the smallest Reynolds number for which a sub-
region is found is also reported.

A first observation is the sharp separation between the fast non-
dispersive waves of sub-region A (c � vg � 1 for k > kd) and the
slow dispersive waves of sub-region B (k < kd), which ends up near
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the nose atREðkÞ � 87:6 and a � 2:5. We name the threshold wave-
number kdðRÞ (white curve). As mentioned in Sec. I, the existence of
sub-region A was first shown in our previous studies.25,26

Interestingly, the map in the neighborhood of R � 87:6 and a ¼ 2:5
is characterized by a high level of dispersion, as can be deduced from
fd in panel (c). The upper boundaries of the two-dimensional mono-
tonic stability regions for the kinetic energy and the enstrophy of per-
turbation waves are reported in Fig. 2 with the pink curvesREðkÞ and
RXðkÞ, respectively. The meaning of these thresholds is that transient
growths of energy/enstrophy are only possible for larger R than the
respective limit value, whatever initial condition is specified in the
initial-value problem.13,37 The analytical derivation of the enstrophy
curve can be found in the work of Fraternale et al.26 The white shad-
owed region in Fig. 2 denotes the well-known unconditional instability
region, F. Here, the dominant OS eigenvalue is characterized by
ri > 0. This region is located in the dispersive part of the graph, just
below the curve kdðRÞ, forR > 5772:22.38

A remarkable finding is the existence of the three sub-regions C,
D, and E, which have different dispersion features from their sur-
roundings and are located in the dispersive, lower part of the map at
R > 576. These regions appear tilted at 45� in the log –log plane. It
should be noted that the f ¼ f ½log ðkRÞ� trend is recurrent for low
wavenumbers in all types of stability maps, not only as regards the
monotonic boundaries mentioned previously and the asymptotic
phase velocity, but also pertaining to the maximal transient growth of
kinetic energy and enstrophy (see also Fig. 8 in Appendix). Thus, look-
ing at the map from small to large wavenumbers under fixed flow con-
ditions, that is at constant R, least-damped modes can be observed
across a number of fluctuations of the dispersion and propagation
properties. As a consequence, waves with distant wavelengths can
have the same group speed value, producing a linear dispersive focus-
ing, which may significantly change asR varies.

In detail, sub-region C is found at R > 545 and k<0.28. It con-
tains anti-symmetric wall-modes (A-family, but close to S-family
modes, according to the classification made by Mack39) having inter-
mediate phase speed c � 0:7, pretty much equal to the group velocity
vg. Then, the dispersion level in C is low and lower than that of the
surrounding part of the map. Sub-region D is met at R > 9770 and
k<0.13; thus, it lies below the unconditional instability region F. Here,
the identity of the eigenmodes is the same as in sub-region C.
However, these solutions travel with a smaller phase speed, c � 0:45,
which slightly depends on the wavenumber k, leading to high disper-
sion for wave packets containing this range of wavenumbers. In partic-
ular, the group speed (vg � 0:35) is higher compared to the
background region [see Fig. 2(b)] and smaller than the phase speed c
[see panel (c)]. The third sub-region (E) is met at R > 29 840 and
k<0.35. In this case, the least-damped mode belongs to the right
branch of the spectrum (P-family); it is an anti-symmetric, fast
(c � 1), and central mode. Therefore, the behavior in this region is
quite the same as in the nondispersive part of the map at k > kd (sub-
region A). A common feature to all the three sub-regions is that they
are the only parts of the map where the leading mode (stable, in all
cases) is anti-symmetric. In the case of oblique waves (/ 6¼ 0), we
recall that the dispersion relation of the least-damped mode can be
deduced from the longitudinal case described in Fig. 2 via the Squire’s
transformation29

FIG. 2. Dispersion relation of the least-damped mode of longitudinal waves in PPF,
R 2 ½10; 105� and k 2 ½10�2; 10�. The maps contain 100� 240 (R; k) simula-
tions, uniformly distributed in the log –log space. (a) Phase velocity, c. (b) Group
velocity, vg. (c) Dispersion factor, fd ¼ vg � c. kd is a dispersion threshold25 that
bounds the nondispersive sub-region A. The pink curves, REðkÞ;RXðkÞ, repre-
sent the lower bounds for kinetic energy and enstrophy transient growth, respec-
tively.26 In the low-k part of the maps, three sub-regions C, D, E, have different
dispersion properties than the surroundings (B). Sub-region F represents the
asymptotic instability region.
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x3Dðk;RÞ ¼ x2D k; a=kRð Þ: (15)

Thus, with increasing /, the map structure remains unchanged, apart
from a shift toward higher R, in the log –log plot (this of course does
not apply to the curves RE;RX). Concurrently, both the phase veloc-
ity and the group velocity decrease by a factor equal to cos ð/Þ, and
eventually the phase speed of an oblique wave with wavenumber k
reads

c3Dðk;RÞ ¼ c2D jkj;R cos/ð Þcos/: (16)

IV. WAVE PACKET ASYMPTOTIC REPRESENTATION

The dispersion relation xðk;RÞ described in Sec. III can be used
to obtain an approximate asymptotic representation of a local impul-
sive disturbance. A wave packet can be formally represented by means
of the following Fourier integral:

~qðx; tÞ ¼
ðþ1
�1

q̂ðkÞeihðk;x;tÞdk; (17)

where ~q is any relevant physical quantity and hðk; x; tÞ � k � x
�xðkÞt represents the phase. Let us consider the Taylor series
expansion of the dispersion relation around an arbitrary wavenum-
ber k0,

xðkÞ ¼ xðk0Þ þ $kxjk0 � ðk � k0Þ
þðk � k0ÞTHxjk0ðk � k0Þ þ Oðjjk � k0jj3Þ; (18)

where ðHxÞij � @2x
@ki@kj

is the Hessian matrix. By truncating the series at

the linear term, Eq. (17) becomes

~qðx; tÞ � eik0�x�ixðk0Þt
ðþ1
�1

q̂ðkÞeiðk�k0Þ�ðx�rkxjk0 tÞdk; (19)

where the first factor indicates a monochromatic wave developing in
time, according to exp ½xiðk0Þt�, and moving with a phase
speed c0 ¼ xrðk0Þ=jjk0jj ek , while the second factor represents the
wave packet envelope near k0 that travels with the group speed
vg ¼ rkxr jk0 and dissipates energy in the fluid medium depending
on rkxijk0 , as recently discussed by Gerasik and Stastna.32 Since the
viscosity plays a dual role in our system, being the cause of both the
flow instability and the damping, it would be interesting to extend to
our context the analysis of Ref. 32, including both the dissipation out-
flux and the molecular diffusive process in the interpretation of the
complex group speed. The interpretation by Muschietti and Dum,30

where $kxi is related to the differential damping among the Fourier
components and thus to the slow drift of the central wave number
along the packet trajectory, is also very important in our view and can
be considered complementary to that of Ref. 32. Equation (19) helps
to understand the concept of energy-carrier wave and the role of the
group velocity, but it is no longer useful to describe the dispersion phe-
nomenology which can lead to a distortion of the initial envelope
shape. Looking for the asymptotic form (large t with x=t of order
unity), the steepest-descent method (also referred to as the saddle-
point method)40,41 leads to the following expression:

~qðx; tÞ � q̂ðjÞ 2p
t

� �n
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jdetðHxðjÞÞj

s

� ei j�x�xðjÞt�p
4sign detðHxÞ½ �f g

¼ Aðx; tÞeivðx;tÞ; (20)

where n is the space dimension (n¼ 2 in the case of planar waves) and
j is the specific wavenumber which makes the phase h of the integral
(17) stationary

j : $khðjÞ � x � $kxðjÞt ¼ 0; (21)

) x=t ¼ $kxrðjÞ � vg
0 ¼ $kxiðjÞ:

	
(22)

The 1
2 exponent at the second and third factors in Eq. (20) is related to

the first nonzero term in the expansion (18), which here is assumed to
be the term including second derivatives. If Eq. (21) has solutions
jðx; tÞ, this means that a specific wavenumber, j, dominates the
packet in the physical space defined by Eq. (22). In particular, the dis-
turbance is a space- and time-dependent wave packet, whose local fre-
quency is xrðjÞ at the space location x and time instant t. In the
general case of complex-valued dispersion relation, the disturbance
experiences a transient growth or damping, which is given by the
factor exp ½xiðjÞt�, in addition to the amplitude factor Aðx; tÞ of
Eq. (20). Note that early applications of this method to the field of
hydrodynamics for shear flows are found, e.g., in Refs. 33 and 42–44.
Indeed, for homogeneous media, the theory of wave groups with
slowly varying properties leads to the conservation of wavenumbers
and wave angles along straight lines in the x � t plane. Differently
than in the previous studies, we will not use analytic models of the dis-
persion relation. Instead, we use the exact results shown in Sec. III, as
described below.

Results from the implementation of the saddle-point method in
PPF are shown in Figs. 3, 4(a), and 4(b) (Multimedia view) for
R ¼ 1000 and in Fig. 6 forR ¼ 500; 1000; 2000; and 4000. As shown
in Sec. III, the group velocity of the least-damped wall-normal velocity
mode is computed from the exact dispersion relation of 3D waves.
These figures show the long-term space distribution, in the x–z plane,
of a wave packet initially localized at the origin (x ¼ z ¼ 0). The coor-
dinates of Figs. 4 and 6 are normalized over time, so that they repre-
sent the group velocity. Therefore, the spreading rates can be directly
inferred from the figures. For eachR, the wave packet is made of a dis-
crete number of vector wavenumbers, Nw¼ 57 600. In particular, we
set a uniform grid for both the streamwise and the spanwise wave-
number components, a 2 ½10�2; 10�; b 2 ½�5; 5�, and the grid spac-
ing is Da ¼ Db ¼ 0:0417. For each vector wavenumber, the least
stable OS mode is computed and then propagated according to Eq.
(22). Therefore, each point in our figures represents an individual
wave component. The corresponding wavenumber and wave angle are
color-coded.

Figure 3 shows the imaginary part of the group velocity. Due to
the limited differential damping among the OS leading modes, the
normalized components of the imaginary part of the group velocity
are small. For instance, atR ¼ 1000, the x-component is in the range
(�0.03, 0.08) for about 95% of the wavenumbers considered in this
study, while the z-component is within (�0.03, 0.03) (see Fig. 3).
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Therefore, since $kxrðjÞ=$kxiðjÞ 	 1, the second condition in
Eq. (22) is found to be approximately satisfied by most of
wavenumbers.

Figure 4 shows the asymptotic shape of the wave packet and
compares it to both a numerical simulation of the linearized initial
value problem and to a laboratory experiment. Specifically, panel (a)
in Fig. 4 shows the results from Eq. (22) in terms of the wavenumber
magnitude, while panel (b) displays the wave angle. The unsteady lin-
ear evolution of a 3D localized wave packet in PPF is investigated by
integrating the linearized Navier–Stokes equations [Eqs. (7) and (8)]
via our semi-analytic code based of Fourier and Chandrasekhar func-
tions (see Appendix for further details). We should mention that for
an extension of our analysis to weakly nonparallel flows, alternate sta-
bility analysis methods should be considered, such as the Parabolized
Stability Equations (PSE) or the Wentzel–Kramers–Brillouin–Jeffreys
(WBKJ), or (bi- and tri-)global stability methods in general (e.g., see
Refs. 45–47).

Results of our numerical simulation at R ¼ 1000 are shown in
panel (c). Here, we choose as initial condition a localized (at
x ¼ z ¼ 0) wall-normal velocity disturbance with a Gaussian distribu-
tion in the x–z plane. The initial distribution along the y axis is such to
guarantee a large energy growth rate. Technical details concerning
simulation parameters are reported in Appendix. In panel (d), we
reproduce Fig. 5 of the well-known laboratory experiment carried out
by Carlson et al.15 in 1982, showing a developed spot where turbulence
and waves coexist. Note that this visualization has been accurately
scaled in order to allow comparison with our simulation. To achieve
this, information from Fig. 11 in Ref. 15 has also been used. In terms
of normalized time, the experiment visualization is at t¼ 180. The
choice of t¼ 120 for the simulation of panel (c) is essentially related to
the fact that it is an intermediate state (intermediate asymptotics, see
1996 Barenblatt monography48) between the early transient—the short
period when the morphology changes very rapidly—and the long
term, when the linear packet has decayed. This time may depend on
the flow parameters and initial conditions. At t¼ 120, the packet’s
propagation properties are nearly asymptotic, as shown in panels (a)
and (d) of Fig. 9, which allows the comparison with the asymptotic
representation. Note also that the maximal energy and enstrophy gain
is reached at t � 20 (tdim � 0:2 s), as shown in panels (e) and (f), of
Fig. 9, so that the linear solution decays at large times. The comparison
with experiments is meaningful only in the early/intermediate stage of
these structures. Although in the experiment the spot at t � 120 has

already developed the turbulent core, it is interesting to look at the
laminar wave regions surrounding the core. A first observation is
that most of the typical features of the 3D wave packet are recov-
ered by the representation of panels (a) and (b): the arrow pattern
of the spot is made up of a slower almond-shaped rear part, a faster
front, and a streaky tongue connecting these two regions. We high-
light that a remarkable quantitative agreement is achieved between
dominant wavenumbers and wave angles obtained from the asymp-
totic representation and those observed in the laminar wave patches
of real spots. Typical vector wavenumbers for both the simulation
and the laboratory experiment are reported in panels (c) and (d) of
Fig. 4. The bulb-shaped front is difficult to observe in a laboratory
because its wave components are highly damped. However, the
nature of these nondispersive modes makes them relevant from the
enstrophy viewpoint, as we have recently shown26 (see also Ref. 49
in the context of pipe flows). The core of the wave packet can be
recognized as the rhomboid-shaped region at 0:35� x=t � 0:5.
Note that in panel (a) the color bar is set so that the nondispersive
components k > kd � 2 and the inner rhomboid part are
highlighted. This pattern is typical of both the early- and the self-
sustained evolution of the spot’s life (see, for instance, Fig. 4 in
Refs.18 and 19, and Fig. 15 in Ref. 20).

Wave focusing can be measured by evaluating the concentration
of wave components at specific locations in the x–z plane of the physi-
cal space. In practice, we discretize the x–z plane in 64� 32 bins and
compute the normalized histogram

qwðxj; zjÞ �
nðxj; zjÞ
Nw

; (23)

where nðxj; zjÞ represents the number of waves in the jth bin, centered
at (xj, zj), and Nw¼ 57 600 denotes the total number of waves used in
the asymptotic representation. Therefore, qw represents the probability
of finding—at a specific spatial location and in the long term—a wave
component from the initial packet. Results are shown in Fig. 5 for the
same parameters used in Fig. 4(c). It should be reminded that qw is
derived from the asymptotic model in the modal-stability framework.
Therefore, it represents the probability of finding—at a specific space
location—a wave component from the initial packet in the long-term
limit. As discussed previously, it approximately represents the wave
distribution in the intermediate transient. In the very short early stage,
its distribution can be different and rapidly changing from the initial
state where all waves are focused in the origin. It would be interesting

FIG. 3. Gradient of the imaginary part of the
dispersion relation for the least damped OS
mode for PPF at R ¼ 1000. Visualization in
terms of wavenumber (left panel) and wave
angle (right panel).
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to investigate the time dependence of qw. This requires the computa-
tion of time-dependent dispersion relations in the framework of the
nonmodal stability analysis. This task is delicate because in the early
transient the phase speeds may experience rapid fluctuations,25 and
will be postponed to a future study. Interestingly, we observe a large
wave concentration in the front and at the wingtips of the inner
rhomboid-shaped region.

At the wingtips, the wave components are quite oblique with
angles around 75�. These waves are the most algebraically unstable,
that is, they experience the largest growth in transient kinetic energy
and enstrophy in the intermediate term. Moreover, as shown here,

wave focusing is significant at the wingtips. This is consistent with the
experimental observation that the transition to turbulence is first trig-
gered at the wingtips.15 Waves at the spot’s leading edge are more obli-
que, nearly orthogonal to the basic flow (/ � 85�).

The green circle in panel (a) of Fig. 4 highlights the focusing
between short nondispersive wave components with k � 2 and a few
long, nondispersive, waves belonging to region C of the dispersion
maps of Fig. 2. These long waves appear as white dots concentrated at
the centerline where x=t � 0:7. Together with the highly focused short
waves of the wave packet front, these long modes may play a role in
the generation of the intense and long-lasting shear layer that connects
the front of the wave packet to its core, the so-called “permanent scar”
observed by Landhal.50,51 Other focusing loci are indicated with yellow
circles in the same panel [see Fig. 4(a)].

The asymptotic spreading rates can be directly inferred from
the propagation scheme shown in Figs. 4(a) and 4(b). The lines that
connect the origin to the point of maximum spreading (white line)
for the entire packet and (red line) for the inner rhomboid-shaped
region can be observed. These lines define the spreading half-angle
wspread. Figure 6 shows the Reynolds number effect on the asymp-
totic shape of wave packets, such as that presented in Figs. 4(a) and
4(b). As R increases, an increment of the spreading angle wspread is
found to be related to the concomitant narrowing and slowing of
the wave packet core as R increases, which results in an elongation
of the arrow-shaped structure. Calculated values of wspread agree
well with laboratory observations, as evidenced by the comparison
with Fig. 4(d). Streamwise spreading in the simulation is computed
by searching for the portion of domain that contains 95% of the
energy. The boundaries of this region are named xrear and xfront,
respectively. In particular, for a generic quantity ~q, they are defined
as the location of the 2.5th and 97.5th percentiles of the xy-reduced
squared variable

xrear;frontðtÞ :

ðx%
�1
h~q2izdx ¼ C

ð1
�1
h~q2izdx; (24)

where h~qizðt; x; yÞ ¼ Lz�1
Ð

~qdz (Lz is the domain size in the span-
wise direction), C¼ 0.25 and 0.975 for the rear and front, respec-
tively. Analogous metrics are defined in detail in Appendix, and a
detailed review of these specific spatial features corresponding to
our simulations [see Fig. 4(c)] is reported in Table I and in Fig. 9 of
Appendix. A review of literature experiments is given in Table II.
Here, the values are either explicitly stated by the authors or
extracted from visualizations. Most of them refer to turbulent/
laminar interfaces. It can be observed that the rear of the inner

FIG. 4. Wave packet long-term propagation scheme, numerical simulation, and
laboratory visualization at R ¼ 1000. (a) Wavenumber propagation. The regions of
most intense wave focusing are highlighted with yellow and green circles. (b) Wave
angle propagation. (c) Numerical simulation of the linearized initial-value problem
[Eqs. (7) and (8), see also Appendix] for an initial Gaussian disturbance. Two visu-
alization movies are available (Multimedia view). (d) Laboratory visualization
adapted from Fig. 5 of D. R. Carlson, S. E. Widnall, and M. F. Peeters, “A flow-visu-
alization study of transition in plane Poiseuille flow,” J. Fluid Mech. 121, 487–505
(1982). Copyright 1982 Cambridge University Press. Here, the axes have been nor-
malized with tdim ¼ 1:7 s derived from information in Fig. 11 of the same study and
rescaled to match the other panels.

FIG. 5. Wave focusing, shown via the normalized histogram of wave components,
see Eq. (23), for the wave packet asymptotic representation of Figs. 4(a) and 4(b),
R ¼ 1000.
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turbulent region corresponds to the center of our linear spots and
that it moves at a speed nearly equal to one half of the centerline
channel speed. The spot front moves faster, with a speed of about
0.7–0.8UC that is almost equal to the values found for xfront in the
linear spots. The lateral spreading rates we observe compare well
with the values obtained from experiments that lie in the range
(0.06, 0.12), while zspread is somewhere between 0.06 and 0.12,
depending on which field component is considered. If the kinetic
energy or the enstrophy is considered for this computation, the
spreading half-angle is about 10�. This value is also close to that
measured from the turbulent core of laboratory spots.

V. CONCLUSIONS

We have shown the existence of linear dispersive wave focusing
inside one of the archetypal Navier–Stokes incompressible shear flows,
the plane Poiseuille flow (unstratified and in the absence of a back-
ground rotation). This was done by investigating the dispersion rela-
tion of least-damped, small-amplitude perturbation waves in this flow
for a three-decade range of wavenumbers and a four-decade range of
Reynolds numbers.

Looking at the dispersion map in the limit of least-damped
waves, we have shown the existence of several sub-regions with
remarkably variable levels of dispersion across the parameters
space. This particular scenario yields dispersive focusing. We have
deduced a propagation scheme based on the saddle point asymp-
totic approximation and by using the directional distribution of the
numerically computed asymptotic group velocity. This model has
proved to recover the morphology and propagation properties of
wave packets under linearized dynamics. We also highlight that
several of the propagation features shown here are also observed in
laboratory experiments and in direct numerical simulations, where
transition to turbulence can occur for Reynolds numbers above the
global stability threshold, and laminar flow coexists with turbulent
patches. In particular, the analysis suggests a correlation between
the rhomboid-shaped region in our model, where focusing is high,
and the region where strong nonlinear coupling is more likely to be
triggered in the real system. In other dynamical contexts, in partic-
ular that of surface water waves, the propagation pairing between
long and short waves and the mutual influence of their angle of

FIG. 6. Asymptotic wave packet representation: Reynolds number effect. The propagation of the wavenumber magnitude (left) and the wave angle (right) are shown for R ¼
½500; 1000; 2000; 4000� (top to bottom).

TABLE I. Spreading rates at R ¼ 1000 obtained as the time average for
t 2 ½15; 35�. The spreading rates of the field components are computed at a fixed
distance from the wall, y ¼ �0:6, while the kinetic energy and the enstrophy are y-
averaged.

R ¼ 1000

~u ~v ~w hEiy ~xx ~xy ~xz hXiy
xG 0.51 0.45 0.50 0.54 0.50 0.57 0.56 0.56
xrear 0.31 0.24 0.38 0.33 0.38 0.42 0.39 0.35
xfront 0.74 0.65 0.79 0.80 0.82 0.73 0.79 0.82
zspread 0.08 0.12 0.09 0.04 0.08 0.05 0.08 0.05
wspread 10.4� 17.4� 15.3� 10.1� 14.1� 8.50� 9.92� 10.3�
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inclination have led the way to a new understanding into the analy-
sis of both linear and nonlinear wave interactions.

This dynamical aspect has not been considered in great detail in
the context of turbulence transition in shear flows. This likely occurred
because wavenumbers with values close to the region of the stability
map where unconditional instability takes place were predominantly
investigated. In the sub-critical transitional context, fully developed
turbulence and waves coexist, a scenario which goes beyond the so-
called wave-turbulence. The dispersive focusing in the wave packet’s
early evolution, shown in this study, leads to the conjecture that this
phenomenon may play an important role in promoting nonlinear
wave interaction and in the consequent transition to turbulence, a con-
jecture that opens up a new investigation perspective for the context of
nonlinear dispersive focusing of perturbation waves in shear flows.
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APPENDIX: NUMERICAL SIMULATIONS

1. Methods for the initial-value problem

Numerical simulations [see Fig. 4(c)] have been performed via
a MATLAB software, built to solve the three-dimensional, linear-
ized, incompressible Navier–Stokes equations in planar channel
flows. Initial perturbations of arbitrary shape can be specified. The
periodic boundary conditions in the x and z directions allow us to
use a Fourier spectral numerical method.

A pre-processing routine specifies the base flow and the simu-
lation parameters (the Reynolds number R, the domain size Lx and

Lz, the time and space discretization, and the initial conditions in
the physical space). In detail, we represent the solution for any per-
turbation variable ~q of a general, 3D, small perturbation as

~qðx; tÞ ¼ Re
1

ð2pÞ2
ð ð

aqðt; y; a; bÞeiaxþibzdadb
( )

; (A1)

where Re stands for the real part. It was convenient to separate vari-
ables and split aq into two factors

aqðt; y; a;bÞ ¼ q̂ðt; y; a; bÞf̂ ða;bÞ; (A2)

where q̂ is the complex-valued Fourier coefficient of an individual
wave [that is, the solution of the Orr–Sommerfeld/Squire initial-
value problem, Eqs. (7) and (8)]. The expression f̂ ða; bÞ gives the
distribution in the x–z plane, where we have set a Gaussian distribu-
tion of thickness tuned by the parameter c ¼ 0:1 in order to simu-
late a localized 3D impulsive disturbance. Further details on the
initial condition chosen for the simulation shown in the present
study are reported below in Subsection 2 of Appendix. Numerically,
the integral (A1) is discretized as

~qðx; y; z; tÞ ¼ Re
1

NxNz

XNx2 �1
j¼�Nx

2

XNz2 �1
k¼�Nz

2

aqðt; y; a; bÞeiajxþibkz

8><
>:

9>=
>;; (A3)

where Nx and Nz are the number of grid points and aj ¼ 2pj
NxDx

;
bi ¼ 2pi

NzDz
are the discrete streamwise and spanwise wavenumbers,

respectively. The temporal evolution of the individual wave compo-
nents is analytically described; therefore, the time grid can be arbi-
trary and has no effect on the accuracy of the computation. A fine
grid is needed for post-processing purposes only, such as movie vis-
ualizations or the computation of spreading rates. A summary of
the chosen simulation parameters for the linear spot of Fig. 4(c) is
reported in Table III.

The processing core is dedicated to the computation of the
temporal evolution of individual Fourier components. It is based on
a semi-analytical solution of the Orr–Sommerfeld and Squire
initial-value problem via the Gal€erkin method. Here, an eigenfunc-
tion expansion with Chandrasekhar–Reid functions36 is used to rep-
resent the solution in the wall normal direction y. A major issue

TABLE II. Spreading rates (normalized by the centerline velocity UC) of localized perturbations and turbulent spots from litera-
ture experiments on PPF. These values mostly refer to the turbulent/laminar interface of developed self-sustaining spots.
Here, the effect of the Reynolds numberR on the wave packet’s shape is shown in Fig. 6.

R xG xrear xfront zspread wturb

C-198215 1000 0.5 0.33 0.6 … 8�

A-198616 1100–2200 … 0.62–0.52 0.75–0.8 … 6�–12�

HA-198752 1200–3000 0.65 0.56 0.83 0.12 7�–15�

KA-199053 1600 0.65 0.55 0.7–0.85 0.09–0.2 8�

HK-199123 1500 0.64 0.55 0.70–0.8 0.08–0.12 8�–9�

K-199217 1600 0.65–0.7 0.55 0.82 0.06 6�–8�

LAW-201318 2000 0.66 0.54 0.84 … …
LAW-201318 3000 0.49 0.62 0.84 … …
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related to the OS–Squire initial value problem is the intrinsic high
sensitivity of the OS operator to numerical perturbations, specifically
at large R and wavenumbers.54 This may cause large inaccuracy in
the computation of the eigenvalues at the intersection of the
branches. Whilst the least-damped modes are much less affected by
such sensitivity, it can significantly affect the numerical solution dur-
ing the early/intermediate transient. In fact, it is intrinsically related
to the nonorthogonal nature of the eigenvectors. We prevent this
issue by using 300 modes in the expansion. The full description of
the method can be found in the supplementary material of Ref. 25
and in Appendix A of Ref. 27. This method has also been used in our
recent study on the wave enstrophy.26 Source codes are available at
https://areeweb.polito.it/ricerca/philofluid/software.html.

At a second stage, a dedicated routine performs the inverse
Fourier transform (FT) in order to obtain the perturbation velocity

and vorticity fields in the physical space. Post-processing routines
are used to compute the wave packet center and the spreading rates,
and to produce movies.

2. Initial perturbation for a localized 3D spot

According to the representation (A2), the coefficients of the
initial condition are

a0qðy; a;bÞ ¼ q̂0ðy; a; bÞf̂ ða;bÞ: (A4)

The velocity–vorticity formulation requires the initial wall-normal
velocity ~v0ðyÞ and the initial wall-normal vorticity ~x0

yðyÞ. Thus, we
specify

a0vðy; a; bÞ ¼ v̂0ðy; a;bÞf̂ ða; bÞ; (A5)

a0xy
ðy; a; bÞ ¼ x̂0

yðy; a; bÞf̂ ða;bÞ: (A6)

The coefficients of the initial streamwise and spanwise initial com-
ponents of velocity read

a0uðy; a; bÞ ¼ û0ðy; a; bÞf̂ ða;bÞ; (A7)

a0wðy; a;bÞ ¼ ŵ0ðy; a;bÞf̂ ða; bÞ; (A8)

and, due to the incompressibility condition and the definition of the
velocity curl, they can be derived a posteriori as follows:

û0ðy; a;bÞ ¼ i
k2

a@yv̂
0ðyÞ � bx̂0

yðyÞ
h i

; (A9)

a0wðyÞ ¼
i
k2

b@yv̂
0ðyÞ þ ax̂0

yðyÞ
h i

:: (A10)

The cross-shear velocity v̂0ðyÞ was chosen in order to guarantee a tran-
sient growth of the perturbation kinetic energy for any wavenumber
included in the packet (v̂0ðyÞ is shown in Fig. 7). The corresponding

TABLE III. Wave packet parameters for the simulation of Fig. 4(c) in the main text.
(x0, z0) is the initial spot’s location in x–z plane and c is the standard deviation of the
Gaussian function used as initial condition to simulate the localized 3D spot [see Eq.
(A11) for further details]. Lx � Ly � Lz is the dimensionless domain size, containing
Nx � Ny � Nz computational grid points. Tmax is the dimensionless final time and Dt
is the time step.

3D linear

x0 0
z0 0
c 0.1
R 1000
Lx 120
Ly 2
Lz 60
Nx 256
Ny 129
Nz 128
Tmax 120
Dt 0.3

FIG. 7. Initial optimal condition, y-
distribution. This figure is part of Fig. 8 in
Ref. 26, and it is reported here for the read-
er’s convenience. The optimization proce-
dure seeks the smooth perturbation which
maximizes the kinetic energy growth rate
E�1ðdE=dtÞ at fixed values of k and R,
while exciting both symmetric and anti-
symmetric Orr–Sommerfeld modes. Zero ini-
tial wall-normal vorticity is set.
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maximal growth for longitudinal waves is shown in Fig. 8. The evolu-
tion of this initial condition for individual waves and 2D wave packets
was previously investigated in Ref. 26. This initial velocity profile was
obtained from an optimization procedure that seeks the perturbation
that maximizes the kinetic energy growth rate E�1ðdE=dtÞ, at fixed
values of k and R. A similar optimization procedure has recently been
adopted in the nonmodal stability analysis of time-dependent jet flows
by Nastro et al.47 Such an initial condition excites both symmetric and
anti-symmetric Orr–Sommerfeld modes; it is smooth and has a
relatively simple shape. Zero initial wall-normal vorticity is set. The
resulting initial velocity field is a quadrupole of counter-rotating vorti-
ces. As discussed before, a Gaussian distribution was chosen for f(x, z).
This was done in order to represent a smooth, spatially localized per-
turbation (c ¼ 0:1, that is one tenth of the half thickness of the chan-
nel) having a similar distribution to disturbances usually introduced in
laboratory experiments (where dye is typically injected from a small
hole in the wall15,17,53) or numerical experiments:56

f ðx; zÞ ¼ 1

c
ffiffiffiffiffi
2p
p e� ðx�x0Þ

2þðz�z0Þ2½ �=2c2 ; (A11)

f̂ ða; bÞ ¼ Fff ðx; zÞg; (A12)

where F denotes the Fourier transform (FT). The online movie
movie_PPF_R_1000_V.avi (Multimedia view) shows the evolution
of the wall-normal perturbation velocity vðx; y ¼ 0:6; zÞ for the
linear spot shown in Fig. 4(c) (R ¼ 1000, with simulation parame-
ters as reported in Table III). The movie movie_waterfall_
PPF_Re1000_V.avi (Multimedia view) shows a pseudo-3D visuali-
zation of the wall-normal perturbation velocity for the same
simulation.

3. Wave packet spatial spreading rates

The wave packet energy centroid is computed for each squared
field component (at a fixed distance from the wall y0 ¼ �0:6) and
for the y-averaged kinetic energy and enstrophy. We use the follow-
ing notations for the averaging operations over y, z, and x (that is,
for xz-, xy-, and yz-reduced quantities, respectively)

h~qiyðt; x; zÞ ¼
1
Ly

ð
~qdy ;

h~qizðt; x; yÞ ¼
1
Lz

ð
~qdz ;

h~qixðt; y; zÞ ¼
1
Lx

ð
~qdx:

(A13)

The wave packet center of a generic field component ~q is then
defined as

xGðt; y0Þ ¼

ð
xh~q2izdxð
h~q2izdx

: (A14)

In particular, it can be defined with respect to the average kinetic energy
hEiy ¼ h~u2 þ ~v2 þ ~w2iy and enstrophy hXiy ¼ h~x2

x þ ~x2
y þ ~x2

ziy

xGðtÞ ¼

ð
hhEiyizxdxð
hhEiyizdx

; xGðtÞ ¼

ð
hhXiyizxdxð
hhXiyizdx

: (A15)

FIG. 8. Maximal kinetic energy and enstro-
phy achieved during the transient and
related time scales for longitudinal perturba-
tion waves (/ ¼ 0) in PPF given by the ini-
tial condition of Fig. 7. Panels (a) and (c)
show the wavenumber-Reynolds number
map of maximal transient growth reached
during the transient in terms of normalized
kinetic energy (E=E0) and enstrophy
(Z=Z0), respectively. The time instant corre-
sponding to the maximum energy/enstrophy
is shown in the right panels. Each map is
built from 3600 numerical simulations of the
Orr–Sommerfeld/Squire initial-value prob-
lem. The light blue vertical bands represent
the global stability threshold,Rg : values col-
lected from experiments in the literature are
around 840.37 In two dimensions, nonlinear
analysis of PPF leads to a transitional value
of about 2900 (vertical yellow line).55 The
green curve represents the dispersive-to-
nondispersive transition between sub-
regions A and B in this study. Reproduced
with permission from Figs. 5(b) and 5(d) and
Fig. SM 1 in Phys. Ref. E. 97, 063102
(2018).26 Copyright 2018 American Physical
Society.
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FIG. 9. Spreading rates [panels (a) and (b)], spreading half-angles [panels (c) and (d)], and volume-averaged energy and enstrophy [panels (e) and (f)] for the numerical simu-
lation of Fig. 4(c) [see definitions (A15)–(A19) in Subsection 3 of the Appendix]. Reproduced with permission from Fig. 28 in F. Fraternale, “Internal waves in fluid flows:
Possible coexistence with turbulence,” Ph.D. thesis (Politecnico di Torino, Torino, Italy, 2017).27 Copyright 2017 Author, licensed under a Creative Commons Attribution (CC
BY) License.
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The streamwise spreading is computed by seeking the portion
of the domain which contains 95% of the energy. The boundaries of
this region are named xrear and xfront, respectively. They are defined
as the locations of the 2.5th and 97.5th percentile of the xy-reduced,
squared variable being considered, respectively,

xrearðtÞ :

ðx
2:5%

�1
h~q2izdx ¼ 0:025

ð1
�1
h~q2izdx; (A16)

xfrontðtÞ :

ðx
97:5%

�1
h~q2izdx ¼ 0:975

ð1
�1
h~q2izdx: (A17)

Analogously, the spanwise spreading and the spreading half-angle
are computed from the xz-reduced squared quantities

zspreadðtÞ :

ðz
2:5%

�1
h~q2ixdz ¼ 0:025

ð1
�1
h~q2ixdz; (A18)

wspread ¼ tan�1
zspread
xG

� �
: (A19)

Figure 9 presents the spreading rates of a wave packet at R ¼ 1000.
Furthermore, Table IV displays the spreading rate data for the
R ¼ 500 case.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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